1
|
Pereira JL, Arede L, Ferreira F, Matos A, Pereira D, Santos RF, Carmo AM, Oliveira MJ, Machado JC, Duarte D, Dos Santos NR. Antibody blockade of the PSGL-1 immune checkpoint enhances T-cell responses to B-cell lymphoma. Leukemia 2025; 39:178-188. [PMID: 39455852 DOI: 10.1038/s41375-024-02446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Despite advancements in cancer immunotherapy, most lymphomas remain unresponsive to checkpoint inhibitors. P-selectin glycoprotein ligand-1 (PSGL-1), recently identified as a promoter of T-cell exhaustion in murine melanoma models, has emerged as a novel immune checkpoint protein and promising immunotherapeutic target. In this study, we investigated the potential of PSGL-1 antibody targeting in B-cell lymphoma. Using allogeneic co-culture systems, we demonstrated that targeted antibody interventions against human PSGL-1 enhanced T-cell activation and effector cytokine production in response to lymphoma cells. Moreover, in vitro treatment of primary lymphoma cell suspensions with PSGL-1 antibody resulted in increased activation of autologous lymphoma-infiltrating T cells. Using the A20 syngeneic B-cell lymphoma mouse model, we found that PSGL-1 antibody treatment significantly slowed tumor development and reduced the endpoint tumor burden. This antitumoral effect was accompanied by augmented tumor infiltration of CD4+ and CD8+ T cells and reduced infiltration of regulatory T cells. Finally, anti-PSGL-1 administration enhanced the expansion of CAR T cells previously transferred to mice bearing the aggressive Eμ-Myc lymphoma cells and improved disease control. These results demonstrate that PSGL-1 antibody blockade bolsters T-cell activity against B-cell lymphoma, suggesting a potential novel immunotherapeutic approach for treating these malignancies.
Collapse
Affiliation(s)
- João L Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Liliana Arede
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisca Ferreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Master´s Program in Bioengineering, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, and Faculty of Engineering, University of Porto, Porto, Portugal
| | - Andreia Matos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Genetics Laboratory, Faculty of Medicine, University of Lisbon, Lisboa, Portugal
- Ecogenetics and Human Health, Environmental Health Institute, Faculty of Medicine, University of Lisbon, Lisboa, Portugal
| | - Dulcineia Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Department of Hematology and Bone Marrow Transplantation, IPO Porto, Porto, Portugal
| | - Rita F Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ESS-IPP, School of Health, Polytechnic of Porto, Porto, Portugal
| | - Alexandre M Carmo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Maria J Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - José C Machado
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Delfim Duarte
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Hematology and Bone Marrow Transplantation, IPO Porto, Porto, Portugal
| | - Nuno R Dos Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.
| |
Collapse
|
2
|
Gundle KR, Rajasekaran K, Houlton J, Deutsch GB, Ow TJ, Maki RG, Pang J, Nathan CAO, Clayburgh D, Newman JG, Brinkmann E, Wagner MJ, Pollack SM, Thompson MJ, Li RJ, Mehta V, Schiff BA, Wenig BI, Swiecicki PL, Tang AL, Davis JL, van Zante A, Bertout JA, Jenkins W, Turner A, Grenley M, Burns C, Frazier JP, Merrell A, Sottero KHW, Derry JMJ, Gillespie KC, Mills B, Klinghoffer RA. Early, precise, and safe clinical evaluation of the pharmacodynamic effects of novel agents in the intact human tumor microenvironment. Front Pharmacol 2024; 15:1367581. [PMID: 38681192 PMCID: PMC11048044 DOI: 10.3389/fphar.2024.1367581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/04/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction: Drug development is systemically inefficient. Research and development costs for novel therapeutics average hundreds of millions to billions of dollars, with the overall likelihood of approval estimated to be as low as 6.7% for oncology drugs. Over half of these failures are due to a lack of drug efficacy. This pervasive and repeated low rate of success exemplifies how preclinical models fail to adequately replicate the complexity and heterogeneity of human cancer. Therefore, new methods of evaluation, early in the development trajectory, are essential both to rule-in and rule-out novel agents with more rigor and speed, but also to spare clinical trial patients from the potentially toxic sequelae (high risk) of testing investigational agents that have a low likelihood of producing a response (low benefit). Methods: The clinical in vivo oncology (CIVO®) platform was designed to change this drug development paradigm. CIVO precisely delivers microdose quantities of up to 8 drugs or combinations directly into patient tumors 4-96 h prior to planned surgical resection. Resected tissue is then analyzed for responses at each site of intratumoral drug exposure. Results: To date, CIVO has been used safely in 6 clinical trials, including 68 subjects, with 5 investigational and 17 approved agents. Resected tissues were analyzed initially using immunohistochemistry and in situ hybridization assays (115 biomarkers). As technology advanced, the platform was paired with spatial biology analysis platforms, to successfully track anti-neoplastic and immune-modulating activity of the injected agents in the intact tumor microenvironment. Discussion: Herein we provide a report of the use of CIVO technology in patients, a depiction of the robust analysis methods enabled by this platform, and a description of the operational and regulatory mechanisms used to deploy this approach in synergistic partnership with pharmaceutical partners. We further detail how use of the CIVO platform is a clinically safe and scientifically precise alternative or complement to preclinical efficacy modeling, with outputs that inform, streamline, and de-risk drug development.
Collapse
Affiliation(s)
- Kenneth R. Gundle
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
- Portland Veterans Affairs Medical Center, Portland, OR, United States
| | - Karthik Rajasekaran
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeffrey Houlton
- Sarah Cannon Research Institute, Charleston, SC, United States
| | - Gary B. Deutsch
- Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, United States
| | - Thomas J. Ow
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Pathology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Robert G. Maki
- Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, United States
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - John Pang
- Department of Otolaryngology/Head and Neck Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Cherie-Ann O. Nathan
- Department of Otolaryngology/Head and Neck Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Daniel Clayburgh
- Portland Veterans Affairs Medical Center, Portland, OR, United States
- Department of Otolaryngology‐Head and Neck Surgery, Oregon Health and Science University, Portland, OR, United States
| | - Jason G. Newman
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Elyse Brinkmann
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Michael J. Wagner
- Division of Oncology, University of Washington, Seattle, WA, United States
| | - Seth M. Pollack
- Division of Oncology, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Matthew J. Thompson
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Ryan J. Li
- Department of Otolaryngology‐Head and Neck Surgery, Oregon Health and Science University, Portland, OR, United States
| | - Vikas Mehta
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Bradley A. Schiff
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Barry I. Wenig
- Department of Otolaryngology—Head and Neck Surgery, University of Illinois at Chicago, Chicago, IL, United States
| | - Paul L. Swiecicki
- Department of Hematology Oncology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Alice L. Tang
- Department of Otolaryngology—Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jessica L. Davis
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Annemieke van Zante
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | | | - Wendy Jenkins
- Presage Biosciences, Inc., Seattle, WA, United States
| | | | - Marc Grenley
- Presage Biosciences, Inc., Seattle, WA, United States
| | - Connor Burns
- Presage Biosciences, Inc., Seattle, WA, United States
| | | | | | | | | | | | - Bre Mills
- Presage Biosciences, Inc., Seattle, WA, United States
| | | |
Collapse
|
4
|
Li Y, Sun H, Yan Y, Sun T, Wang S, Ma H. Long-Term Survival Rates of Patients with Stage III-IV Hodgkin Lymphoma According to Age, Sex, Race, and Socioeconomic Status, 1984-2013. Oncologist 2018; 23:1328-1336. [PMID: 29739895 DOI: 10.1634/theoncologist.2017-0541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/23/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Long-term survival rates for patients with stage III-IV Hodgkin lymphoma, or advanced Hodgkin lymphoma (aHL), have increased substantially since the 1960s. Because large-scale research of aHL is rare, we aimed to demonstrate the differences in incidence and survival of aHL according to four patient variables in recent decades, with a focus on the outcomes of treatment of aHL and the advancement of public health care. MATERIALS AND METHODS Data on aHL cases diagnosed during 1984-2013 were extracted from the Surveillance, Epidemiology, and End Results Program database. Relative survival, Kaplan-Meier, and Cox proportional hazards regression analyses were performed to identify prognosis indicators for aHL. RESULTS The incidence rates for aHL were 1.1, 0.8, and 1.0 per 100,000 in the first, second, and third decades, respectively, during 1984-2013. The 120-month relative survival rate improved continuously in each decade from 58.5% to 64.6% to 72.1%. In addition, disparities in the 120-month relative survival rate between male and female patients and among patients of different races narrowed over time. The difference in long-term survival rate between the poor (medium and high poverty) and rich (low poverty) groups narrowed across the 3 decades. CONCLUSION The long-term survival rate for patients with aHL increased in each decade, whereas survival rate disparities according to sex, race, and socioeconomic status narrowed, except for older patients aged >60 years and the high-poverty group. IMPLICATIONS FOR PRACTICE Long-term survival rates of patients with advanced Hodgkin lymphoma were elaborated in this article. The disparities according to sex, race, and socioeconomic status of survival condition were analyzed and showed the development of the public health care system and modern medicine technology.
Collapse
Affiliation(s)
- Yushi Li
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| | - Huanhuan Sun
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| | - Yan Yan
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| | - Tiantian Sun
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shuncong Wang
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| | - Haiqing Ma
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| |
Collapse
|
6
|
The value of detecting immunoglobulin gene rearrangements in the diagnosis of B-cell lymphoma. Oncotarget 2017; 8:77009-77019. [PMID: 29100365 PMCID: PMC5652759 DOI: 10.18632/oncotarget.20330] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/29/2017] [Indexed: 11/28/2022] Open
Abstract
Objective To discuss the clinical value of immunoglobulin gene rearrangements in the diagnosis of B-cell lymphoma. Methods A total of 209 cases of B-cell lymphomas and 35 cases of reactive lymphoid hyperplasia were selected for DNA extraction and PCR amplification using the BIOMED-2 primer system. Gel electrophoresis of heteroduplexes was used to analyze immunoglobulin gene rearrangements. Results A total of 209 cases of B-cell lymphoma, including 69 extranodal marginal zone B-cell lymphomas of mucosa-associated lymphoid tissue, 63 diffuse large B-cell lymphomas, 39 follicular lymphomas, 15 small lymphocytic lymphomas, 6 plasmacytomas, 6 mantle cell lymphomas, 7 nodal marginal zone B-cell lymphomas, and 4 lymphoplasmacytoid lymphomas, were examined. Immunoglobulin gene rearrangements were found in all 209 cases, with 93 IGHA, 122 IGHB, 98 IGHC, 167 IGK, 100 IGL, 167 IGHA/B/C, 204 IGH/IGK, 209 IGH/IGK/IGL, 129 IGH+IGK, 81 IGH+IGL, 83 IGK+IGL and 68 IGH+IGK+IGL gene rearrangements. Immunoglobulin gene rearrangements were not found in the 35 cases of reactive lymphoid hyperplasia. IGH and IGK gene rearrangements were mainly found in mantle cell lymphomas, small lymphocytic lymphomas, extranodal marginal zone B-cell lymphomas of mucosa-associated lymphoid tissue and diffuse large B-cell lymphomas. The IGH gene rearrangement was mainly found in lymphoplasmacytoid lymphomas and follicular lymphomas. IGK and IGL gene rearrangements were mainly found in plasmocytoma, and the IGK gene rearrangement was mainly found in nodal marginal zone B-cell lymphomas. Conclusions The BIOMED-2 standardized immunoglobulin gene rearrangement detection system is an important tool in B-cell lymphoma diagnosis. Analysis of IGH, IGK and IGL gene rearrangements is valuable in confirming the classification of B-cell NHL.
Collapse
|