1
|
Alatrash G, Perakis AA, Kerros C, Peters HL, Sukhumalchandra P, Zhang M, Jakher H, Zope M, Patenia R, Sergeeva A, Yi S, Young KH, Philips AV, Cernosek AM, Garber HR, Qiao N, Weng J, St John LS, Lu S, Clise-Dwyer K, Mittendorf EA, Ma Q, Molldrem JJ. Targeting the Leukemia Antigen PR1 with Immunotherapy for the Treatment of Multiple Myeloma. Clin Cancer Res 2018; 24:3386-3396. [PMID: 29661776 DOI: 10.1158/1078-0432.ccr-17-2626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/19/2018] [Accepted: 04/10/2018] [Indexed: 11/16/2022]
Abstract
Purpose: PR1 is a human leukocyte antigen (HLA)-A2 nonameric peptide derived from neutrophil elastase (NE) and proteinase 3 (P3). We have previously shown that PR1 is cross-presented by solid tumors, leukemia, and antigen-presenting cells, including B cells. We have also shown that cross-presentation of PR1 by solid tumors renders them susceptible to killing by PR1-targeting immunotherapies. As multiple myeloma is derived from B cells, we investigated whether multiple myeloma is also capable of PR1 cross-presentation and subsequently capable of being targeted by using PR1 immunotherapies.Experimental Design: We tested whether multiple myeloma is capable of cross-presenting PR1 and subsequently becomes susceptible to PR1-targeting immunotherapies, using multiple myeloma cell lines, a xenograft mouse model, and primary multiple myeloma patient samples.Results: Here we show that multiple myeloma cells lack endogenous NE and P3, are able to take up exogenous NE and P3, and cross-present PR1 on HLA-A2. Cross-presentation by multiple myeloma utilizes the conventional antigen processing machinery, including the proteasome and Golgi, and is not affected by immunomodulating drugs (IMiD). Following PR1 cross-presentation, we are able to target multiple myeloma with PR1-CTL and anti-PR1/HLA-A2 antibody both in vitro and in vivoConclusions: Collectively, our data demonstrate that PR1 is a novel tumor-associated antigen target in multiple myeloma and that multiple myeloma is susceptible to immunotherapies that target cross-presented antigens. Clin Cancer Res; 24(14); 3386-96. ©2018 AACR.
Collapse
Affiliation(s)
- Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Alexander A Perakis
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Celine Kerros
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haley L Peters
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pariya Sukhumalchandra
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mao Zhang
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haroon Jakher
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Madhushree Zope
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rebecca Patenia
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anna Sergeeva
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shuhua Yi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne V Philips
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amanda M Cernosek
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haven R Garber
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Na Qiao
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jinsheng Weng
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lisa S St John
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sijie Lu
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth A Mittendorf
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qing Ma
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey J Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
2
|
Buchner A, Lammerich A, Abdolzade-Bavil A, Müller U, Bias P. Lipegfilgrastim: pharmacodynamics and pharmacokinetics for body-weight-adjusted and 6 mg fixed doses in two randomized studies in healthy volunteers. Curr Med Res Opin 2014; 30:2523-33. [PMID: 25251999 DOI: 10.1185/03007995.2014.962131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Two phase I, single-blind (subject blinded to treatment), randomized studies were conducted to assess the pharmacodynamics, pharmacokinetics, safety, and tolerability of lipegfilgrastim compared with pegfilgrastim in healthy adult volunteers. METHODS Study 1 consisted of a pilot safety phase (N = 8) during which subjects received a single body-weight-adjusted subcutaneous dose of lipegfilgrastim 25 µg/kg and a dose escalation phase (N = 45) wherein subjects received lipegfilgrastim 50 or 100 μg/kg or pegfilgrastim 100 μg/kg. Study 2 was a single-blind, fixed-dose study (N = 36) comparing subcutaneous lipegfilgrastim 6 mg and pegfilgrastim 6 mg. RESULTS Cumulative exposure (AUC0-t last and AUC 0-∞) and peak exposure (Cmax) were higher for lipegfilgrastim than pegfilgrastim after both weight-adjusted and fixed dosing. In both studies, the terminal elimination half-life of lipegfilgrastim was 5-10 hours longer than the terminal elimination half-life for pegfilgrastim at the maximum dose, and the time to maximum serum concentration (tmax) was observed later for lipegfilgrastim than for pegfilgrastim. The area over the baseline effect curve (AOBEC) for absolute neutrophil count (ANC) was approximately 30% greater after lipegfilgrastim dosing compared with the same dose of pegfilgrastim at the maximum dose. Both drugs were well tolerated, with a similar occurrence of adverse events between treatment groups. Key limitations of these studies include the small numbers of subjects and differences in dosage regimens between the two studies. CONCLUSIONS In these studies, lipegfilgrastim provided a longer-lasting increase in ANC compared with pegfilgrastim at an equivalent dose, without increasing the peak ANC values. This may reflect the higher cumulative exposure and slower clearance (therefore longer body residence) of lipegfilgrastim. These data support the use of single-dose lipegfilgrastim 6 mg in subsequent phase III trials as prophylactic treatment for patients receiving myelosuppressive chemotherapy.
Collapse
Affiliation(s)
- Anton Buchner
- Merckle GmbH/Teva Pharmaceuticals Inc. , Ulm , Germany
| | | | | | | | | |
Collapse
|
3
|
Olnes MJ, Shenoy A, Weinstein B, Pfannes L, Loeliger K, Tucker Z, Tian X, Kwak M, Wilhelm F, Yong ASM, Maric I, Maniar M, Scheinberg P, Groopman J, Young NS, Sloand EM. Directed therapy for patients with myelodysplastic syndromes (MDS) by suppression of cyclin D1 with ON 01910.Na. Leuk Res 2012; 36:982-9. [PMID: 22524974 DOI: 10.1016/j.leukres.2012.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/30/2012] [Accepted: 04/01/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND We previously demonstrated upregulation of c-myc, survivin, and cyclin D1 in CD34+ bone marrow mononuclear cells (BMMNCs) of patients with trisomy 8 and monosomy 7 myelodysplastic syndromes (MDS). "Knockdown" of cyclin D1 by RNA interference decreased trisomy 8 cell growth, suggesting that this might be a therapeutic target in MDS. EXPERIMENTAL DESIGN We performed preclinical studies using BMMNCs from patients with MDS and AML to examine the effects of the styryl sulfone ON 01910.Na on cyclin D1 accumulation, aneuploidy, and CD34+ blast percentage. We next treated twelve patients with higher risk MDS and two trisomy 8 AML patients with ON 01910.Na on a phase I clinical protocol (NCT00533416). RESULTS ON 01910.Na inhibited cyclin D1 expression, and was selectively toxic to trisomy 8 cells in vitro. Flow cytometry studies demonstrated increased mature CD15+ myeloid cells and decreased CD34+ blasts. Three patients treated with ON 01910.Na on a clinical had decreased bone marrow blasts by ≥ 50%, and three patients had hematologic improvements, one of which was sustained for 33 months. Patients with hematologic responses to ON 01910.Na had decreased cyclin D1 expression in their CD34+ cells. CONCLUSIONS The preclinical results and responses of patients on a clinical trial warrant further investigation of ON 01910.Na as a potential novel targeted therapy for higher risk MDS patients.
Collapse
Affiliation(s)
- Matthew J Olnes
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Characterization of immunologic properties of a second HLA-A2 epitope from a granule protease in CML patients and HLA-A2 transgenic mice. Blood 2011; 118:2159-69. [PMID: 21719601 DOI: 10.1182/blood-2011-04-349951] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The serine proteases, neutrophil elastase (HNE) and proteinase 3 (PR3), are aberrantly expressed in human myeloid leukemias. T-cell responses to these proteins have been correlated with remission in patients with chronic myeloid leukemia (CML). Human PR3/HNE-specific CD8(+) T cells predominantly recognize a nonameric HLA-A2-restricted T-cell epitope called PR1 which is conserved in both Ags. However, CML patients have CD8(+) T cells in peripheral blood recognizing an additional HLA-A2 epitope termed PR2. To assess immunologic properties of these Ags, novel recombinant vaccinia viruses (rVV) expressing PR3 and HNE were evaluated in HLA-A2 transgenic (Tg) mice (HHDII). Immunization of HHDII mice with rVV-PR3 elicited a robust PR3-specific CD8(+) T-cell response dominated by recognition of PR2, with minimal recognition of the PR1 epitope. This result was unexpected, because the PR2 peptide has been reported to bind poorly to HLA. To account for these findings, we proposed that HHDII mice negatively selected PR1-specific T cells because of the presence of this epitope within murine PR3 and HNE, leading to immunodominance of PR2-specific responses. PR2-specific splenocytes are cytotoxic to targets expressing naturally processed PR3, though PR1-specific splenocytes are not. We conclude that PR2 represents a functional T-cell epitope recognized in mice and human leukemia patients. These studies are registered at www.clinicaltrials.gov as NCT00716911.
Collapse
|
5
|
Vonka V. Immunotherapy of chronic myeloid leukemia: present state and future prospects. Immunotherapy 2010; 2:227-41. [PMID: 20635930 DOI: 10.2217/imt.10.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In spite of the considerable successes that have been achieved in the treatment of chronic myeloid leukemia (CML), cure for the disease can only be obtained by the present means in a rather small minority of patients. During the past decade, considerable progress has been made in the understanding of the immunology of CML, which has raised hopes that this disease may be curable by supplementing the current targeted chemotherapy with immunotherapeutic approaches. More than ten small-scale clinical trials have been carried out with experimental vaccines predominantly based on the p210bcr-abl fusion protein. Their results suggested beneficial effects in some patients. Recent data obtained in human patients as well as in animal models indicate that the p210bcr-abl protein does not carry the immunodominant epitope(s). These observations, combined with the recognition of an ever increasing number of other immunogenic proteins in CML cells, strongly support the concept that gene-modified, cell-based vaccines containing the full spectrum of tumor antigens might be the most effective immunotherapeutic approach. Recently created mathematical models have provided important leads for the timing of the combination of targeted drug therapy with vaccine administration. A strategy of how targeted drug therapy might be combined with vaccination is outlined.
Collapse
Affiliation(s)
- Vladimír Vonka
- Department of Experimental Virology, Institutute of Hematology & Blood Transfusion, Prague, Czech Republic.
| |
Collapse
|
6
|
Medina DJ, Gharibo M, Savage P, Cohler A, Kuriyan M, Balsara B, Anand M, Schaar D, Krimmel T, Saggiomo K, Manago J, Talty L, Dudek L, Grospe S, Rubin A, Strair RK. A pilot study of allogeneic cellular therapy for patients with advanced hematologic malignancies. Leuk Res 2008; 32:1842-8. [PMID: 18614230 DOI: 10.1016/j.leukres.2008.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 04/19/2008] [Accepted: 05/16/2008] [Indexed: 01/18/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation provides curative therapy for some patients with advanced hematologic malignancies. Disease response after allogeneic transplant is, at least in part, mediated by donor immune cells. In this report we describe a cellular therapy using haploidentical peripheral blood stem cells administered after very low dose total body irradiation (TBI) (100cGy). The donor cells were anticipated to be rejected, so no graft-versus-host (GVHD) prophylaxis was used. Patients with persistent disease beyond 8 weeks could be further treated with infusions of irradiated haploidentical donor cells. Of the 10 patients enrolled in the study, durable engraftment of allogeneic cells was seen in one patient. Two patients with resistant relapsed acute myelogenous leukemia (AML) had a disease response. Analysis of T cell reactivity from one patient who achieved a complete response but did not have durable engraftment of donor cells indicated that disease response was associated with the generation of host-derived anti-leukemic cytotoxic CD8+ T cells that reacted with an AML-associated proteinase 3 epitope. Results from this patient suggest that allogeneic therapy induced a host anti-tumor response associated with cytotoxic T cells reactive with a low affinity self-antigen.
Collapse
Affiliation(s)
- Daniel J Medina
- The Cancer Institute of New Jersey, Department of Medicine, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey, New Brunswick, NJ 08901, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Draminski M, Rada-Iglesias A, Enroth S, Wadelius C, Koronacki J, Komorowski J. Monte Carlo feature selection for supervised classification. Bioinformatics 2007; 24:110-7. [PMID: 18048398 DOI: 10.1093/bioinformatics/btm486] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Pre-selection of informative features for supervised classification is a crucial, albeit delicate, task. It is desirable that feature selection provides the features that contribute most to the classification task per se and which should therefore be used by any classifier later used to produce classification rules. In this article, a conceptually simple but computer-intensive approach to this task is proposed. The reliability of the approach rests on multiple construction of a tree classifier for many training sets randomly chosen from the original sample set, where samples in each training set consist of only a fraction of all of the observed features. RESULTS The resulting ranking of features may then be used to advantage for classification via a classifier of any type. The approach was validated using Golub et al. leukemia data and the Alizadeh et al. lymphoma data. Not surprisingly, we obtained a significantly different list of genes. Biological interpretation of the genes selected by our method showed that several of them are involved in precursors to different types of leukemia and lymphoma rather than being genes that are common to several forms of cancers, which is the case for the other methods. AVAILABILITY Prototype available upon request.
Collapse
Affiliation(s)
- Michal Draminski
- Institute of Computer Science, Polish Academy of Science, Ordona 21, PL-01-237 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
8
|
Barrett AJ, Rezvani K. Review of current knowledge on HPV vaccination: an appendix to the European Guidelines for Quality Assurance in Cervical Cancer Screening. J Clin Virol 2007; 148:189-98. [PMID: 17437417 PMCID: PMC1868869 DOI: 10.1111/j.1365-2249.2007.03383.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The recognition of a strong etiological relationship between infection with high-risk human papillomavirusses and cervical cancer has prompted research to develop and evaluate prophylactic and therapeutic vaccines. One prophylactic quadrivalent vaccine using L1 virus-like particles (VLP) of HPV 6, 11, 16 and 18 is available on the European market since the end of 2006 and it is expected that a second bivalent vaccine containing VLPs of HPV16 and HPV18 will become available in 2007. Each year, HPV16 and HPV18 cause approximately 43,000 cases of cervical cancer in the European continent. Results from the phase-IIb and III trials published thus far indicate that the L1 VLP HPV vaccine is safe and well-tolerated. It offers HPV-naive women a very high level of protection against HPV persistent infection and cervical intra-epithelial lesions associated with the types included in the vaccine. HPV vaccination should be offered to girls before onset of sexual activity. While prophylactic vaccination is likely to provide important future health gains, cervical screening will need to be continued for the whole generation of women that is already infected with the HPV types included in the vaccine. Phase IV studies are needed to demonstrate protection against cervical cancer and to verify duration of protection, occurrence of replacement by non-vaccine types and to define future policies for screening of vaccinated cohorts. The European Guidelines on Quality Assurance for Cervical Cancer Screening provides guidance for secondary prevention by detection and management of precursors lesions of the cervix. The purpose of the appendix on vaccination is to present current knowledge. Developing guidelines for future use of HPV vaccines in Europe, is the object of a new grant offered by the European Commission.
Collapse
Affiliation(s)
- A J Barrett
- Stem Cell Allotransplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA.
| | | |
Collapse
|
9
|
Allan EK, Holyoake TL, Jørgensen HG. Human neutrophil elastase is not a target for therapy in chronic myeloid leukaemia. Leukemia 2006; 20:2054-5. [PMID: 17008889 DOI: 10.1038/sj.leu.2404411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Goldman J, Gordon M. Why do chronic myelogenous leukemia stem cells survive allogeneic stem cell transplantation or imatinib: does it really matter? Leuk Lymphoma 2006; 47:1-7. [PMID: 16321820 DOI: 10.1080/10428190500407996] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
It is generally accepted that allogeneic stem cell transplantation can 'cure' chronic myelogenous leukemia (CML), although occasional patients relapse more than 10 years after the transplant procedure. Such cures presumably result from the combined effects of leukemia stem cells (LSCs) of the conditioning regimen and the graft-vs.-leukemia (GvL) effect mediated by donor-derived T lymphocytes. The advent of imatinib has revolutionized the management of patients with CML, but much evidence suggests that it does not eradicate all LSCs, which theoretically remain a potential source of relapse to chronic phase or advanced phase disease. Moreover, sub-clones of Philadelphia-positive cells bearing mutations that code for amino-acid substitutions in the Bcr-Abl kinase domain can be identified in patients receiving treatment with imatinib and are associated with varying degrees of resistance to this agent. In the present review, we postulate that LSCs, similar to their normal counterparts, may alternate between cycling and quiescent modes. In the cycling mode, they may express Bcr-Abl protein and be susceptible to the acquisition of additional mutations, whereas, in the quiescent mode, they may express little or no Bcr-Abl oncoprotein, cannot acquire additional mutations and are unaffected by imatinib. Thus, a patient who starts treatment early in the natural history of CML, and who responds to imatinib clinically, may not have had the opportunity to acquire additional mutations in LSCs. In this case, the persistence long-term of quiescent 'non-mutated' LSCs despite imatinib treatment might be consistent with freedom from relapse to chronic or advanced phase disease, provided that they remain vulnerable to imatinib when they are recruited into cycle. Conversely, when imatinib resistant Philadelphia-positive sub-clones predominate, this is likely to be due to the recruitment to hematopoiesis of quiescent stem cells that had been in cycle before administration of imatinib and that had acquired additional mutations; in such cases, the best approach to eradication of residual LSCs might be to target expressed proteins thought to be targets for the GvL effect.
Collapse
MESH Headings
- Benzamides
- Cell Survival/drug effects
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Models, Biological
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/immunology
- Piperazines/therapeutic use
- Pyrimidines/therapeutic use
- Stem Cell Transplantation
- Transplantation, Homologous
Collapse
Affiliation(s)
- John Goldman
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892-1202, USA.
| | | |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Recent progress in the identification of leukemia antigens has stimulated the development of vaccines to treat hematological malignancies. Here we review the identification and characterization of the myeloid leukemia-specific antigens proteinase 3 and neutrophil elastase found in the primary (azurophil) granule proteins of granulocytes and their precursors. A peptide 'PR1' derived from these proteins induces powerful HLA-A0201-restricted CD8 T-cell proliferation. PR1-specific T cells are cytotoxic to leukemia and myelodysplastic syndrome progenitors, and occur at low frequencies in normal individuals. Frequencies are higher in patients with myeloid leukemias, and highest in patients with chronic myeloid leukemia entering molecular remission after allogeneic stem cell transplantation. RECENT FINDINGS These observations, together with the known association of autoimmunity to proteinase 3 and neutrophil elastase in Wegener's granulomatosis, support the concept that there is a natural immunity to primary granule proteins which can be boosted to enhance immunity to leukemia. Preliminary reports indicate that PR1 peptide vaccination induces significant increases in PR1-specific cytotoxic T cells with rapid and durable remissions in some patients with advanced myeloid leukemias. SUMMARY These promising developments in antileukemia vaccines have stimulated research to optimize vaccine delivery and modify regulation of natural T-cell immunity to primary granule proteins to improve treatment of otherwise refractory myeloid leukemias and myelodysplastic syndrome.
Collapse
Affiliation(s)
- John Barrett
- Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
12
|
Tavor S, Petit I, Porozov S, Goichberg P, Avigdor A, Sagiv S, Nagler A, Naparstek E, Lapidot T. Motility, proliferation, and egress to the circulation of human AML cells are elastase dependent in NOD/SCID chimeric mice. Blood 2005; 106:2120-7. [PMID: 15941909 DOI: 10.1182/blood-2004-12-4969] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe role of the proteolytic enzyme elastase in motility and proliferation of leukemic human acute myeloblastic leukemia (AML) cells is currently unknown. We report a correlation between abnormally high levels of elastase in the blood of AML patients and the number of leukemic blast cells in the circulation. In AML cells, we observed expression of cell-surface elastase, which was regulated by the chemokine stromal cell-derived factor-1 (SDF-1). In vitro inhibition of elastase prevented SDF-1-induced cell polarization, podia formation, and reduced migration of human AML cells as well as their adhesion. Elastase inhibition also significantly impaired in vivo homing of most human AML cells to the bone marrow (BM) of nonobese diabetic-severe combined immunodeficient (NOD/SCID)/beta-2 microglobulin knock-out (B2mnull) mice that underwent transplantation. Moreover, in vitro proliferation of AML cells was elastase dependent. In contrast, treatment with elastase inhibitor enhanced the proliferation rate of human cord blood CD34+ cells, including primitive CD34+/CD38- cells, and their in vivo homing. Finally, NOD/SCID mice previously engrafted with human AML cells and treated with elastase inhibitor had significantly reduced egress of leukemic cells into the circulation. Taken together, our data demonstrate that human AML cells constitutively secrete and express SDF-1-dependent cell-surface elastase, which regulates their migration and proliferation. (Blood. 2005;106:2120-2127)
Collapse
Affiliation(s)
- Sigal Tavor
- Weizmann Institute of Science, Department of Immunology, PO Box 26, Rehovot, 76100, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fujiwara H, Melenhorst JJ, El Ouriaghli F, Kajigaya S, Grube M, Sconocchia G, Rezvani K, Price DA, Hensel NF, Douek DC, Barrett AJ. In vitro induction of myeloid leukemia-specific CD4 and CD8 T cells by CD40 ligand-activated B cells gene modified to express primary granule proteins. Clin Cancer Res 2005; 11:4495-503. [PMID: 15958635 PMCID: PMC2366103 DOI: 10.1158/1078-0432.ccr-04-2363] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The primary granule proteins (PGP) of myeloid cells are a source of multiple antigens with immunotherapeutic potential for myeloid leukemias. Therefore, we developed a method to induce T-cell responses to PGP protein sequences. We found that gene-transfected antigen-presenting cells efficiently expand functionally competent PGP-specific CD4 and CD8 T cells. The system was optimized using T-cell responses to autologous CD40-activated B cells (CD40-B) transfected with a cytomegalovirus pp65-encoding expression vector. To generate leukemia-specific T cells, expression vectors encoding the PGP proteinase 3 (PR3), human neutrophil elastase, and cathepsin-G were transfected into CD40-B cells to stimulate post-allogeneic stem cell transplantation T cells from five patients with myeloid and three with lymphoid leukemias. T-cell responses to PGP proteinase 3 and human neutrophil elastase were observed in CD8+ and CD4+ T cells only in patients with myeloid leukemias. T-cell responses against cathepsin-G occurred in both myeloid and lymphoblastic leukemias. T cells from a patient with chronic myelogenous leukemia (CML) and from a posttransplant CML patient, expanded against PGP, produced IFN-gamma or were cytotoxic to the patient's CML cells, demonstrating specific antileukemic efficacy. This study emphasizes the clinical potential of PGP for expansion and adoptive transfer of polyclonal leukemia antigen-specific T cells to treat leukemia.
Collapse
MESH Headings
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigen-Presenting Cells/pathology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- CD40 Antigens/genetics
- CD40 Antigens/immunology
- CD40 Antigens/metabolism
- CD40 Ligand/genetics
- CD40 Ligand/immunology
- CD40 Ligand/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cathepsin G
- Cathepsins/genetics
- Cathepsins/metabolism
- Cells, Cultured
- Gene Expression
- HL-60 Cells
- Humans
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/pathology
- Leukocyte Elastase/genetics
- Leukocyte Elastase/metabolism
- Lymphocyte Activation
- Myeloblastin
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Serine Endopeptidases/genetics
- Serine Endopeptidases/metabolism
- Transfection
Collapse
Affiliation(s)
- Hiroshi Fujiwara
- Stem Cell Allotransplant Section, Hematology Branch, National Heart, Lung, and Blood Institute
| | - J. Joseph Melenhorst
- Stem Cell Allotransplant Section, Hematology Branch, National Heart, Lung, and Blood Institute
| | - Frank El Ouriaghli
- Stem Cell Allotransplant Section, Hematology Branch, National Heart, Lung, and Blood Institute
| | - Sachiko Kajigaya
- Stem Cell Allotransplant Section, Hematology Branch, National Heart, Lung, and Blood Institute
| | - Matthias Grube
- Stem Cell Allotransplant Section, Hematology Branch, National Heart, Lung, and Blood Institute
| | - Giuseppe Sconocchia
- Stem Cell Allotransplant Section, Hematology Branch, National Heart, Lung, and Blood Institute
| | - Katayoun Rezvani
- Stem Cell Allotransplant Section, Hematology Branch, National Heart, Lung, and Blood Institute
| | - David A. Price
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Nancy F. Hensel
- Stem Cell Allotransplant Section, Hematology Branch, National Heart, Lung, and Blood Institute
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - A. John Barrett
- Stem Cell Allotransplant Section, Hematology Branch, National Heart, Lung, and Blood Institute
| |
Collapse
|
14
|
Lin H, Monaco G, Sun T, Ling X, Stephens C, Xie S, Belmont J, Arlinghaus R. Bcr-Abl-mediated suppression of normal hematopoiesis in leukemia. Oncogene 2005; 24:3246-56. [PMID: 15735695 DOI: 10.1038/sj.onc.1208500] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A variety of experimental evidence including findings in various mouse models indicates that the BCR-ABL oncogene is the cause of chronic myeloid leukemia (CML). Since normal hematopoietic cells in marrow and spleen are replaced with proliferating leukemic blasts, we determined whether this is an active process mediated by the leukemia cells. The lipocalin 24p3 was reported to be secreted by mouse hematopoietic cells deprived of IL-3, resulting in apoptosis induction in a variety of hematopoietic cells including bone marrow cells. Here, we show that BCR-ABL+ mouse hematopoietic cells induced persistent expression and secretion of 24p3. Importantly, BCR-ABL+ hematopoietic cells were resistant to the apoptotic effects of 24p3. The expression of the Bcr-Abl oncoprotein and its tyrosine kinase were required for induction of 24p3 expression. Co-culture studies showed that BCR-ABL+ cells induced apoptosis in BCR-ABL negative cells. Antisense 24p3/siRNA expression reduced the level of 24p3 protein in both BCR-ABL+ cells and in conditioned medium (CM) obtained from these cells. CM from BCR-ABL+ cells expressing antisense 24p3/siRNA had reduced apoptotic activity for target cells; 24p3 antibody also reduced the apoptotic activity of the CM. Leukemic mice induced by BCR-ABL+ cells expressing either antisense 24p3 or 24p3 siRNA had increased levels of normal hematopoiesis and reduced invasion of leukemia cells in marrow and spleen tissues. These findings indicate that suppression of normal hematopoiesis in BCR-ABL-induced leukemia is an active process involving secretion of the cell death-inducing factor 24p3 by mouse leukemia cells, raising the possibility that similar factors are involved in BCR-ABL+ CML.
Collapse
MESH Headings
- Acute-Phase Proteins/physiology
- Animals
- Apoptosis
- Blotting, Western
- Bone Marrow Cells/metabolism
- Cell Death
- Coculture Techniques
- Dose-Response Relationship, Drug
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/physiology
- Hematopoiesis/physiology
- Hematopoietic Stem Cells/metabolism
- Humans
- Interleukin-3/metabolism
- Lentivirus/genetics
- Leukemia/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Lipocalin-2
- Lipocalins
- Mice
- Mice, Inbred C3H
- Mice, Inbred NOD
- Mice, SCID
- Oligonucleotides, Antisense/pharmacology
- Oncogene Proteins/physiology
- Plasmids/metabolism
- Polymerase Chain Reaction
- RNA, Small Interfering/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Spleen/metabolism
- Tetracycline/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Hui Lin
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yoshida C, Melo JV. Biology of Chronic Myeloid Leukemia and Possible Therapeutic Approaches to Imatinib-Resistant Disease. Int J Hematol 2004; 79:420-33. [PMID: 15239391 DOI: 10.1532/ijh97.04032] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chronic myeloid leukemia (CML) is a stem cell disorder caused by a constitutively activated tyrosine kinase, the Bcr-Abl oncoprotein. An inhibitor of this tyrosine kinase, imatinib mesylate, is rapidly becoming the first-line therapy for CML. However, the development of resistance to this drug is a frequent setback, particularly in patients in advanced phases of the disease. Several mechanisms of resistance have been described, the most frequent of which are amplification and/or mutations of the BCR-ABL gene. To overcome resistance, several approaches have been studied in vitro and in vivo. They include dose escalation of imatinib, combination of imatinib with chemotherapeutic drugs, alternative Bcr-Abl inhibitors, inhibitors of kinases downstream of Bcr-Abl, farnesyl and geranylgeranyl transferase inhibitors, histone deacetylase, proteasome and cyclin-dependent kinase inhibitors, arsenic trioxide, hypomethylating agents, troxacitabine, targeting Bcr-Abl messenger RNA, and immunomodulatory strategies. It is important to understand that these approaches differ in efficiency, which is often dependent on the mechanisms of resistance. Further investigations into the molecular mechanisms of disease and how to specifically target the abnormal processes will guide the design of new treatment modalities in future clinical trials.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Benzamides
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Drug Resistance, Neoplasm
- Genes, abl/genetics
- Genes, abl/physiology
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/physiopathology
- Piperazines/pharmacology
- Pyrimidines/pharmacology
Collapse
Affiliation(s)
- Chikashi Yoshida
- Department of Haematology, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | |
Collapse
|
16
|
Fujiwara H, El Ouriaghli F, Grube M, Price DA, Rezvani K, Gostick E, Sconocchia G, Melenhorst J, Hensel N, Douek DC, Barrett AJ. Identification and in vitro expansion of CD4+ and CD8+ T cells specific for human neutrophil elastase. Blood 2003; 103:3076-83. [PMID: 15070688 DOI: 10.1182/blood-2003-07-2424] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human neutrophil elastase (HNE) and proteinase 3 (PRO3) are myeloid tissue-restricted serine proteases, aberrantly expressed by myeloid leukemia cells. PRO3 and HNE share the PR1 peptide sequence that induces HLA-A*0201-restricted cytotoxic T cells (CTLs) with antileukemia reactivity. We studied the entire HNE protein for its ability to induce CTLs. In an 18-hour culture, HNE-loaded monocytes stimulated significant intracellular interferon gamma (IFN-gamma) production by CD4+ and CD8+ T cells in 12 of 20 and 8 of 20 healthy individuals, respectively. Lymphocytes from 2 HNE responders were pulsed weekly for 4 weeks to generate HNE-specific CTLs. One of 2 HLA-A*0201-negative individuals inhibited the colony formation of HLA-identical chronic myelogenous leukemia progenitor cells (73% inhibition at 50:1 effector-target [E/T] ratio), indicating that peptides other than PR1 can induce leukemia-reactive CTLs. Repetitive stimulations with HNE in 2 of 5 HLA-A*0201+ individuals increased PR1 tetramer-positive CD8+ T-cell frequencies from 0.1% to 0.29% and 0.02% to 0.55%, respectively. These CTLs recognized PR1 peptide or killed HNE-loaded targets. These results indicate that exogenously processed HNE is a source of PR1 peptide as well as other peptide sequences capable of inducing leukemia-specific CD8+ and CD4+ T cells. HNE could, therefore, be used in an HLA-unrestricted manner to induce leukemia-reactive CTLs for adoptive immunotherapy.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens/administration & dosage
- Antigens/genetics
- Base Sequence
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Gene Expression
- HLA-A Antigens
- HLA-A2 Antigen
- Humans
- Immunotherapy, Adoptive/methods
- In Vitro Techniques
- Interferon-gamma/biosynthesis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukocyte Elastase/administration & dosage
- Leukocyte Elastase/genetics
- Leukocyte Elastase/immunology
- Molecular Sequence Data
- Myeloblastin
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Sequence Homology, Amino Acid
- Serine Endopeptidases/genetics
- Serine Endopeptidases/immunology
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Hiroshi Fujiwara
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|