1
|
Hollis IB, Jennings DL, Krim S, Ton VK, Ducharme A, Cowger J, Looby M, Eulert-Green JJ, Bansal N, Horn E, Byku M, Katz J, Michaud CJ, Rajapreyar I, Campbell P, Vale C, Cosgrove R, Hernandez-Montfort J, Otero J, Ingemi A, Raj S, Weeks P, Agarwal R, Martinez ES, Tops LF, Ahmed MM, Kiskaddon A, Kremer J, Keebler M, Ratnagiri RK. An ISHLT consensus statement on strategies to prevent and manage hemocompatibility related adverse events in patients with a durable, continuous-flow ventricular assist device. J Heart Lung Transplant 2024; 43:1199-1234. [PMID: 38878021 DOI: 10.1016/j.healun.2024.04.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 07/15/2024] Open
Abstract
Life expectancy of patients with a durable, continuous-flow left ventricular assist device (CF-LVAD) continues to increase. Despite significant improvements in the delivery of care for patients with these devices, hemocompatability-related adverse events (HRAEs) are still a concern and contribute to significant morbility and mortality when they occur. As such, dissemination of current best evidence and practices is of critical importance. This ISHLT Consensus Statement is a summative assessment of the current literature on prevention and management of HRAEs through optimal management of oral anticoagulant and antiplatelet medications, parenteral anticoagulant medications, management of patients at high risk for HRAEs and those experiencing thrombotic or bleeding events, and device management outside of antithrombotic medications. This document is intended to assist clinicians caring for patients with a CF-LVAD provide the best care possible with respect to prevention and management of these events.
Collapse
Affiliation(s)
- Ian B Hollis
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina; University of North Carolina Medical Center, Chapel Hill, North Carolina.
| | - Douglas L Jennings
- New York Presbyterian Columbia Irving Medical Center/Long Island University College of Pharmacy, New York, New York
| | - Selim Krim
- John Ochsner Heart and Vascular Institute, New Orleans, Louisiana
| | - Van-Khue Ton
- Massachusetts General Hospital, Boston, Massachusetts
| | - Anique Ducharme
- Montreal Heart Institute/Université de Montréal, Montreal, Quebec, Canada
| | | | - Mary Looby
- Inova Fairfax Medical Campus, Falls Church, Virginia
| | | | - Neha Bansal
- Mount Sinai Kravis Children's Hospital, New York, New York
| | - Ed Horn
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Mirnela Byku
- University of North Carolina Medical Center, Chapel Hill, North Carolina
| | - Jason Katz
- Division of Cardiology, NYU Grossman School of Medicine & Bellevue Hospital, New York, New York
| | | | | | | | - Cassandra Vale
- The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Richard Cosgrove
- Cornerstone Specialty Hospital/University of Arizona College of Pharmacy, Tucson, Arizona
| | | | - Jessica Otero
- AdventHealth Littleton Hospital, Littleton, Colorado
| | | | | | - Phillip Weeks
- Memorial Hermann-Texas Medical Center, Houston, Texas
| | - Richa Agarwal
- Duke University Medical Center, Durham, North Carolina
| | | | - Laurens F Tops
- Leiden University Medical Center, Leiden, the Netherlands
| | | | - Amy Kiskaddon
- Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Mary Keebler
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | |
Collapse
|
2
|
Van Den Helm S, McCafferty C, Letunica N, Chau KY, Monagle P, Ignjatovic V. Platelet function in neonates and children. Thromb Res 2023; 231:236-246. [PMID: 36997443 DOI: 10.1016/j.thromres.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/22/2022] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Platelets are major regulators of haemostasis and coagulation. The primary role of platelets in coagulation is to form a stable clot and stop bleeding. Studies of platelet phenotype and function in neonates and children have been restricted by the large volumes required for many common platelet function tests such as platelet aggregometry. Developmental changes in platelets have not been as well described as developmental changes in plasma coagulation proteins, and overall, platelet phenotype and function in neonates and children has been understudied when compared to adults. Recent developments in more sensitive platelet function testing methods requiring smaller blood volumes such as flow cytometry has enabled recent studies to further investigate platelet phenotype and function in neonates and children. In this review we will provide an overview of recent advances from the past five years in platelets in the context of developmental haemostasis, as well as the role of platelets in neonatal paediatric disease.
Collapse
Affiliation(s)
- Suelyn Van Den Helm
- Haematology Research, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Conor McCafferty
- Haematology Research, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Natasha Letunica
- Haematology Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Ka Ying Chau
- Haematology Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Paul Monagle
- Haematology Research, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Department of Clinical Haematology, The Royal Children's Hospital, Melbourne, Australia; Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia
| | - Vera Ignjatovic
- Haematology Research, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Johns Hopkins All Children's Hospital, St Petersburg, USA.
| |
Collapse
|
3
|
Miyagi C, Ahmad M, Karimov JH, Polakowski AR, Karamlou T, Yaman M, Fukamachi K, Najm HK. Human fitting of pediatric and infant continuous-flow total artificial heart: visual and virtual assessment. Front Cardiovasc Med 2023; 10:1193800. [PMID: 37529709 PMCID: PMC10387526 DOI: 10.3389/fcvm.2023.1193800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
Background This study aimed to determine the fit of two small-sized (pediatric and infant) continuous-flow total artificial heart pumps (CFTAHs) in congenital heart surgery patients. Methods This study was approved by Cleveland Clinic Institutional Review Board. Pediatric cardiac surgery patients (n = 40) were evaluated for anatomical and virtual device fitting (3D-printed models of pediatric [P-CFTAH] and infant [I-CFTAH] models). The virtual sub-study consisted of analysis of preoperative thoracic radiographs and computed tomography (n = 3; 4.2, 5.3, and 10.2 kg) imaging data. Results P-CFTAH pump fit in 21 out of 40 patients (fit group, 52.5%) but did not fit in 19 patients (non-fit group, 47.5%). I-CFTAH pump fit all of the 33 patients evaluated. There were critical differences due to dimensional variation (p < 0.0001) for the P-CFTAH, such as body weight (BW), height (Ht), and body surface area (BSA). The cutoff values were: BW: 5.71 kg, Ht: 59.0 cm, BSA: 0.31 m2. These cutoff values were additionally confirmed to be optimal by CT imaging. Conclusions This study demonstrated the range of proper fit for the P-CFTAH and I-CFTAH in congenital heart disease patients. These data suggest the feasibility of both devices for fit in the small-patient population.
Collapse
Affiliation(s)
- Chihiro Miyagi
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Munir Ahmad
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH, United States
| | - Jamshid H. Karimov
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
- Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Anthony R. Polakowski
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Tara Karamlou
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH, United States
| | - Malek Yaman
- Department of Pediatric Cardiology, Cleveland Clinic Children’s Hospital, Cleveland, OH, United States
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
- Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Hani K. Najm
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
4
|
Trela KC, Chaney MA. Are "Guidelines" for Acute Mechanical Circulatory Support Possible? J Cardiothorac Vasc Anesth 2023:S1053-0770(23)00254-9. [PMID: 37321872 DOI: 10.1053/j.jvca.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 06/17/2023]
Affiliation(s)
| | - Mark A Chaney
- Department of Anesthesiology and Critical Care Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
5
|
Giorni C, Rizza A, Favia I, Amodeo A, Chiusolo F, Picardo SG, Luciani M, Di Felice G, Di Chiara L. Pediatric Mechanical Circulatory Support: Pathophysiology of Pediatric Hemostasis and Available Options. Front Cardiovasc Med 2021; 8:671241. [PMID: 34540910 PMCID: PMC8440876 DOI: 10.3389/fcvm.2021.671241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023] Open
Abstract
Pediatric mechanical circulatory support (MCS) is considered a strategy for heart failure management as a bridge to recovery and transplantation or as a destination therapy. The final outcome is significantly impacted by the number of complications that may occur during MCS. Children on ventricular assist devices (VADs) and extracorporeal membrane oxygenation (ECMO) are at high risk for bleeding and thrombotic complications that are managed through anticoagulation. The first detailed guideline in pediatric VADs (Edmonton Anticoagulation and Platelet Inhibition Protocol) was based on conventional antithrombotic drugs, such as unfractionated heparin (UFH) and warfarin. UFH is the first-line anticoagulant in pediatric MCS, although its profile is not considered optimal in pediatric setting. The broad variation in heparin doses among children is associated with frequent occurrence of cerebrovascular accidents, bleeding, and thrombocytopenia. Direct thrombin inhibitors (DTIs) have been utilized as alternative strategies to heparin. Since 2018, bivalirudin has become the chosen anticoagulant in the long-term therapy of patients undergoing MCS implantation, according to the most recent protocols shared in North America. This article provides a review of the non-traditional anticoagulation strategies utilized in pediatric MCS, focusing on pharmacodynamics, indications, doses, and monitoring aspects of bivalirudin. Moreover, it exposes the efforts and the collaborations among different specialized centers, which are committed to an ongoing learning in order to minimize major complications in this special pediatric population. Further prospective trials regarding DTIs in a pediatric MCS setting are necessary and in specific well-designed randomized control trials between UFH and bivalirudin. To conclude, based on the reported literature, the clinical use of the bivalirudin in pediatric MCS seems to be a value added in controlling and maybe reducing thromboembolic complications. Further research is necessary to confirm all the results provided by this literature review.
Collapse
Affiliation(s)
- Chiara Giorni
- Pediatric Cardiac Intensive Care Unit, Department of Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Alessandra Rizza
- Pediatric Cardiac Intensive Care Unit, Department of Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Isabella Favia
- Pediatric Cardiac Intensive Care Unit, Department of Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Antonio Amodeo
- Mechanical Circulatory Support Unit, Department of Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Fabrizio Chiusolo
- Department of Anesthesia and Critical Care, Anestesia Rianimazione Comparto Operatorio, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Sergio G Picardo
- Department of Anesthesia and Critical Care, Anestesia Rianimazione Comparto Operatorio, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Matteo Luciani
- Department of Oncohematology, Haemostasis and Thrombosis Center, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Giovina Di Felice
- Hemostasis Laboratory, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Luca Di Chiara
- Pediatric Cardiac Intensive Care Unit, Department of Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
6
|
Leebeek FWG, Muslem R. Bleeding in critical care associated with left ventricular assist devices: pathophysiology, symptoms, and management. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:88-96. [PMID: 31808855 PMCID: PMC6913502 DOI: 10.1182/hematology.2019000067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chronic heart failure (HF) is a growing health problem, and it is associated with high morbidity and mortality. Left ventricular assist devices (LVADs) are nowadays an important treatment option for patients with end-stage HF not only as a bridging tool to heart transplantation but also, as a permanent therapy for end-stage HF (destination therapy). The use of LVAD is associated with a high risk for bleeding complications and thromboembolic events, including pump thrombosis and ischemic stroke. Bleeding is the most frequent complication, occurring in 30% to 60% of patients, both early and late after LVAD implantation. Although the design of LVADs has improved over time, bleeding complications are still the most common complication and occur very frequently. The introduction of an LVAD results in an altered hemostatic balance as a consequence of blood-pump interactions, changes in hemodynamics, acquired coagulation abnormalities, and the strict need for long-term anticoagulant treatment with oral anticoagulants and antiplatelet therapy. LVAD patients may experience an acquired coagulopathy, including platelet dysfunction and impaired von Willebrand factor activity, resulting in acquired von Willebrand syndrome. In this educational manuscript, the epidemiology, etiology, and pathophysiology of bleeding in patients with LVAD will be discussed. Because hematologist are frequently consulted in cases of bleeding problems in these individuals in a critical care setting, the observed type of bleeding complications and management strategies to treat bleeding are also reviewed.
Collapse
Affiliation(s)
| | - R Muslem
- Cardio-Thoracic Surgery, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Monitoring Platelet Function in Children With Ventricular Assist Devices: The Devil Is in the Details. ASAIO J 2019; 65:104-105. [PMID: 30640186 DOI: 10.1097/mat.0000000000000948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|