1
|
Campanelli R, Massa M, Rosti V, Barosi G. New Markers of Disease Progression in Myelofibrosis. Cancers (Basel) 2021; 13:5324. [PMID: 34771488 PMCID: PMC8582535 DOI: 10.3390/cancers13215324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm due to the clonal proliferation of a hematopoietic stem cell. The vast majority of patients harbor a somatic gain of function mutation either of JAK2 or MPL or CALR genes in their hematopoietic cells, resulting in the activation of the JAK/STAT pathway. Patients display variable clinical and laboratoristic features, including anemia, thrombocytopenia, splenomegaly, thrombotic complications, systemic symptoms, and curtailed survival due to infections, thrombo-hemorrhagic events, or progression to leukemic transformation. New drugs have been developed in the last decade for the treatment of PMF-associated symptoms; however, the only curative option is currently represented by allogeneic hematopoietic cell transplantation, which can only be offered to a small percentage of patients. Disease prognosis is based at diagnosis on the classical International Prognostic Scoring System (IPSS) and Dynamic-IPSS (during disease course), which comprehend clinical parameters; recently, new prognostic scoring systems, including genetic and molecular parameters, have been proposed as meaningful tools for a better patient stratification. Moreover, new biological markers predicting clinical evolution and patient survival have been associated with the disease. This review summarizes basic concepts of PMF pathogenesis, clinics, and therapy, focusing on classical prognostic scoring systems and new biological markers of the disease.
Collapse
Affiliation(s)
- Rita Campanelli
- Center for the Study of Myelofibrosis, General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (V.R.); (G.B.)
| | - Margherita Massa
- General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (V.R.); (G.B.)
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (V.R.); (G.B.)
| |
Collapse
|
2
|
Tognon R, Almeida-E-Silva DC, Andraos-Rey R, Ristov M, Ambrósio L, de Almeida FC, de Souza Nunes N, Xisto Souto E, de Lourdes Perobelli L, Simões BP, Alexander Guthy D, Radimerski T, Attié de Castro F. A proteomic study of myeloproliferative neoplasms using reverse-phase protein arrays. Leuk Lymphoma 2020; 61:3052-3065. [PMID: 32799592 DOI: 10.1080/10428194.2020.1805110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Myeloproliferative neoplasms polycythemia vera (PV), essential thrombocythaemia (ET) and primary myelofibrosis constitute a group of haematological diseases. The comprehensive assessment of signaling pathway activation in blood cells may aid the understanding of MPN pathophysiology. Thus, levels of post-translational protein modifications and total protein expression were determined in MPN patients and control leukocytes by using reverse-phase protein arrays (RPPA). Compared to control samples, p-SRC, p-CTNNB1, c-MYC, MCL-1, p-MDM2, BAX and CCNB1 showed higher expression in PV samples than controls. P-JAK2/JAK2 and pro-apoptotic BIM showed differential expression between JAK2V617F-positive and -negative ET patients. Apoptosis, cancer and PI3K/AKT pathways proteins showed differential expression among the studied groups. For most of the proteins analyzed using Western-Blot and RPPA, RPPA showed higher sensitivity to detect subtle differences. Taken together, our data indicate deregulated protein expression in MPN patients compared to controls. Thus, RPPA may be a useful method for broad proteome analysis in MPN patients´ leukocytes.
Collapse
Affiliation(s)
- Raquel Tognon
- Departmento de Análises Clínicas Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil.,Departamento de Farmácia, Instituto Ciências da Vida, Universidade Federal de Juiz de Fora/Campus Governador Valadares, Governador Valadares, Brazil
| | - Danillo C Almeida-E-Silva
- LabPIB, Department of Computing and Mathematics FFCLRP-USP, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Rita Andraos-Rey
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Mitko Ristov
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Luciana Ambrósio
- Departmento de Análises Clínicas Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Felipe Campos de Almeida
- Departmento de Análises Clínicas Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Natália de Souza Nunes
- Departmento de Análises Clínicas Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Elizabeth Xisto Souto
- Hospital Estadual de Transplantes Euryclides de Jesus Zerbini of São Paulo, São Paulo, Brazil
| | | | - Belinda Pinto Simões
- Departamento de Clínica Medica, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Thomas Radimerski
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Fabíola Attié de Castro
- Departmento de Análises Clínicas Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| |
Collapse
|
3
|
Analysis of thrombosis and bleeding complications in patients with polycythemia vera: a Turkish retrospective study. Int J Hematol 2016; 105:70-78. [DOI: 10.1007/s12185-016-2105-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
|
4
|
Melikyan AL, Sukhanova GA, Vakhrusheva MV, Subortseva IN, Orel EB. [Experience in treating portal thromboses in patients with chronic myeloproliferative diseases]. TERAPEVT ARKH 2016; 88:89-95. [PMID: 26978616 DOI: 10.17116/terarkh201688189-95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Patients with myeloproliferative diseases (MPD) are noted to be at high risk for portal thromboses. This problem gives rise to disability if it is untimely treated or resistant to therapy. The paper gives the experience of the Outpatient Department of the Hematology Research Center, Ministry of Health of the Russian Federation, in using antithrombin III in MPD patients (3 patients with primary myelofibrosis, 3 with essential thrombocythemia) and acute and subacute portal vein thromboses resistant to therapy with direct anticoagulants. In all 5 cases, the use of antithrombin III in combination with low-molecular-weight heparin showed a positive clinical effect as rapid relief of pain syndrome and comparatively early (3-week to 1.5-2-month) recanalization of thrombosed vessels. Three clinical cases are described in detail.
Collapse
Affiliation(s)
- A L Melikyan
- Hematology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - G A Sukhanova
- M.V. Lomonosov Moscow State University, Moscow, Russia
| | - M V Vakhrusheva
- Hematology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - I N Subortseva
- Hematology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - E B Orel
- Hematology Research Center, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
5
|
Abstract
Major progress has been recently made in understanding the molecular pathogenesis of myeloproliferative neoplasms (MPN). Mutations in one of four genes-JAK2, MPL, CALR, and CSF3R-can be found in the vast majority of patients with MPN and represent driver mutations that can induce the MPN phenotype. Hyperactive JAK/STAT signaling appears to be the common denominator of MPN, even in patients with CALR mutations and the so-called "triple-negative" MPN, where the driver gene mutation is still unknown. Mutations in epigenetic regulators, transcription factors, and signaling components modify the course of the disease and can contribute to disease initiation and/or progression. The central role of JAK2 in MPN allowed development of small molecular inhibitors that are in clinical use and are active in almost all patients with MPN. Advances in understanding the mechanism of JAK2 activation open new perspectives of developing the next generation of inhibitors that will be selective for the mutated forms of JAK2.
Collapse
|
6
|
Ye Z, Liu CF, Lanikova L, Dowey SN, He C, Huang X, Brodsky RA, Spivak JL, Prchal JT, Cheng L. Differential sensitivity to JAK inhibitory drugs by isogenic human erythroblasts and hematopoietic progenitors generated from patient-specific induced pluripotent stem cells. Stem Cells 2014; 32:269-78. [PMID: 24105986 DOI: 10.1002/stem.1545] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/25/2013] [Accepted: 08/02/2013] [Indexed: 01/31/2023]
Abstract
Disease-specific induced pluripotent stem cells (iPSCs) provide an unprecedented opportunity to establish novel disease models and accelerate drug development using distinct tissue target cells generated from isogenic iPSC lines with and without disease-causing mutations. To realize the potential of iPSCs in modeling acquired diseases which are usually heterogeneous, we have generated multiple iPSC lines including two lines that are JAK2-wild-type and four lines homozygous for JAK2-V617F somatic mutation from a single polycythemia vera (PV) patient blood. In vitro differentiation of the same patient-derived iPSC lines have demonstrated the differential contributions of their parental hematopoietic clones to the abnormal erythropoiesis including the formation of endogenous erythroid colonies. This iPSC approach thus may provide unique and valuable insights into the genetic events responsible for disease development. To examine the potential of iPSCs in drug testing, we generated isogenic hematopoietic progenitors and erythroblasts from the same iPSC lines derived from PV patients and normal donors. Their response to three clinical JAK inhibitors, INCB018424 (Ruxolitinib), TG101348 (SAR302503), and the more recent CYT387 was evaluated. All three drugs similarly inhibited erythropoiesis from normal and PV iPSC lines containing the wild-type JAK2 genotype, as well as those containing a homozygous or heterozygous JAK2-V617F activating mutation that showed increased erythropoiesis without a JAK inhibitor. However, the JAK inhibitors had less inhibitory effect on the self-renewal of CD34+ hematopoietic progenitors. The iPSC-mediated disease modeling thus underlies the ineffectiveness of the current JAK inhibitors and provides a modeling system to develop better targeted therapies for the JAK2 mutated hematopoiesis.
Collapse
Affiliation(s)
- Zhaohui Ye
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pietraforte D, Vona R, Marchesi A, de Jacobis IT, Villani A, Del Principe D, Straface E. Redox control of platelet functions in physiology and pathophysiology. Antioxid Redox Signal 2014; 21:177-93. [PMID: 24597688 DOI: 10.1089/ars.2013.5532] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE An imbalance between the production and the detoxification of reactive oxygen species and reactive nitrogen species (ROS/RNS) can be implicated in many pathological processes. Platelets are best known as primary mediators of hemostasis and can be either targets of ROS/RNS or generate radicals during cell activation. These conditions can dramatically affect platelet physiology, leading even, as an ultimate event, to the cell number modification. In this case, pathological conditions such as thrombocytosis (promoted by increased cell number) or thrombocytopenia and myelodysplasia (promoted by cell decrease mediated by accelerated apoptosis) can occur. RECENT ADVANCES Usually, in peripheral blood, ROS/RNS production is balanced by the rate of oxidant elimination. Under this condition, platelets are in a nonadherent "resting" state. During endothelial dysfunction or under pathological conditions, ROS/RNS production increases and the platelets respond with specific biochemical and morphologic changes. Mitochondria are at the center of these processes, being able to both generate ROS/RNS, that drive redox-sensitive events, and respond to ROS/RNS-mediated changes of the cellular redox state. Irregular function of platelets and enhanced interaction with leukocytes and endothelial cells can contribute to pathogenesis of atherosclerotic and thrombotic events. CRITICAL ISSUES The relationship between oxidative stress, platelet death, and the activation-dependent pathways that drive platelet pro-coagulant activity is unclear and deserves to be explored. FUTURE DIRECTIONS Expanding knowledge about how platelets can mediate hemostasis and modulate inflammation may lead to novel and effective therapeutic strategies for the long and growing list of pathological conditions that involve both thrombosis and inflammation.
Collapse
Affiliation(s)
- Donatella Pietraforte
- 1 Department of Cell Biology and Neurosciences, Section of Cell Aging and Gender Medicine, Istituto Superiore di Sanità , Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Chami N, Lettre G. Lessons and Implications from Genome-Wide Association Studies (GWAS) Findings of Blood Cell Phenotypes. Genes (Basel) 2014; 5:51-64. [PMID: 24705286 PMCID: PMC3978511 DOI: 10.3390/genes5010051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/03/2014] [Accepted: 01/20/2014] [Indexed: 01/10/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified reproducible genetic associations with hundreds of human diseases and traits. The vast majority of these associated single nucleotide polymorphisms (SNPs) are non-coding, highlighting the challenge in moving from genetic findings to mechanistic and functional insights. Nevertheless, large-scale (epi)genomic studies and bioinformatic analyses strongly suggest that GWAS hits are not randomly distributed in the genome but rather pinpoint specific biological pathways important for disease development or phenotypic variation. In this review, we focus on GWAS discoveries for the three main blood cell types: red blood cells, white blood cells and platelets. We summarize the knowledge gained from GWAS of these phenotypes and discuss their possible clinical implications for common (e.g., anemia) and rare (e.g., myeloproliferative neoplasms) human blood-related diseases. Finally, we argue that blood phenotypes are ideal to study the genetics of complex human traits because they are fully amenable to experimental testing.
Collapse
Affiliation(s)
- Nathalie Chami
- Montreal Heart Institute, Faculté de Médecine, Université de Montréal, 5000 Bélanger Street, Montréal, QC H1T 1C8, Canada.
| | - Guillaume Lettre
- Montreal Heart Institute, Faculté de Médecine, Université de Montréal, 5000 Bélanger Street, Montréal, QC H1T 1C8, Canada.
| |
Collapse
|
9
|
|
10
|
Dos Santos LC, Ribeiro JCDC, Silva NP, Cerutti J, da Silva MRR, Chauffaille MDLLF. Cytogenetics, JAK2 and MPL mutations in polycythemia vera, primary myelofibrosis and essential thrombocythemia. Rev Bras Hematol Hemoter 2013; 33:417-24. [PMID: 23049357 PMCID: PMC3459377 DOI: 10.5581/1516-8484.20110116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 08/29/2011] [Indexed: 11/27/2022] Open
Abstract
Background The detection of molecular and cytogenetic alterations is important for the diagnosis, prognosis and classification of myeloproliferative neoplasms. Objectives The aim of this study was to detect the following mutations: JAK2 V617F, JAK2 exon 12 and MPL W515K/L, besides chromosomal abnormalities. Furthermore, molecular and cytogenetic alterations were correlated with the leukocyte and platelet counts, hemoglobin levels and age in all patients and with the degree of fibrosis in primary myelofibrosis cases. Methods Twenty cases of polycythemia vera, 17 of essential thrombocythemia and 21 of primary myelofibrosis were selected in the Hematology Department of the Universidade Federal de São Paulo (UNIFESP) between February 2008 and December 2009. The JAK2 V617F, JAK2 exon 12 mutations, MPL W515K and MPL W515L mutations were investigated by real-time PCR and direct sequencing. G-band karyotyping and fluorescence in situ hybridization were used to detect chromosomal abnormalities. Results Chromosomal abnormalities were observed only in polycythemia vera (11.8%) and primary myelofibrosis cases (17.6%), without correlation to clinical data. Chromosomal abnormalities were not detected by fluorescence in situ hybridization. The JAK2 V617F mutation was observed in polycythemia vera (90%), primary myelofibrosis (42.8%) and essential thrombocythemia (47%). Patients with JAK2 V617F-negative polycythemia vera had lower platelet and leukocyte counts compared to V617F-positive polycythemia vera (p-value = 0.0001 and p-value = 0.023, respectively). JAK2 V617F-positive and MPL W515L-positive primary myelofibrosis cases had a higher degree of fibrosis than V617F-negative cases (p-value = 0.022). JAK2 exon 12 mutations were not detected in polycythemia vera patients. The MPL W515L mutation was observed in one case of primary myelofibrosis and in one of essential thrombocythemia. The MPL W515K mutation was not found in patients with essential thrombocythemia or primary myelofibrosis. The MPL W515L-positive patient with primary myelofibrosis had more severe anemia than other patients with primary myelofibrosis. Conclusions This study demonstrates that karyotyping for JAK2 and MPL mutations is useful in the diagnosis of myeloproliferative neoplasms. The precise pathogenetic contribution of these alterations is still unclear. However, this study adds more information about the pathophysiology of polycythemia vera, essential thrombocythemia and primary myelofibrosis.
Collapse
|
11
|
Specificity and mechanism-of-action of the JAK2 tyrosine kinase inhibitors ruxolitinib and SAR302503 (TG101348). Leukemia 2013; 28:404-7. [DOI: 10.1038/leu.2013.205] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Campregher PV, Santos FPDS, Perini GF, Hamerschlak N. Molecular biology of Philadelphia-negative myeloproliferative neoplasms. Rev Bras Hematol Hemoter 2012; 34:150-5. [PMID: 23049405 PMCID: PMC3459398 DOI: 10.5581/1516-8484.20120035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/21/2011] [Indexed: 01/13/2023] Open
Abstract
Myeloproliferative neoplasms are clonal diseases of hematopoietic stem cells characterized by myeloid hyperplasia and increased risk of developing acute myeloid leukemia. Myeloproliferative neoplasms are caused, as any other malignancy, by genetic defects that culminate in the neoplastic phenotype. In the past six years, since the identification of JAK2V617F, we have experienced a substantial increase in our knowledge about the genetic mechanisms involved in the genesis of myeloproliferative neoplasms. Mutations described in several genes have revealed a considerable degree of molecular homogeneity between different subtypes of myeloproliferative neoplasms. At the same time, the molecular differences between each subtype have become clearer. While mutations in several genes, such as JAK2, myeloproliferative leukemia (MPL) and LNK have been validated in functional assays or animal models as causative mutations, the roles of other recurring mutations in the development of disease, such as TET2 and ASXL1 remain to be elucidated. In this review we will examine the most prevalent recurring gene mutations found in myeloproliferative neoplasms and their molecular consequences.
Collapse
|
13
|
Abstract
It is thought that myeloproliferative neoplasms (MPNs) are driven by somatic mutations, although hereditary factors also play a prominent role in the pathogenesis of the disease. Hereditary thrombocytosis and erythrocytosis are not malignant disorders but are clinically similar to MPNs. Several mutations have been found that explain a proportion of hereditary thrombocytosis and hereditary erythrocytosis. Germline variants can influence the risk of leukemic transformation in MPNs and the course of the disease through interaction with acquired chromosomal aberrations. Overall, it has been shown that germline factors play an important part in MPN pathogenesis.
Collapse
|
14
|
Choi O, Heathcote DA, Ho KK, Müller PJ, Ghani H, Lam EWF, Ashton-Rickardt PG, Rutschmann S. A deficiency in nucleoside salvage impairs murine lymphocyte development, homeostasis, and survival. THE JOURNAL OF IMMUNOLOGY 2012; 188:3920-7. [PMID: 22407915 DOI: 10.4049/jimmunol.1102587] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The homeostasis of the immune system is tightly controlled by both cell-extrinsic and -intrinsic mechanisms. These regulators, not all known to date, drive cells in and out of quiescence when and where required to allow the immune system to function. In this article, we describe a deficiency in deoxycytidine kinase (DCK), one of the major enzymes of the nucleoside salvage pathway, which affects peripheral T cell homeostatic proliferation and survival. As a result of an N-ethyl-N-nitrosourea-induced mutation in the last α helix of DCK, a functionally null protein has been generated in the mouse and affects the composition of the hematopoietic system. Both B and T lymphocyte development is impaired, leading to a state of chronic lymphopenia and to a significant increase in the number of myeloid cells and erythrocytes. In the periphery, we found that mutant lymphocytes adopt a CD44(high)CD62L(low) memory phenotype, with high levels of proliferation and apoptosis. These phenotypes are notably the result of a cell-extrinsic-driven lymphopenia-induced proliferation as wild-type cells transferred into DCK-deficient recipients adopt the same profile. In addition, DCK also regulates lymphocyte quiescence in a cell-intrinsic manner. These data establish dCK as a new regulator of hematopoietic integrity and lymphocyte quiescence and survival.
Collapse
Affiliation(s)
- Onjee Choi
- Section of Immunobiology, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kreft A, Kindler T, Springer E, Kirkpatrick CJ. JAK2-V617F-mutated myeloproliferative neoplasms reveal different allele burden within hematopoietic cell lineages: a microdissection study of bone marrow trephine biopsies. Virchows Arch 2011; 459:521-7. [DOI: 10.1007/s00428-011-1154-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/26/2011] [Accepted: 10/03/2011] [Indexed: 01/31/2023]
|
16
|
|
17
|
Skoda RC, Schwaller J. HiJAKing the methylosome in myeloproliferative disorders. Cancer Cell 2011; 19:161-3. [PMID: 21316597 DOI: 10.1016/j.ccr.2011.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
JAK2 gain-of-function mutations have been shown to cause myeloproliferative neoplasms. In this issue of Cancer Cell, Liu et al. (2011) demonstrate that these JAK2 mutants, but not wild-type JAK2, directly phosphorylate PRMT5 and inhibit its arginine methyltransferase activity, establishing a link between mutant JAK2 and histone arginine methylation.
Collapse
Affiliation(s)
- Radek C Skoda
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland.
| | | |
Collapse
|
18
|
Bejar R, Levine R, Ebert BL. Unraveling the molecular pathophysiology of myelodysplastic syndromes. J Clin Oncol 2011; 29:504-15. [PMID: 21220588 DOI: 10.1200/jco.2010.31.1175] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Somatically acquired genetic abnormalities lead to the salient features that define myelodysplastic syndromes (MDS): clonal hematopoiesis, aberrant differentiation, peripheral cytopenias, and risk of progression to acute myeloid leukemia. Although specific karyotypic abnormalities have been linked to MDS for decades, more recent findings have demonstrated the importance of mutations within individual genes, focal alterations that are not apparent by standard cytogenetics, and aberrant epigenetic regulation of gene expression. The spectrum of genetic abnormalities in MDS implicates a wide range of molecular mechanisms in the pathogenesis of these disorders, including activation of tyrosine kinase signaling, genomic instability, impaired differentiation, altered ribosome function, and changes in the bone marrow microenvironment. Specific alterations present in individual patients with MDS may explain much of the heterogeneity in clinical phenotype associated with this disease and can predict prognosis and response to therapy. Elucidation of the full complement of genetic causes of MDS promises profound insight into the biology of the disease, improved classification and prognostic scoring schemes, and the potential for novel targeted therapies with molecular predictors of response.
Collapse
Affiliation(s)
- Rafael Bejar
- Brigham and Women's Hospital, Karp Research Building, CHRB 05.211, 1 Blackfan Cir, Boston, MA 02115, USA
| | | | | |
Collapse
|
19
|
Ye Z, Cheng L. Potential of human induced pluripotent stem cells derived from blood and other postnatal cell types. Regen Med 2010; 5:521-30. [PMID: 20632856 DOI: 10.2217/rme.10.38] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Human induced pluripotent stem (iPS) cells have been generated from various cell types including blood cells, and offer certain advantages as a starting population for reprogramming postnatal somatic cells. Unlike adult stem cells, iPS cells can proliferate limitlessly in culture while retaining their potential to differentiate into any cell type, including hematopoietic lineages. Derivation of patient-specific iPS cells, in combination with improved hematopoietic differentiation protocols, provides an alternative to generate histocompatible stem cells for bone marrow transplantation. In addition, the ability to reprogram blood cells and redifferentiate iPS cells back to hematopoietic lineages provides opportunities to establish novel models for acquired and inherited blood diseases. This article will summarize recent progress in human iPS cells derived from blood cells and hematopoietic differentiation from iPS cells. Advantages of blood as a source for reprogramming and applications in regenerative medicine will be discussed.
Collapse
Affiliation(s)
- Zhaohui Ye
- Division of Hematology & Stem Cell Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Broadway Research Building, Room 747, 733 N. Broadway, Baltimore, MD 21205, USA
| | | |
Collapse
|
20
|
Churpek JE, Onel K. Heritability of hematologic malignancies: from pedigrees to genomics. Hematol Oncol Clin North Am 2010; 24:939-72. [PMID: 20816581 DOI: 10.1016/j.hoc.2010.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Many hematologic malignancies have an underlying heritable component. Although not as well characterized as the acquired genetic abnormalities that define important prognostic and therapeutic subgroups of myeloid and lymphoid neoplasms, investigations are beginning to unravel the role of germline genetic variation in the predisposition to hematologic malignancies. Information gained from the study of striking family pedigrees, epidemiologic data, and candidate genes are now being combined with unbiased genome-wide investigations to outline the network of genetic abnormalities that contribute to hematologic malignancy risk. This article reviews the current understanding of the heritability of hematologic malignancies in the genomics era.
Collapse
Affiliation(s)
- Jane E Churpek
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
21
|
Hu H. An efficient algorithm to identify coordinately activated transcription factors. Genomics 2010; 95:143-50. [DOI: 10.1016/j.ygeno.2009.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/25/2009] [Accepted: 12/29/2009] [Indexed: 01/25/2023]
|
22
|
Crisà E, Venturino E, Passera R, Prina M, Schinco P, Borchiellini A, Giai V, Ciocca Vasino MA, Bazzan M, Vaccarino A, Boccadoro M, Ferrero D. A retrospective study on 226 polycythemia vera patients: impact of median hematocrit value on clinical outcomes and survival improvement with anti-thrombotic prophylaxis and non-alkylating drugs. Ann Hematol 2010; 89:691-9. [DOI: 10.1007/s00277-009-0899-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Accepted: 12/28/2009] [Indexed: 02/02/2023]
|
23
|
Myeloproliferative neoplasms: contemporary diagnosis using histology and genetics. Nat Rev Clin Oncol 2009; 6:627-37. [DOI: 10.1038/nrclinonc.2009.149] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 2009; 114:5473-80. [PMID: 19797525 DOI: 10.1182/blood-2009-04-217406] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human induced pluripotent stem (iPS) cells derived from somatic cells hold promise to develop novel patient-specific cell therapies and research models for inherited and acquired diseases. We and others previously reprogrammed human adherent cells, such as postnatal fibroblasts to iPS cells, which resemble adherent embryonic stem cells. Here we report derivation of iPS cells from postnatal human blood cells and the potential of these pluripotent cells for disease modeling. Multiple human iPS cell lines were generated from previously frozen cord blood or adult CD34(+) cells of healthy donors, and could be redirected to hematopoietic differentiation. Multiple iPS cell lines were also generated from peripheral blood CD34(+) cells of 2 patients with myeloproliferative disorders (MPDs) who acquired the JAK2-V617F somatic mutation in their blood cells. The MPD-derived iPS cells containing the mutation appeared normal in phenotypes, karyotype, and pluripotency. After directed hematopoietic differentiation, the MPD-iPS cell-derived hematopoietic progenitor (CD34(+)CD45(+)) cells showed the increased erythropoiesis and gene expression of specific genes, recapitulating features of the primary CD34(+) cells of the corresponding patient from whom the iPS cells were derived. These iPS cells provide a renewable cell source and a prospective hematopoiesis model for investigating MPD pathogenesis.
Collapse
|
25
|
Abstract
Essential thrombocythemia (ET) is a clonal myeloproliferative disorder characterized by sustained increase in platelet number and tendency for thromboembolism. A somatic point mutation that causes a constitutive activation of the JAK2 gene is found in one in two ET patients. ET is more common in women, its incidence being 0.6-2.5/100,000 patient/year and the median age at diagnosis is 65-70 years. ET can affect all age groups, including children (0.09 cases/year), and is often diagnosed in the third-fourth decade of life. Rare cases of familial ET have been reported. Miscarriages are 3-4 times more common among women with ET than in the general population, especially in patients carrying JAK2V617F. Microvascular disturbances are typical of ET, but a major thrombosis (2/3 arterial and 1/3 venous; 1, 2-3% patient/year) is the main cause of morbidity and mortality. Age over 60 years and/or previous thrombosis are validated risk factor for thrombosis. Hemorrhages occur in 0.33% patient/year, mainly in those with a platelet count over 1,500 x 10(9)/L. Progression to myelofibrosis and leukemia is more common in patients carrying the JAK2V617F mutation, and is estimated to occur in 0.16% and 0.12% patient/year, respectively. The ET-related mortality ratio with respect to the general population is 1:1, while for polycythemia vera it is 1.6:1. Low-dose aspirin is useful for microvascular disturbances, and in the primary and secondary prevention of major thrombosis in high-risk patients, but it is not recommended in patients with a platelet count over 1,500 x 10(9)/L. Hydroxyurea is used as first-line treatment in high-risk patients. Other drugs available are alpha-interferon, anagrelide, pipobroman and busulphan.
Collapse
Affiliation(s)
- Fabrizio Fabris
- Department of Medical and Surgical Sciences, University of Padua Medical School, Via Giustiniani 2, 35128 Padua, Italy.
| | | |
Collapse
|
26
|
Lee TS, Ma W, Zhang X, Kantarjian H, Albitar M. Structural effects of clinically observed mutations in JAK2 exons 13-15: comparison with V617F and exon 12 mutations. BMC STRUCTURAL BIOLOGY 2009; 9:58. [PMID: 19744331 PMCID: PMC2749040 DOI: 10.1186/1472-6807-9-58] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 09/10/2009] [Indexed: 02/07/2023]
Abstract
Background The functional relevance of many of the recently detected JAK2 mutations, except V617F and exon 12 mutants, in patients with chronic myeloproliferative neoplasia (MPN) has been significantly overlooked. To explore atomic-level explanations of the possible mutational effects from those overlooked mutants, we performed a set of molecular dynamics simulations on clinically observed mutants, including newly discovered mutations (K539L, R564L, L579F, H587N, S591L, H606Q, V617I, V617F, C618R, L624P, whole exon 14-deletion) and control mutants (V617C, V617Y, K603Q/N667K). Results Simulation results are consistent with all currently available clinical/experimental evidence. The simulation-derived putative interface, not possibly obtained from static models, between the kinase (JH1) and pseudokinase (JH2) domains of JAK2 provides a platform able to explain the mutational effect for all mutants, including presumably benign control mutants, at the atomic level. Conclusion The results and analysis provide structural bases for mutational mechanisms of JAK2, may advance the understanding of JAK2 auto-regulation, and have the potential to lead to therapeutic approaches. Together with recent mutation profiling results demonstrating the breadth of clinically observed JAK2 mutations, our findings suggest that molecular testing/diagnostics of JAK2 should extend beyond V617F and exon 12 mutations, and perhaps should encompass most of the pseudo-kinase domain-coding region.
Collapse
Affiliation(s)
- Tai-Sung Lee
- Biomedical Informatics and Computational Biology, and Department of Chemistry, University of Minnesota, 207 Pleasant Street, S.E., Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
27
|
Vannucchi AM, Guglielmelli P, Rambaldi A, Bogani C, Barbui T. Epigenetic therapy in myeloproliferative neoplasms: evidence and perspectives. J Cell Mol Med 2009; 13:1437-50. [PMID: 19522842 PMCID: PMC3828857 DOI: 10.1111/j.1582-4934.2009.00827.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 06/03/2009] [Indexed: 12/18/2022] Open
Abstract
The classic Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), which include polycythaemia vera, essential thrombocythaemia and primary myelofibrosis, originate from a stem cell-derived clonal myeloproliferation that manifests itself with variable haematopoietic cell lineage involvement; they are characterized by a high degree of similarities and the chance to transform each to the other and to evolve into acute leukaemia. Their molecular pathogenesis has been associated with recurrent acquired mutations in janus kinase 2 (JAK2) and myeloproliferative leukemia virus oncogene (MPL). These discoveries have simplified the diagnostic approach and provided a number of clues to understanding the phenotypic expression of MPNs; furthermore, they represented a framework for developing and/or testing in clinical trials small molecules acting as tyrosine kinase inhibitors. On the other hand, evidence of abnormal epigenetic gene regulation as a mechanism potentially contributing to the pathogenesis and the phenotypic diversity of MPNs is still scanty; however, study of epigenetics in MPNs represents an active field of research. The first clinical trials with epigenetic drugs have been completed recently, whereas others are still ongoing; results have been variable and at present do not allow any firm conclusion. Novel basic and translational information concerning epigenetic gene regulation in MPNs and the perspectives for therapy will be critically addressed in this review.
Collapse
Affiliation(s)
- Alessandro M Vannucchi
- UF di Ematologia, Dip. Area Critica Medico-Chirugica, Università di Firenze, Firenze, Italy.
| | | | | | | | | |
Collapse
|
28
|
Vannucchi AM, Masala G, Antonioli E, Chiara Susini M, Guglielmelli P, Pieri L, Maggi L, Caini S, Palli D, Bogani C, Ponziani V, Pancrazzi A, Annunziato F, Bosi A. Increased Risk of Lymphoid Neoplasms in Patients with Philadelphia Chromosome–Negative Myeloproliferative Neoplasms. Cancer Epidemiol Biomarkers Prev 2009; 18:2068-73. [DOI: 10.1158/1055-9965.epi-09-0353] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
29
|
Lee TS, Ma W, Zhang X, Giles F, Kantarjian H, Albitar M. Mechanisms of constitutive activation of Janus kinase 2-V617F revealed at the atomic level through molecular dynamics simulations. Cancer 2009; 115:1692-700. [PMID: 19195039 DOI: 10.1002/cncr.24183] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The tyrosine kinase Janus kinase 2 (JAK2) is important in triggering nuclear translocation and regulation of target genes expression through signal transducer and activator of transcription pathways. The valine-to-phenylalanine mutation at amino acid 617 (V617F), which results in the deregulation of JAK2, has been implicated in the oncogenesis of chronic myeloproliferative disease. However, both the mechanism of JAK2 autoinhibition and the mechanism of V617F constitutive activation remain unclear. METHOD In this work, the authors used molecular dynamics simulation techniques to establish plausible mechanisms of JAK2 autoinhibition and V617F constitutive activation at the atomic level. RESULTS In wild-type JAK2, the activation loop of JAK2-homology domain 1 (JH1) is pulled toward the JH1/JH2 interface through interactions with key residues of JH2, especially S591, F595, and V617, and stabilizes the inactivated form of JH1. In the case of V617F, through the aromatic ring-ring stacking interaction, F617 blocks the interaction of JH1 the activation loop, S591, and F595, thus causing the JH1 activation loop to move back to its activated form. CONCLUSIONS The current results indicated that this simulation-derived mechanism of JAK2 autoregulation is consistent with current available experimental evidence and may lead to a deeper understanding of JAK2 and other kinase systems that are regulated by pseudokinases.
Collapse
Affiliation(s)
- Tai-Sung Lee
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Percy MJ, Rumi E. Genetic origins and clinical phenotype of familial and acquired erythrocytosis and thrombocytosis. Am J Hematol 2009; 84:46-54. [PMID: 19006225 DOI: 10.1002/ajh.21313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Familial and acquired erythrocytosis and thrombocytosis are characterized by myeloid lineage hyperproliferation, which is either single or multi-lineage in origin. The single lineage disorders exhibit Mendelian inheritance with polyclonal hematopoiesis and often arise from a single genetic defect. In contrast, the multi-lineage disorders exhibit complex patterns of inheritance with multi-genetic origins and clonal hematopoiesis. They have the potential to acquire JAK2 somatic mutations, but this is not the primary event. Identification of the disease-causing genes will enable better classification of familial and acquired erythrocytosis and thrombocytosis. Furthermore, it will provide an insight into the mechanisms regulating myeloid cell proliferation.
Collapse
Affiliation(s)
- Melanie J Percy
- Department of Haematology, Belfast City Hospital, Belfast, Northern Ireland, UK.
| | | |
Collapse
|
31
|
Rumi E. Familial chronic myeloproliferative disorders: the state of the art. Hematol Oncol 2008; 26:131-8. [DOI: 10.1002/hon.863] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Bogani C, Ponziani V, Guglielmelli P, Desterke C, Rosti V, Bosi A, Le Bousse-Kerdilès MC, Barosi G, Vannucchi AM. Hypermethylation of CXCR4 promoter in CD34+ cells from patients with primary myelofibrosis. Stem Cells 2008; 26:1920-30. [PMID: 18511598 DOI: 10.1634/stemcells.2008-0377] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Constitutive mobilization of CD34(+) cells in patients with primary myelofibrosis (PMF) has been attributed to proteolytic disruption of the CXCR4/SDF-1 axis and reduced CXCR4 expression. We document here that the number of circulating CD34(+)/CXCR4(+) cells in PMF patients, as well as the cellular CXCR4 expression, was directly related to CXCR4 mRNA level and that reduced CXCR4 mRNA level was not due to SDF-1-induced downregulation. To address whether epigenetic regulation contributes to defective CXCR4 expression, we studied the methylation status of the CXCR4 promoter using methylation-specific polymerase chain reaction and methylation-specific sequencing in the JAK2V617F-positive HEL cell line and in CD34(+) cells. We found that CD34(+) cells from PMF patients, unlike those from normal subjects, presented hypermethylation of CXCR4 promoter CpG island 1. Following incubation with the demethylating agent 5-Aza-2'-deoxycytidine (5-AzaD), the percentage of PMF CD34(+) cells expressing CXCR4 increased 3-10 times, whereas CXCR4 mRNA level increased approximately 4 times. 5-AzaD-treated PMF CD34(+) cells displayed almost complete reversal of CpG1 island 1 hypermethylation and showed enhanced migration in vitro in response to SDF-1. These data point to abnormal methylation of the CXCR4 promoter as a mechanism contributing to constitutive migration of CD34(+) cells in PMF. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Costanza Bogani
- Department of Hematology, University of Florence, 50134 Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Clinical correlates of JAK2V617F presence or allele burden in myeloproliferative neoplasms: a critical reappraisal. Leukemia 2008; 22:1299-307. [PMID: 18496562 DOI: 10.1038/leu.2008.113] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
JAK2 and MPL mutations are recurrent in myeloproliferative neoplasms (MPNs). A JAK2 mutation, primarily JAK2V617F, is almost invariably associated with polycythemia vera (PV). However, JAK2V617F also occurs in the majority of patients with essential thrombocythemia (ET) or primary myelofibrosis (PMF) as well as in a much smaller percentage of those with other MPNs. The mechanism(s) behind this one allele-multiple phenotypes phenomenon has not been fully elucidated. The issue is further confounded by the presence of marked variation in JAK2V617F allele burden among mutation-positive patients. In the current communication, we discuss potential mechanisms for phenotypic diversity among JAK2V617F-positive MPNs as well as review the current literature in regard to genotype-phenotype correlations (that is clinical correlates and prognostic significance) in the context of both the presence or absence of the mutation (ET and PMF) and its allele burden (PV, ET and PMF).
Collapse
|
34
|
Skoda MWA, Jacobs RMJ, Willis J, Schreiber F. Hydration of oligo(ethylene glycol) self-assembled monolayers studied using polarization modulation infrared spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:970-4. [PMID: 17240997 DOI: 10.1021/la0616653] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The interaction with water of protein-resistant monolayers (SAMs), self-assembled from (triethylene glycol) terminated thiol HS(CH2)11(OCH2CH2)3OMe solutions, was studied using in and ex situ polarization-modulated Fourier transform infrared spectroscopy. In particular, shifts in the position of the characteristic C-O-C stretching vibration were observed after the monolayers had been exposed to water. The shift in frequency increased when the SAM was observed in direct contact with a thin layer of water. It was found that the magnitude of the shift also depended on the surface coverage of the SAM. These findings suggest a rather strong interaction of oligo(ethylene glycol) SAMs with water and indicate the penetration of water into the upper region of the monolayer.
Collapse
Affiliation(s)
- M W A Skoda
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, U.K
| | | | | | | |
Collapse
|