Abstract
Objective
To explore the mechanism of the action of Huoluo Xiaoling Dan (HLXLD) in the treatment of psoriasis based on network pharmacology and molecular docking.
Methods
The main active components and targets of HLXLD were collected from CMSP, and the targets related to psoriasis were collected from GeneCards, OMIM, TTD, DisGeNET, and DrugBank. Drug disease target genes were obtained by Venny tools, drug-component-target networks were constructed and analyzed, and pathway enrichment analysis was performed. AutoDockTools is used to connect the core components and the target, and PyMOL software is used to visualize the results.
Results
126 active components (such as quercetin, luteolin, tanshinone IIA, dihydrotanshinlactone, and beta-sitosterol) and 238 targets of HLXLD were screened out. 1,293 targets of psoriasis were obtained, and 123 drug-disease targets were identified. Key targets included AKT1, TNF, IL6, TP53, VEGFA, JUN, CASP3, IL1B, STAT3, PTGS2, HIF1A, EGF, MYC, EGFR, MMP9, and PPARG. Enrichment analysis showed that 735 GO analysis and 85 KEGG pathways were mainly involved in biological processes such as response to the drug, inflammatory response, gene expression, and cell proliferation and apoptosis, as well as signal pathways such as cancer, TNF, HIF-1, and T cell receptor. Molecular docking showed that there was strong binding activity between the active ingredient and the target protein.
Conclusions
HLXLD could treat psoriasis through multicomponents, multitargets, and multipathways, which provides a new theoretical basis for further basic research and clinical application.
Collapse