1
|
Abulizi A, Su R, Wu P, Cheng X, Aisha M, Wang Z. Genetic Insights into the Enigma of Family Intracranial Aneurysms. World Neurosurg 2024; 193:135-140. [PMID: 39481842 DOI: 10.1016/j.wneu.2024.10.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
Familial intracranial aneurysms (FIAs) are distinguished by significant genetic predisposition, leading to clustering of cases within families and heightening the risk of subarachnoid hemorrhage following aneurysm rupture. This review analyzes recent advancements in understanding the genetic and molecular mechanisms underlying FIAs, focusing on key genetic risk factors and environmental influences. We explore cutting-edge genome-wide association studies and next-generation sequencing technologies, which have identified susceptibility genes such as ANGPTL6, peptidyl proline cis-trans isomerase like protein 4, and NOTCH3 as crucial contributors to FIA pathophysiology. By incorporating findings from multiomics and gene-editing research, we highlight the potential for improved screening, preventive strategies, and therapeutic approaches. These insights are essential to advancing precision medicine in managing FIAs, paving the way for collaborative research and targeted interventions.
Collapse
Affiliation(s)
- Alimasi Abulizi
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Riqing Su
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Pengfei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaojiang Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Maimaitili Aisha
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zengliang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
2
|
Schumacher A, Mucha P, Puchalska I, Deptuła M, Wardowska A, Tymińska A, Filipowicz N, Mieczkowska A, Sachadyn P, Piotrowski A, Pikuła M, Cichorek M. Angiopoietin-like growth factor-derived peptides as biological activators of adipose-derived mesenchymal stromal cells. Biomed Pharmacother 2024; 177:117052. [PMID: 38943988 DOI: 10.1016/j.biopha.2024.117052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024] Open
Abstract
Adipose-derived mesenchymal stromal cells (AD-MSCs) are an essential issue in modern medicine. Extensive preclinical and clinical studies have shown that mesenchymal stromal/stem cells, including AD-MSCs, have specific properties (ability to differentiate into other cells, recruitment to the site of injury) of particular importance in the regenerative process. Ongoing research aims to elucidate factors supporting AD-MSC culture and differentiation in vitro. Angiopoietin-like proteins (ANGPTLs), known for their pleiotropic effects in lipid and glucose metabolism, may play a significant role in this context. Regeneration is a complex and dynamic process controlled by many factors. ANGPTL6 (Angiopoietin-related growth factor, AGF), among many activities modulated the biological activity of stem cells. This study examined the influence of synthesized AGF-derived peptides, designated as AGF9 and AGF27, on AD-MSCs. AGF9 and AGF27 enhanced the viability and migration of AD-MSCs and acted as a chemotactic factor for these cells. AGF9 stimulated chondrogenesis and lipid synthesis during AD-MSCs differentiation, influenced AD-MSCs cytokine secretion and modulated transcriptome for such basic cell activities as migration, transport of molecules, and apoptosis. The ability of AGF9 to modulate the biological activity of AD-MSCs warrants the consideration of this peptide a noteworthy therapeutic agent that deserves further investigation for applications in regenerative medicine.
Collapse
Affiliation(s)
- Adriana Schumacher
- Division of Embryology, Medical University of Gdansk, Debinki 1 St, Gdansk 80-211, Poland
| | - Piotr Mucha
- Department of Molecular Biochemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk 80-308, Poland
| | - Izabela Puchalska
- Department of Molecular Biochemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk 80-308, Poland
| | - Milena Deptuła
- Division of Embryology, Laboratory of Tissue Engineering and Regenerative Medicine Medical University of Gdansk, Debinki 1 St, Gdansk 80-211, Poland
| | - Anna Wardowska
- Department of Physiopathology, Medical University of Gdansk, Debinki 7 St, Gdansk 80-211, Poland
| | - Agata Tymińska
- Division of Embryology, Medical University of Gdansk, Debinki 1 St, Gdansk 80-211, Poland
| | - Natalia Filipowicz
- International Research Agenda 3P- Medicine Laboratory, Medical University of Gdansk, Debinki 7 St, Gdansk 80-211, Poland
| | - Alina Mieczkowska
- International Research Agenda 3P- Medicine Laboratory, Medical University of Gdansk, Debinki 7 St, Gdansk 80-211, Poland
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdansk University of Technology, Narutowicza 11/12 St, Gdansk 80-233, Poland
| | - Arkadiusz Piotrowski
- International Research Agenda 3P- Medicine Laboratory, Medical University of Gdansk, Debinki 7 St, Gdansk 80-211, Poland
| | - Michał Pikuła
- Division of Embryology, Laboratory of Tissue Engineering and Regenerative Medicine Medical University of Gdansk, Debinki 1 St, Gdansk 80-211, Poland
| | - Miroslawa Cichorek
- Division of Embryology, Medical University of Gdansk, Debinki 1 St, Gdansk 80-211, Poland.
| |
Collapse
|
3
|
Wang W, Zhao Y, Zhu P, Jia X, Wang C, Zhang Q, Li H, Wang J, Hou Y. Differential Proteomic Profiles of Coronary Serum Exosomes in Acute Myocardial Infarction Patients with or Without Diabetes Mellitus: ANGPTL6 Accelerates Regeneration of Endothelial Cells Treated with Rapamycin via MAPK Pathways. Cardiovasc Drugs Ther 2024; 38:13-29. [PMID: 35821539 DOI: 10.1007/s10557-022-07365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Delayed re-endothelialization after coronary drug-eluting stent implantation is associated with an increased incidence of late in-stent thrombosis. Serum exosomes exhibit controversial effects on promoting endothelialization. This study aimed to compare the angiogenic effects of serum exosomes derived from patients with acute myocardial infarction (AMI) and AMI plus diabetes mellitus (DM) and to explore the underlying mechanisms. METHODS Serum exosomes derived from patients in the control (Con-Exos), AMI (AMI-Exos), and AMI plus DM (AMI+DM-Exos) groups were isolated and identified using standard assays. CCK-8, wound healing, and tube formation assays were performed to detect the angiogenic abilities of serum exosomes on rapamycin-conditioned human umbilical vein endothelial cells (HUVECs). Differential proteomic profiles between AMI-Exos and AMI+DM-Exos were analyzed by mass spectrometry. The effects and potential mechanisms of exosomal angiopoietin-like 6 (ANGPTL6) were investigated. RESULTS Functional assays indicated that compared with Con-Exos, AMI-Exos enhanced, whereas AMI+DM-Exos inhibited the cell proliferation, migration, and tube formation of rapamycin-conditioned HUVECs. Subsequently, 28 differentially expressed proteins between AMI-Exos and AMI+DM-Exos were identified, which were correlated with material transportation, immunity, and inflammatory reaction. Moreover, ANGPTL6 was highly enriched in AMI-Exos. Overexpression and knockdown of ANGPTL6 enhanced and inhibited angiogenesis, respectively. Furthermore, the effect of ANGPTL6 on angiogenesis was mediated via the activation of ERK 1/2, JNK, and p38 pathways. The inhibition of ERK 1/2 signaling markedly attenuated the migration abilities of overexpressing ANGPTL6. CONCLUSION Diabetes impairs the regenerative capacities of serum exosomes. Exosomal ANGPTL6 contributes to endothelial repair and is a novel therapeutic target for enhanced stent endothelization.
Collapse
Affiliation(s)
- Weizong Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766 Jingshi Road, Jinan, 250014, China
| | - Yixin Zhao
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766 Jingshi Road, Jinan, 250014, China
| | - Pengju Zhu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766 Jingshi Road, Jinan, 250014, China
| | - Xiaomeng Jia
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766 Jingshi Road, Jinan, 250014, China
| | - Cong Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766 Jingshi Road, Jinan, 250014, China
| | - Qingbin Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766 Jingshi Road, Jinan, 250014, China
| | - Hao Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766 Jingshi Road, Jinan, 250014, China
| | - Jiangrong Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766 Jingshi Road, Jinan, 250014, China.
| | - Yinglong Hou
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766 Jingshi Road, Jinan, 250014, China.
| |
Collapse
|
4
|
Thorin E, Labbé P, Lambert M, Mury P, Dagher O, Miquel G, Thorin-Trescases N. Angiopoietin-Like Proteins: Cardiovascular Biology and Therapeutic Targeting for the Prevention of Cardiovascular Diseases. Can J Cardiol 2023; 39:1736-1756. [PMID: 37295611 DOI: 10.1016/j.cjca.2023.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the best pharmacologic tools available, cardiovascular diseases (CVDs) remain a major cause of morbidity and mortality in developed countries. After 2 decades of research, new therapeutic targets, such as angiopoietin-like proteins (ANGPTLs), are emerging. ANGPTLs belong to a family of 8 members, from ANGPTL1 to ANGPTL8; they have structural homology with angiopoietins and are secreted in the circulation. ANGPTLs display a multitude of physiological and pathologic functions; they contribute to inflammation, angiogenesis, cell death, senescence, hematopoiesis, and play a role in repair, maintenance, and tissue homeostasis. ANGPTLs-particularly the triad ANGPTL3, 4, and 8-have an established role in lipid metabolism through the regulation of triacylglycerol trafficking according to the nutritional status. Some ANGPTLs also contribute to glucose metabolism. Therefore, dysregulation in ANGPTL expression associated with abnormal circulating levels are linked to a plethora of CVD and metabolic disorders including atherosclerosis, heart diseases, diabetes, but also obesity and cancers. Because ANGPTLs bind to different receptors according to the cell type, antagonists are therapeutically inadequate. Recently, direct inhibitors of ANGPTLs, mainly ANGPTL3, have been developed, and specific monoclonal antibodies and antisense oligonucleotides are currently being tested in clinical trials. The aim of the current review is to provide an up-to-date preclinical and clinical overview on the function of the 8 members of the ANGPTL family in the cardiovascular system, their contribution to CVD, and the therapeutic potential of manipulating some of them.
Collapse
Affiliation(s)
- Eric Thorin
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada.
| | - Pauline Labbé
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Mélanie Lambert
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Pauline Mury
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Olina Dagher
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada; Department of Cardiac Sciences, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Géraldine Miquel
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
5
|
Iqbal S, Begum F, Nyamai DW, Jalal N, Shaw P. An Integrated Computational Analysis of High-Risk SNPs in Angiopoietin-like Proteins (ANGPTL3 and ANGPTL8) Reveals Perturbed Protein Dynamics Associated with Cancer. Molecules 2023; 28:4648. [PMID: 37375208 DOI: 10.3390/molecules28124648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Angiopoietin-like proteins (ANGPTL) constitute a family of eight proteins (1-8) which play a pivotal role in the regulation of various pathophysiological processes. The current study sought to identify high-risk, "non-synonymous, single-nucleotide polymorphisms" (nsSNPs) in both ANGPTL3 and ANGPTL8 to evaluate the role that these nsSNPs play in various types of cancer. We retrieved a total of 301 nsSNPs from various databases; 79 of these candidates constitute high-risk nsSNPs. Moreover, we identified eleven high-risk nsSNPs that cause various types of cancer: seven candidates for ANGPTL3 (L57H, F295L, L309F, K329M, R332L, S348C, and G409R) and four candidates for ANGPTL8 (P23L, R85W, R138S, and E148D). Protein-protein interaction analysis revealed a strong association of ANGPTL proteins with several tumor-suppressor proteins such as ITGB3, ITGAV, and RASSF5. 'Gene-expression profiling interactive analysis' (GEPIA) showed that expression of ANGPTL3 is significantly downregulated in five cancers: sarcoma (SARC); cholangio carcinoma (CHOL); kidney chromophobe carcinoma (KICH); kidney renal clear cell carcinoma (KIRC); and kidney renal papillary cell carcinoma (KIRP). GEPIA also showed that expression of ANGPTL8 remains downregulated in three cancers: CHOL; glioblastoma (GBM); and breast invasive carcinoma (BRCA). Survival rate analysis indicated that both upregulation and downregulation of ANGPTL3 and ANGPTL8 leads to low survival rates in various types of cancer. Overall, the current study revealed that both ANGPTL3 and ANGPTL8 constitute potential prognostic biomarkers for cancer; moreover, nsSNPs in these proteins might lead to the progression of cancer. However, further in vivo investigation will be helpful to validate the role of these proteins in the biology of cancer.
Collapse
Affiliation(s)
- Sajid Iqbal
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China
| | - Farida Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Dorothy Wavinya Nyamai
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi 00200, Kenya
| | - Nasir Jalal
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China
| | - Peter Shaw
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China
| |
Collapse
|
6
|
Yang Y, Pang Q, Hua M, Huangfu Z, Yan R, Liu W, Zhang W, Shi X, Xu Y, Shi J. Excavation of diagnostic biomarkers and construction of prognostic model for clear cell renal cell carcinoma based on urine proteomics. Front Oncol 2023; 13:1170567. [PMID: 37260987 PMCID: PMC10228721 DOI: 10.3389/fonc.2023.1170567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
Purpose Clear cell renal cell carcinoma (ccRCC) is the most common pathology type in kidney cancer. However, the prognosis of advanced ccRCC is unsatisfactory. Thus, early diagnosis becomes one of the most important research priorities of ccRCC. However, currently available studies about ccRCC lack urine-related further studies. In this study, we applied proteomics to search urinary biomarkers to assist early diagnosis of ccRCC. In addition, we constructed a prognostic model to assist judge patients' prognosis. Materials and methods Urine which was used to perform 4D label-free quantitative proteomics was collected from 12 ccRCC patients and 11 non-tumor patients with no urinary system diseases. The urine of 12 patients with ccRCC confirmed by pathological examination after surgery was collected before operatoin. Bioinformatics analysis was used to describe the urinary proteomics landscape of these patients with ccRCC. The top ten proteins with the highest expression content were selected as the basis for subsequent validation. Urine from 46 ccRCC patients and 45 control patients were collected to use for verification by enzyme linked immunosorbent assay (ELISA). In order to assess the prognostic value of urine proteomics, a prognostic model was constructed by COX regression analysis on the intersection of RNA-sequencing data in The Cancer Genome Atlas (TCGA) database and our urine proteomic data. Results 133 proteins differentially expressed in the urinary samples were found and 85 proteins (Fold Change, FC>1.5) were identified up-regulated while 48 down-regulated (FC<0.5). Top 10 proteins including S100A14, PKHD1L1, FABP4, ITIH2, C3, C8G, C2, ATF6, ANGPTL6, F13B were performed ELISA to verify. The results showed that PKHD1L1, ANGPTL6, FABP4 and C3 were statistically significant (P<0.05). We performed multivariate logistic regression analysis and plotted a nomogram. Receiver operating characteristic (ROC) curve indicted that the diagnostic efficiency of combined indicators is satisfactory (Aare under curve, AUC=0.835). Furthermore, the prognostic value of the urine proteomics was explored through the intersection between urine proteomics and TCGA RNA-seq data. Thus, COX regression analysis showed that VSIG4, HLA-DRA, SERPINF1, and IGLV2-23 were statistically significant (P<0.05). Conclusion Our study indicated that the application of urine proteomics to explore diagnostic biomarkers and to construct prognostic models of renal clear cell carcinoma is of certain clinical value. PKHD1L1, ANGPTL6, FABP4 and C3 can assist to diagnose ccRCC. The prognostic model constituted of VSIG4, HLA-DRA, SERPINF1, and IGLV2-23 can significantly predict the prognosis of ccRCC patients, but this still needs more clinical trials to verify.
Collapse
Affiliation(s)
- Yiren Yang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Qingyang Pang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Meimian Hua
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zhao Huangfu
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Rui Yan
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wenqiang Liu
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei Zhang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xiaolei Shi
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yifan Xu
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jiazi Shi
- Department of Urology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
7
|
Energy Homeostasis Gene Nucleotide Variants and Survival of Hemodialysis Patients-A Genetic Cohort Study. J Clin Med 2022; 11:jcm11185477. [PMID: 36143124 PMCID: PMC9501434 DOI: 10.3390/jcm11185477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Patients undergoing hemodialysis (HD) therapy have an increased risk of death compared to the general population. We investigated whether selected single nucleotide variants (SNVs) involved in glucose and lipid metabolism are associated with mortality risk in HD patients. Methods: The study included 805 HD patients tested for 11 SNVs in FOXO3, IGFBP3, FABP1, PCSK9, ANGPTL6, and DOCK6 using HRM analysis and TaqMan assays. FOXO3, IGFBP3, L-FABP, PCSK9, ANGPTL6, and ANGPTL8 plasma concentrations were measured by ELISA in 86 individuals. The Kaplan–Meier method and Cox proportional hazards models were used for survival analyses. Results: We found out that the carriers of a C allele in ANGPTL6 rs8112063 had an increased risk of all-cause, cardiovascular, and cardiac mortality. In addition, the C allele of DOCK6 rs737337 was associated with all-cause and cardiac mortality. The G allele of DOCK6 rs17699089 was correlated with the mortality risk of patients initiating HD therapy. The T allele of FOXO3 rs4946936 was negatively associated with cardiac and cardiovascular mortality in HD patients. We observed no association between the tested proteins’ circulating levels and the survival of HD patients. Conclusions: The ANGPTL6 rs8112063, FOXO3 rs4946936, DOCK6 rs737337, and rs17699089 nucleotide variants are predictors of survival in patients undergoing HD.
Collapse
|
8
|
Han X, Song D. Using a Machine Learning Approach to Identify Key Biomarkers for Renal Clear Cell Carcinoma. Int J Gen Med 2022; 15:3541-3558. [PMID: 35392028 PMCID: PMC8980298 DOI: 10.2147/ijgm.s351168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background The most common and deadly subtype of renal carcinoma is kidney renal clear cell carcinoma (KIRC), which accounts for approximately 75% of renal carcinoma. However, the main cause of death in KIRC patients is tumor metastasis. There are no obvious clinical features in the early stage of kidney cancer, and 25–30% of patients have already metastasized when they are first diagnosed. Moreover, KIRC patients whose local tumors have been removed by nephrectomy are still at high risk of metastasis and recurrence and are not sensitive to chemotherapy and radiotherapy, leading to poor prognosis. Therefore, early diagnosis and treatment of this disease are very important. Methods KIRC-related patient datasets were downloaded from the GEO database and TCGA database. DEG screening and GO, KEGG and GSEA enrichment analysis was firstly conducted and then the LASSO and support vector machine (SVM) RFE algorithms were adopted to identify KIRC-associated key genes in training sets and validate them in the test set. The clinical prognostic analysis including the association between the expression of key genes and the overall survival, stage, grade across KIRC, the immune infiltration difference between normal samples and cancer samples, the correlation between the key genes and immune cells, immunomodulator, immune subtypes of KIRC were investigated in this research. Results We finally screened out 4 key genes, including ACPP, ANGPTL4, SCNN1G, SLC22A7. The expression of key genes show difference among normal samples and tumor samples, SCNN1G and SLC22A7 could be predictor of prognosis of patients. The expression of key genes was related with the abundance of tumor infiltration immune cells and the gene expression of immune checkpoint. Conclusion This study screened the 4 key genes, which contributed to early diagnosis, prognosis assessment and immune target treatment of patients with KIRC.
Collapse
Affiliation(s)
- Xiaying Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People’s Republic of China
- Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People’s Republic of China
- Correspondence: Dianwen Song, Email
| |
Collapse
|
9
|
Massoud D, Alrashdi BM, Fouda MMA, El-kott A, Soliman SA, Abd-Elhafeez HH. Aloe vera and wound healing: a brief review. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Diaa Massoud
- Jouf University, Saudi Arabia; Fayoum University, Egypt
| | | | | | - Attalla El-kott
- King Khalid University, Saudi Arabia; Damanhour University, Egypt
| | | | | |
Collapse
|
10
|
Yan J, Li WJ, Qin YZ, Qiu XY, Qin L, Li JM. Aqueous angiopoietin-like levels correlate with optical coherence tomography angiography metrics in diabetic macular edema. Int J Ophthalmol 2021; 14:1888-1894. [PMID: 34926204 DOI: 10.18240/ijo.2021.12.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To quantitatively detect aqueous levels of angiopoietin-like (ANGPTL)3, ANGPTL4, and ANGPTL6 and investigate their correlation with optical coherence tomography angiography (OCTA) findings in patients with diabetic macular edema (DME). METHODS This cross-sectional study included 23 patients (27 eyes) with type 2 diabetes and 16 control subjects (20 eyes). All patients underwent OCTA imaging and ultra-wide field fundus photography. Diabetic patients were categorized into two groups according to the presence or absence of diabetic retinopathy (DME group, 14 patients, 16 eyes); and non-diabetic retinopathy (NDR) group, 9 patients, 11 eyes, respectively. Aqueous levels of ANGPTL3, ANGPTL4, and ANGPTL6 were assessed using suspension array technology, and foveal-centered 3×3 mm2 OCTA scans were automatically graded to determine the central, inner, and full vessel density (CVD, IVD, FVD); central, inner, and full perfusion density (CPD, IPD, FPD), foveal avascular zone (FAZ) area, FAZ perimeter, and FAZ circularity index (FAZ-CI) on superficial capillary plexuses. Additionally, central subfield thickness (CST), cube volume (CV), and cube average thickness (CAT) were measured in a model of macular cube 512×128. RESULTS Aqueous ANGPTL3 levels were not significantly different among the three groups (P>0.05). ANGPTL4 levels were significantly higher in the DME group than the control and NDR groups (P<0.0001 and P<0.001), while ANGPTL6 levels were significantly higher in the DME group than the control group (P<0.05). In the whole cohort, the aqueous ANGPTL3 levels correlated negatively with the IVD, FVD, IPD, and FPD, and positively with the CV and CAT. The aqueous ANGPTL4 levels correlated negatively with the CVD, IVD, FVD, CPD, IPD, and FPD, and positively with the FAZ perimeter, CST, CV, and CAT. The aqueous ANGPTL6 levels correlated negatively with the IVD, FVD, IPD, FPD, FAZ-CI and positively with CST, CV, CAT. CONCLUSION ANGPTL4 and ANGPTL6 may be associated with vascular leakage in DME and may represent good targets for DME therapy. In addition, OCTA metrics may be useful for evaluating macular ischemia in DME.
Collapse
Affiliation(s)
- Jie Yan
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China.,Department of Ophthalmology, Yulin Hospital of Traditional Chinese Medicine, Yulin 719000, Shaanxi Province, China
| | - Wu-Jun Li
- Department of Ophthalmology, Yulin Hospital of Traditional Chinese Medicine, Yulin 719000, Shaanxi Province, China
| | - Ya-Zhou Qin
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Xuan-Yu Qiu
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Li Qin
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Jing-Ming Li
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| |
Collapse
|
11
|
Chang E, Chang JS, Kong ID, Baik SK, Kim MY, Park KS. Multidimensional Biomarker Analysis Including Mitochondrial Stress Indicators for Nonalcoholic Fatty Liver Disease. Gut Liver 2021; 16:171-189. [PMID: 34420934 PMCID: PMC8924798 DOI: 10.5009/gnl210106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is accompanied by a complex and multifactorial pathogenesis with sequential progressions from inflammation to fibrosis and then to cancer. This heterogeneity interferes with the development of precise diagnostic and prognostic strategies for NAFLD. The current approach for the diagnosis of simple steatosis, steatohepatitis, and cirrhosis mainly consists of ultrasonography, magnetic resonance imaging, elastography, and various serological analyses. However, individual dry and wet biomarkers have limitations demanding an integrative approach for the assessment of disease progression. Here, we review diagnostic strategies for simple steatosis, steatohepatitis and hepatic fibrosis, followed by potential biomarkers associated with fat accumulation and mitochondrial stress. For mitochondrial stress indicators, we focused on fibroblast growth factor 21 (FGF21), growth differentiation factor 15 (GDF15), angiopoietin-related growth factor and mitochondrial-derived peptides. Each biomarker may not strongly indicate the severity of steatosis or steatohepatitis. Instead, multidimensional analysis of different groups of biomarkers based on pathogenic mechanisms may provide decisive diagnostic/prognostic information to develop a therapeutic plan for patients with NAFLD. For this purpose, mitochondrial stress indicators, such as FGF21 or GDF15, could be an important component in the multiplexed and contextual interpretation of NAFLD. Further validation of the integrative evaluation of mitochondrial stress indicators combined with other biomarkers is needed in the diagnosis/prognosis of NAFLD.
Collapse
Affiliation(s)
- Eunha Chang
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jae Seung Chang
- Department of Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - In Deok Kong
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Soon Koo Baik
- Department of Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Moon Young Kim
- Department of Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
12
|
Hu G, Gao F, Wang G, Fang Y, Guo Y, Zhou J, Gu Y, Zhang C, Gao N, Wen Q, Qiao H. Use of proteomics to identify mechanisms of hepatocellular carcinoma with the CYP2D6*10 polymorphism and identification of ANGPTL6 as a new diagnostic and prognostic biomarker. J Transl Med 2021; 19:359. [PMID: 34412629 PMCID: PMC8375140 DOI: 10.1186/s12967-021-03038-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Although an association between the cytochrome P4502D6 (CYP2D6) *10 (100C>T) polymorphism and hepatocellular carcinoma (HCC) is known, the mechanism remains unclear. Here we aimed to explore mechanisms of CYP2D6*10 (100C>T) polymorphism conferring to HCC, and screen markers for HCC. METHODS Label-free global proteome profiling with 34 normal livers and peritumor tissue from 61 HCC patients was performed, and angiopoietin-like protein-6 (ANGPTL6) was evaluated in 2 liver samples validation cohorts and 2 blood specimens validation cohorts. RESULTS We found a significantly decreased frequency of TT in HCC patients which reduced HCC susceptibility by 69.2% and was accompanied by lowered enzymatic activity for CYP2D6. Proteomic analysis revealed 1342 differentially expressed proteins (DEPs) that were associated with HCC and 88 DEPs were identified as 100 TT-related proteins, likely underlying the susceptibility to HCC. Twenty-two upregulated DEPs and 66 downregulated DEPs were mainly related to lipid metabolism and the extracellular matrix, respectively. High ANGPTL6 was associated with a higher risk to HCC and worse prognosis. ANGPTL6 was both an independent risk factor and an independent prognostic factor for HCC and exhibited strong potential for predicting HCC occurrence, with comparable AUC values and higher sensitivity compared with alpha-fetoprotein. CONCLUSIONS The TT genotype-associated decreased risk of HCC appears to be related to lowered CYP2D6 activity and altered protein expression in the tumor microenvironment, and ANGPTL6 is a promising new diagnostic and prognostic biomarker for HCC. Our findings reveal new mechanistic insights for polymorphisms related to HCC risk and provide avenues for screening for HCC.
Collapse
Affiliation(s)
- Guiming Hu
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fei Gao
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guanzhe Wang
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yan Fang
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuanyuan Guo
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jun Zhou
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Affiliated People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuhan Gu
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Cunzhen Zhang
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Na Gao
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qiang Wen
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hailing Qiao
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
13
|
Maiti A, Okano I, Oshi M, Okano M, Tian W, Kawaguchi T, Katsuta E, Takabe K, Yan L, Patnaik SK, Hait NC. Altered Expression of Secreted Mediator Genes That Mediate Aggressive Breast Cancer Metastasis to Distant Organs. Cancers (Basel) 2021; 13:cancers13112641. [PMID: 34072157 PMCID: PMC8199412 DOI: 10.3390/cancers13112641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Heterogeneity is the characteristic of breast tumors, making it difficult to understand the molecular mechanism. Alteration of gene expression in the primary tumor versus the metastatic lesion remains challenging for getting any specific targeted therapy. To better understand how gene expression profile changes during metastasis, we compare the primary tumor and distant metastatic tumor gene expression using primary breast tumors compared with its metastatic variant in animal models. Our RNA sequencing data from cells revealed that parental cell and the metastatic variant cell are different in gene expression while gene signature significantly altered during metastasis to distant organs than primary breast tumors. We found that secreted mediators encoding genes (ANGPTL7, MMP3, LCN2, S100A8, and ESM1) are correlated with poor prognosis in the clinical setting as divulged from METABRIC and TCGA-BRCA cohort data analysis. Abstract Due to the heterogeneous nature of breast cancer, metastasis organotropism has been poorly understood. This study assessed the specific cancer-related gene expression changes occurring with metastatic breast cancer recurrence to distant organs compared with non-metastatic breast cancer. We found that several secreted mediators encoding genes notably, LCN2 and S100A8 overexpressed at the distant metastatic site spine (LCN2, 5-fold; S100A8, 6-fold) and bone (LCN2, 5-fold; S100A8, 3-fold) vs. primary tumors in the syngeneic implantation/tumor-resection metastasis mouse model. In contrast, the ESM-1 encoding gene is overexpressed in the primary tumors and markedly downregulated at distant metastatic sites. Further digging into TCAGA-BRCA, SCAN-B, and METABRIC cohorts data analysis revealed that LCN2, S100A8, and ESM-1 mediators encoding individual gene expression scores were strongly associated with disease-specific survival (DSS) in the METABRIC cohort (hazard ratio (HR) > 1, p < 0.0004). The gene expression scores predicted worse clinically aggressive tumors, such as high Nottingham histological grade and advanced cancer staging. Higher gene expression score of ESM-1 gene was strongly associated with worse overall survival (OS) in the triple-negative breast cancer (TNBC) and hormonal receptor (HR)-positive/HER2-negative subtype in METABRIC cohort, HER2+ subtype in TCGA-BRCA and SCAN-B breast cancer cohorts. Our data suggested that mediators encoding genes with prognostic and predictive values may be clinically useful for breast cancer spine, bone, and lung metastasis, particularly in more aggressive subtypes such as TNBC and HER2+ breast cancer.
Collapse
Affiliation(s)
- Aparna Maiti
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Correspondence: (A.M.); (N.C.H.); Tel.: +1-(716)-845-3505 (A.M.); +1-(716)-845-8527 (N.C.H.); Fax: +1-(716)-845-1668 (N.C.H.)
| | - Ichiro Okano
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
| | - Maiko Okano
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
| | - Wanqing Tian
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (W.T.); (L.Y.)
| | - Tsutomu Kawaguchi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
| | - Eriko Katsuta
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (W.T.); (L.Y.)
| | - Santosh K. Patnaik
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Nitai C. Hait
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (I.O.); (M.O.); (M.O.); (T.K.); (E.K.); (K.T.)
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Correspondence: (A.M.); (N.C.H.); Tel.: +1-(716)-845-3505 (A.M.); +1-(716)-845-8527 (N.C.H.); Fax: +1-(716)-845-1668 (N.C.H.)
| |
Collapse
|
14
|
Ni Z, Lu J, Huang W, Khan H, Wu X, Huang D, Shi G, Niu Y, Huang H. Transcriptomic identification of HBx-associated hub genes in hepatocellular carcinoma. PeerJ 2021; 9:e12697. [PMID: 35036167 PMCID: PMC8710059 DOI: 10.7717/peerj.12697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies around the world. Among the risk factors involved in liver carcinogenesis, hepatitis B virus (HBV) X protein (HBx) is considered to be a key regulator in hepatocarcinogenesis. Whether HBx promotes or protects against HCC remains controversial, therefore exploring new HBx-associated genes is still important. METHODS HBx was overexpressed in HepG2, HepG2.2.15 and SMMC-7721 cell lines, primary mouse hepatocytes and livers of C57BL/6N mice. High-throughput RNA sequencing profiling of HepG2 cells with HBx overexpression and related differentially-expressed genes (DEGs), pathway enrichment analysis, protein-protein interaction networks (PPIs), overlapping analysis were conducted. In addition, Gene Expression Omnibus (GEO) and proteomic datasets of HBV-positive HCC datasets were used to verify the expression and prognosis of selected DEGs. Finally, we also evaluated the known oncogenic role of HBx by oncogenic array analysis. RESULTS A total of 523 DEGs were obtained from HBx-overexpressing HepG2 cells. Twelve DEGs were identified and validated in cells transiently transfected with HBx and three datasets of HBV-positive HCC transcription profiles. In addition, using the Kaplan-Meier plotter database, the expression levels of the twelve different genes were further analyzed to predict patient outcomes. CONCLUSION Among the 12 identified HBx-associated hub genes, HBV-positive HCC patients expressing ARG1 and TAT showed a good overall survival (OS) and relapse-free survival (RFS). Thus, ARG1 and TAT expression could be potential prognostic markers.
Collapse
Affiliation(s)
- Zhengzhong Ni
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Weiyi Huang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Hanif Khan
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xuejun Wu
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Danmei Huang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Haihua Huang
- Department of Pathology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
15
|
Poloczek J, Kazura W, Kwaśnicka E, Gumprecht J, Jochem J, Stygar D. Effects of Bariatric Surgeries on Fetuin-A, Selenoprotein P, Angiopoietin-Like Protein 6, and Fibroblast Growth Factor 21 Concentration. J Diabetes Res 2021; 2021:5527107. [PMID: 34414240 PMCID: PMC8369187 DOI: 10.1155/2021/5527107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity is a civilization disease representing a global health problem. Excessive body weight significantly reduces the quality of life. It is also associated with the leading causes of death, including type 2 diabetes mellitus, cardiovascular diseases, and numerous types of cancer. The mainstay of therapy is a dietary treatment. However, in morbidly obese patients, dietary treatment is often insufficient. In these patients, the most effective procedure is bariatric surgery, but it is still difficult to predict its outcome and metabolic changes. Hepatokines are proteins secreted by hepatocytes. Many of them, including fetuin-A, selenoprotein P, angiopoietin-like protein 6, and fibroblast growth factor 21, have been linked to metabolic dysfunctions. In this context, hepatokines may prove helpful. This review investigates the possible changes in hepatokine profiles after selected bariatric surgery protocols. In this regard, Roux-en-Y gastric bypass is the most studied type of surgery. The overall analysis of published research identified fetuin-A as a potential marker of metabolic alternations in patients after bariatric surgery.
Collapse
Affiliation(s)
- Jakub Poloczek
- Department of Rehabilitation, 3rd Specialist Hospital in Rybnik, 44-200 Rybnik, Poland
- Department of Internal Medicine, Diabetology, and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Wojciech Kazura
- Doctoral School of Medical University of Silesia, Department of Physiology, Faculty of Medical Sciences in Zabrze, 41-808 Zabrze, Poland
| | - Ewa Kwaśnicka
- Pediatric Ward, Municipal Hospital in Żory, 44-240 Żory, Poland
| | - Janusz Gumprecht
- Department of Internal Medicine, Diabetology, and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Jerzy Jochem
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Zabrze, Poland
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Zabrze, Poland
| |
Collapse
|
16
|
Hostettler IC, O'Callaghan B, Bugiardini E, O'Connor E, Vandrovcova J, Davagnanam I, Alg V, Bonner S, Walsh D, Bulters D, Kitchen N, Brown MM, Grieve J, Werring DJ, Houlden H. ANGPTL6 Genetic Variants Are an Underlying Cause of Familial Intracranial Aneurysms. Neurology 2020; 96:e947-e955. [PMID: 33106390 PMCID: PMC8105901 DOI: 10.1212/wnl.0000000000011125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 10/08/2020] [Indexed: 01/16/2023] Open
Abstract
Purpose To understand the role of the angiopoietin-like 6 gene (ANGPTL6) in intracranial aneurysms (IAs), we investigated its role in a large cohort of familial IAs. Methods Individuals with family history of IA were recruited to the Genetic and Observational Subarachnoid Haemorrhage (GOSH) study. The ANGPTL6 gene was sequenced using Sanger sequencing. Identified genetic variants were compared to a control population. Results We found 6 rare ANGPTL6 genetic variants in 9/275 individuals with a family history of IA (3.3%) (5 missense mutations and 1 nonsense mutation leading to a premature stop codon), none present in controls. One of these had been previously reported: c.392A>T (p.Glu131Val) on exon 2; another was very close: c.332G>A (p.Arg111His). Two further genetic variants lie within the fibrinogen-like domain of the ANGPTL6 gene, which may influence function or level of the ANGPTL6 protein. The last 2 missense mutations lie within the coiled-coil domain of the ANGPTL6 protein. All genetic variants were well conserved across species. Conclusion ANGPTL6 genetic variants are an important cause of IA. Defective or lack of ANGPTL6 protein is therefore an important factor in blood vessel proliferation leading to IA; dysfunction of this protein is likely to cause abnormal proliferation or weakness of vessel walls. With these data, not only do we emphasize the importance of screening familial IA cases for ANGPTL6 and other genes involved in IA, but also highlight the ANGPTL6 pathway as a potential therapeutic target. Classification of Evidence This is a Class III study showing some specificity of presence of the ANGPTL6 gene variant as a marker of familial intracranial aneurysms in a small subset of individuals with familial aneurysms.
Collapse
Affiliation(s)
- Isabel C Hostettler
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Benjamin O'Callaghan
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Enrico Bugiardini
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Emer O'Connor
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Jana Vandrovcova
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Indran Davagnanam
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Varinder Alg
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Stephen Bonner
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Daniel Walsh
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Diederik Bulters
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Neil Kitchen
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Martin M Brown
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Joan Grieve
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - David J Werring
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Henry Houlden
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust.
| | | |
Collapse
|
17
|
Michel JB. Phylogenic Determinants of Cardiovascular Frailty, Focus on Hemodynamics and Arterial Smooth Muscle Cells. Physiol Rev 2020; 100:1779-1837. [DOI: 10.1152/physrev.00022.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of the circulatory system from invertebrates to mammals has involved the passage from an open system to a closed in-parallel system via a closed in-series system, accompanying the increasing complexity and efficiency of life’s biological functions. The archaic heart enables pulsatile motion waves of hemolymph in invertebrates, and the in-series circulation in fish occurs with only an endothelium, whereas mural smooth muscle cells appear later. The present review focuses on evolution of the circulatory system. In particular, we address how and why this evolution took place from a closed, flowing, longitudinal conductance at low pressure to a flowing, highly pressurized and bifurcating arterial compartment. However, although arterial pressure was the latest acquired hemodynamic variable, the general teleonomy of the evolution of species is the differentiation of individual organ function, supported by specific fueling allowing and favoring partial metabolic autonomy. This was achieved via the establishment of an active contractile tone in resistance arteries, which permitted the regulation of blood supply to specific organ activities via its localized function-dependent inhibition (active vasodilation). The global resistance to viscous blood flow is the peripheral increase in frictional forces caused by the tonic change in arterial and arteriolar radius, which backscatter as systemic arterial blood pressure. Consequently, the arterial pressure gradient from circulating blood to the adventitial interstitium generates the unidirectional outward radial advective conductance of plasma solutes across the wall of conductance arteries. This hemodynamic evolution was accompanied by important changes in arterial wall structure, supported by smooth muscle cell functional plasticity, including contractility, matrix synthesis and proliferation, endocytosis and phagocytosis, etc. These adaptive phenotypic shifts are due to epigenetic regulation, mainly related to mechanotransduction. These paradigms actively participate in cardio-arterial pathologies such as atheroma, valve disease, heart failure, aneurysms, hypertension, and physiological aging.
Collapse
|
18
|
Zhao J, Liu J, Wu N, Zhang H, Zhang S, Li L, Wang M. ANGPTL4 overexpression is associated with progression and poor prognosis in breast cancer. Oncol Lett 2020; 20:2499-2505. [PMID: 32782569 DOI: 10.3892/ol.2020.11768] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to analyze the expression levels of angiopoietin-like 4 (ANGPTL4) in breast cancer to investigate the association between ANGPTL4 and breast cancer. Immunohistochemistry was performed on formalin-fixed paraffin-embedded tissues, including 205 invasive ductal carcinoma (IDC) of no special type, 40 normal breast, 40 atypical ductal hyperplasia (ADH) and 40 ductal carcinomas in situ (DCIS) tissues. The non-parametric Kruskal-Wallis test was used to evaluate the differential expression of ANGPTL4 and clinicopathological parameters in breast cancer. Kaplan-Meier analysis and Cox regression analysis were used to evaluate the association between the expression levels of ANGPTL4 and the prognosis of breast cancer. The results revealed that ANGPTL4 expression was higher in IDC (63.4%; 130/205) compared with in normal breast tissues (17.5%; 7/40), ADH (30%; 12/40) and DCIS (37.5%; 15/40). The clinical significance of ANGPTL4 expression was analyzed in a total of 205 IDC tissues, and high expression levels of ANGPTL4 were positively associated with pathological stage (P<0.001), tumor size (P<0.001), histological grade (P<0.001), lymph node metastasis (P<0.001), distant metastasis (P<0.001) and local recurrence (P<0.001). Kaplan-Meier analysis revealed that patients with high ANGPTL4 expression had a shorter overall survival (OS; P<0.001) and disease-free survival (DFS; P<0.001) compared with patients with low ANGPTL4 expression. Multivariate Cox regression analysis revealed that ANGPTL4 was an independent prognostic factor for breast cancer OS (P=0.034) and DFS (P=0.011). The results of the present study demonstrated that ANGPLT4 was associated with malignant progression and poor prognosis of breast cancer, suggesting that ANGPLT4 may be a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Breast Cancer, Cancer Institute and Hospital, Tianjin Medical University, Tianjin 360000, P.R. China
| | - Juntian Liu
- Department of Breast Cancer, Cancer Institute and Hospital, Tianjin Medical University, Tianjin 360000, P.R. China
| | - Nan Wu
- Department of Breast Cancer, Cancer Institute and Hospital, Tianjin Medical University, Tianjin 360000, P.R. China
| | - Hailian Zhang
- Department of Breast Cancer, Cancer Institute and Hospital, Tianjin Medical University, Tianjin 360000, P.R. China
| | - Shichao Zhang
- Department of Breast Cancer, Cancer Institute and Hospital, Tianjin Medical University, Tianjin 360000, P.R. China
| | - Lijuan Li
- Department of Breast Cancer, Cancer Institute and Hospital, Tianjin Medical University, Tianjin 360000, P.R. China
| | - Meng Wang
- Department of Breast Cancer, Cancer Institute and Hospital, Tianjin Medical University, Tianjin 360000, P.R. China
| |
Collapse
|
19
|
Qaddoumi MG, Alanbaei M, Hammad MM, Al Khairi I, Cherian P, Channanath A, Thanaraj TA, Al-Mulla F, Abu-Farha M, Abubaker J. Investigating the Role of Myeloperoxidase and Angiopoietin-like Protein 6 in Obesity and Diabetes. Sci Rep 2020; 10:6170. [PMID: 32277104 PMCID: PMC7148302 DOI: 10.1038/s41598-020-63149-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
Myeloperoxidase (MPO) is positively associated with obesity and diet-induced insulin resistance. Angiopoietin-like protein 6 (ANGPTL6) regulates metabolic processes and counteract obesity through increased energy expenditure. This study aims to evaluate the plasma MPO and ANGPTL6 levels in obese and diabetic individuals as well as MPO association with biochemical markers of obesity. A total of 238 participants were enrolled, including 137 control and 101 type 2 diabetes (T2D) patients. ANGPTL6 and MPO levels and other biomarkers were measured via ELISA. ANGPTL6 levels were significantly higher in the diabetic population and obese individuals. When the group was stratified based on T2D, ANGPTL6 levels were significantly higher in obese-diabetic participants compared with non-obese-diabetics, but obese-non-diabetic individuals had similar ANGPTL6 levels to their controls. MPO levels were higher in obese compared with non-obese participants but did not differ between T2D and control participants. MPO levels were upregulated in obese compared with non-obese in both diabetics and non-diabetics. MPO was positively associated with ANGPTL6, triglyceride, BMI, TNF-alpha, high-sensitivity C-reactive protein, interleukin-6, and plasminogen activator inhibitor-1. Taken together, our findings suggest that both MPO and ANGPTL6 may regulate obesity, although MPO exerts this effect independent of diabetes while ANGPTL6 may have a modulatory role in diabetes.
Collapse
Affiliation(s)
- Mohammad G Qaddoumi
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
- Pharmacology and Therapeutics Department, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Muath Alanbaei
- Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Maha M Hammad
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Irina Al Khairi
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Preethi Cherian
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Arshad Channanath
- Functional Genomic Unit, Dasman Diabetes Institute, 15462, Kuwait City, Kuwait
| | | | - Fahd Al-Mulla
- Functional Genomic Unit, Dasman Diabetes Institute, 15462, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait.
| | - Jehad Abubaker
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait.
| |
Collapse
|
20
|
Kim JH. Letter: Increased Serum Angiopoietin-Like 6 Ahead of Metabolic Syndrome in a Prospective Cohort Study ( Diabetes Metab J 2019;43:521-9). Diabetes Metab J 2019; 43:727-728. [PMID: 31694083 PMCID: PMC6834845 DOI: 10.4093/dmj.2019.0172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Jin Hwa Kim
- Department of Endocrinology and Metabolism, Chosun University Hospital, Chosun University College of Medicine, Gwangju, Korea.
| |
Collapse
|
21
|
Namkung J, Sohn JH, Chang JS, Park SW, Kim JY, Koh SB, Kong ID, Park KS. Increased Serum Angiopoietin-Like 6 Ahead of Metabolic Syndrome in a Prospective Cohort Study. Diabetes Metab J 2019; 43:521-529. [PMID: 30968619 PMCID: PMC6712233 DOI: 10.4093/dmj.2018.0080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Despite being an anti-obesity hepatokine, the levels of serum angiopoietin-like 6 (ANGPTL6) are elevated in various metabolic diseases. Thus, ANGPTL6 expression may reflect metabolic burden and may have compensatory roles. This study investigated the association between serum ANGPTL6 levels and new-onset metabolic syndrome. METHODS In total, 221 participants without metabolic syndrome were randomly selected from a rural cohort in Korea. Baseline serum ANGPTL6 levels were measured using an enzyme-linked immunosorbent assay. Anthropometric and biochemical markers were analyzed before and after follow-up examinations. RESULTS During an average follow-up period of 2.75 (interquartile range, 0.76) years, 82 participants (37.1%) presented new-onset metabolic syndrome and had higher ANGPTL6 levels before onset than those without metabolic syndrome (48.03±18.84 ng/mL vs. 64.75±43.35 ng/mL, P=0.001). In the multivariable adjusted models, the odds ratio for the development of metabolic syndrome in the highest quartile of ANGPTL6 levels was 3.61 (95% confidence interval, 1.27 to 10.26). The use of ANGPTL6 levels in addition to the conventional components improved the prediction of new-onset metabolic syndrome (area under the receiver operating characteristic curve: 0.775 vs. 0.807, P=0.036). CONCLUSION Increased serum ANGPTL6 levels precede the development of metabolic syndrome and its components, including low high density lipoprotein, high triglyceride, and high glucose levels, which have an independent predictive value for metabolic syndrome.
Collapse
Affiliation(s)
- Jun Namkung
- Department of Biochemistry, Yonsei University Wonju College of Medicine, Wonju, Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea.
| | - Joon Hyung Sohn
- Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jae Seung Chang
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
- Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sang Wook Park
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Institute of Genomic Cohort, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jang Young Kim
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Institute of Genomic Cohort, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sang Baek Koh
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
- Institute of Genomic Cohort, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Preventive Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - In Deok Kong
- Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Kyu Sang Park
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
- Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Korea.
| |
Collapse
|
22
|
Abstract
Introduction Wounds and their complications present a frequent cause of morbidity and mortality in everyday clinical practice. In order to reduce the wound burden, much effort has been directed into the physiology of healing and new therapeutic approaches. Aim This paper provides an overview from the literature about the role of endothelial and epithelial cells in tissue filler employment for wound healing. Material and Methods The scientific literature was reviewed through PubMed, Medline and Science Direct. The articles were chosen in correlation with the study objective and their scientific relevance. Results Successful wound healing depends on many diverse processes, cell types and molecular mediators. The definitive aim of wound healing is a properly healed wound. Tissue fillers are becoming an important alternative in wound management, although augmentation of soft tissue can present a demanding problem due to the difficulties in tissue survival. In order to prevent its failure, an optimal vascular network needs to form from wound edges into the filler. Conclusions Because of the importance of chemotaxis and angiogenesis in various physiological and pathological processes, both events present an extensive area of intense research. Additionally, epithelial cells are needed to cover the wound defect and sealing the wound environment from outer world.
Collapse
Affiliation(s)
- Tomaz Velnar
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana, Slovenia.,AMEU-ECM Maribor, Slovenia
| | - Lidija Gradisnik
- AMEU-ECM Maribor, Slovenia.,Institute of Biomedical Sciences, Medical Faculty Maribor, Slovenia
| |
Collapse
|
23
|
Wu J, Li A, Cai H, Zhang C, Lei C, Lan X, Chen H. Intron retention as an alternative splice variant of the cattle ANGPTL6 gene. Gene 2019; 709:17-24. [PMID: 31102716 DOI: 10.1016/j.gene.2019.05.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/22/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022]
Abstract
Angiopoietin-like protein 6, which is encoded by ANGPTL6 gene (also known as angiopoietin growth factor, AGF), has been extensively characterized with regard to its proposed functions as angiogenesis and energy metabolism. The present results showed the occurrence of alternative splicing by intron retention (IR) event in the bovine ANGPTL6 gene (bANGPTL6). By means of RT-PCR, TA clone and sequencing, we have shown that the bANGPTL6 gene has a splice variant generated by the retention of its partial intron 3. The computational analysis of the bANGPTL6 genomic sequence showed that its intron 3 has a high percentage of GC (62.31%) and a length of 199 nt, characteristics that have been associated with an IR event. The IR event does not interfere with the coding region as the bANGPTL6 prepropeptide is entirely coded in the third exon. Additionally, both the intronless (namely, bANGPTL6α) and intron-retaining (namely, bANGPTL6β) ANGPTL6 transcripts are constitutively co-expressed in the bovine liver. Further, the relative expression level of different variants in liver was tested by both semi-RT-PCR and RT-qPCR methods. The results suggested bANGPTL6β are significantly higher than bANGPTL6α. Overall, our findings will be helpful for studies on the molecular mechanism of IR events and the functions of ANGPTL6 gene. Specially, bANGPTL6β gene probably contributes to a new target for treatment of obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Jiyao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling 712100, PR China
| | - Aimin Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling 712100, PR China
| | - Hanfang Cai
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling 712100, PR China
| | - Chenge Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling 712100, PR China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling 712100, PR China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling 712100, PR China.
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling 712100, PR China.
| |
Collapse
|
24
|
Kadomatsu T, Oike Y. Roles of angiopoietin-like proteins in regulation of stem cell activity. J Biochem 2019; 165:309-315. [PMID: 30690458 DOI: 10.1093/jb/mvz005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/17/2019] [Indexed: 02/04/2023] Open
Abstract
Various types of stem cells reside in the body and self-renew throughout an organism's lifetime. Such self-renewal is essential for maintenance of tissue homeostasis and is co-ordinately regulated by stem cell-intrinsic signals and signals from stem cell niche. Angiopoietin is a niche-derived signalling molecule well known to contribute to maintenance of haematopoietic stem cells (HSCs). Angiopoietin-like proteins (ANGPTLs) are structurally similar to angiopoietin, and recent studies reveal that they function in angiogenesis, lipid and energy metabolism and regulation of inflammation. However, unlike angiopoietins, activities of ANGPTLs in stem cell maintenance have remained unclear. Recently, several studies have reported an association of ANGPTL signalling with stem cell maintenance. Here, we summarize those findings with a focus on HSCs, intestinal stem cells, neural stem cells and cancer stem cells and discuss mechanisms underlying ANGPTL-mediated stem cell maintenance.
Collapse
Affiliation(s)
- Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
25
|
Kim MJ, Namkung J, Chang JS, Kim SJ, Park KS, Kong ID. Leptin regulates the expression of angiopoietin-like 6. Biochem Biophys Res Commun 2018; 502:397-402. [PMID: 29852166 DOI: 10.1016/j.bbrc.2018.05.180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 05/26/2018] [Indexed: 09/30/2022]
Abstract
Angiopoietin-like 6 (ANGPTL6) is a hepatokine that antagonizes obesity and insulin resistance by increasing energy expenditure. Despite its beneficial effects on metabolism, human studies have shown a paradoxical increase in ANGPTL6 level in the serum of patients with metabolic diseases, which has been interpreted as a compensatory upregulation. However, the regulatory mechanism of ANGPTL6 remains unclear. Since upregulation of ANGPTL6 is induced on metabolic stress, we investigated the hepatic expression of ANGPTL6 by leptin, a representative adipokine of obesity. Mice on a high-fat diet showed increased serum leptin levels and hepatic Angptl6 expression, which were attenuated by exercise training. A single leptin injection also induced hepatic ANGPTL6 expression and increased serum ANGPTL6 levels. In an in vitro model using primary hepatocytes, leptin treatment significantly upregulated ANGPTL6 expression at the mRNA and protein levels, as well as the amount of secreted ANGPTL6 protein in conditioned media. Similarly, exercise training on human participants also showed diminished serum levels of leptin and ANGPTL6. Altogether, these results strongly indicated that hepatic ANGPTL6 expression was determined by leptin.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Jun Namkung
- Department of Biochemistry, Yonsei University Wonju College of Medicine, Wonju, South Korea; Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Jae Seung Chang
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, South Korea; Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Soo-Jin Kim
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, South Korea; Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, South Korea; Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, South Korea; Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - In Deok Kong
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, South Korea; Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea.
| |
Collapse
|
26
|
Mir M, Ali MN, Barakullah A, Gulzar A, Arshad M, Fatima S, Asad M. Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater 2018; 7:1-21. [PMID: 29446015 PMCID: PMC5823812 DOI: 10.1007/s40204-018-0083-4] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/27/2018] [Indexed: 12/21/2022] Open
Abstract
Wounds are of a variety of types and each category has its own distinctive healing requirements. This realization has spurred the development of a myriad of wound dressings, each with specific characteristics. It is unrealistic to expect a singular dressing to embrace all characteristics that would fulfill generic needs for wound healing. However, each dressing may approach the ideal requirements by deviating from the 'one size fits all approach', if it conforms strictly to the specifications of the wound and the patient. Indeed, a functional wound dressing should achieve healing of the wound with minimal time and cost expenditures. This article offers an insight into several different types of polymeric materials clinically used in wound dressings and the events taking place at cellular level, which aid the process of healing, while the biomaterial dressing interacts with the body tissue. Hence, the significance of using synthetic polymer films, foam dressings, hydrocolloids, alginate dressings, and hydrogels has been reviewed, and the properties of these materials that conform to wound-healing requirements have been explored. A special section on bioactive dressings and bioengineered skin substitutes that play an active part in healing process has been re-examined in this work.
Collapse
Affiliation(s)
- Mariam Mir
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Murtaza Najabat Ali
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan.
| | - Afifa Barakullah
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Ayesha Gulzar
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Munam Arshad
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Shizza Fatima
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Maliha Asad
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
27
|
Shrivastav A, Mishra AK, Ali SS, Ahmad A, Abuzinadah MF, Khan NA. In vivo models for assesment of wound healing potential: A systematic review. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.wndm.2018.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Bourcier R, Le Scouarnec S, Bonnaud S, Karakachoff M, Bourcereau E, Heurtebise-Chrétien S, Menguy C, Dina C, Simonet F, Moles A, Lenoble C, Lindenbaum P, Chatel S, Isidor B, Génin E, Deleuze JF, Schott JJ, Le Marec H, Loirand G, Desal H, Redon R, Desal H, Bourcier R, Daumas-Duport B, Isidor B, Connault J, Lebranchu P, Le Tourneau T, Viarouge MP, Papagiannaki C, Piotin M, Redjem H, Mazighi M, Desilles JP, Naggara O, Trystram D, Edjlali-Goujon M, Rodriguez C, Ben Hassen W, Saleme S, Mounayer C, Levrier O, Aguettaz P, Combaz X, Pasco A, Berthier E, Bintner M, Molho M, Gauthier P, Chivot C, Costalat V, Darganzil C, Bonafé A, Januel AC, Michelozzi C, Cognard C, Bonneville F, Tall P, Darcourt J, Biondi A, Iosif C, Pomero E, Ferre JC, Gauvrit JY, Eugene F, Raoult H, Gentric JC, Ognard J, Anxionnat R, Bracard S, Derelle AL, Tonnelet R, Spelle L, Ikka L, Fahed R, Rouchaud A, Ozanne A, Caroff J, Ben Achour N, Moret J, Chabert E, Berge J, Marnat G, Barreau X, Gariel F, Clarencon F, Aggour M, Ricolfi F, Chavent A, Thouant P, Lebidinsky P, Lemogne B, Herbreteau D, Bibi R, Pierot L, Soize S, Labeyrie MA, Vandendries C, Houdart E, Kazemi A, Leclerc X, Pruvo JP, Gallas S, Velasco S. Rare Coding Variants in ANGPTL6 Are Associated with Familial Forms of Intracranial Aneurysm. Am J Hum Genet 2018; 102:133-141. [PMID: 29304371 DOI: 10.1016/j.ajhg.2017.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022] Open
Abstract
Intracranial aneurysms (IAs) are acquired cerebrovascular abnormalities characterized by localized dilation and wall thinning in intracranial arteries, possibly leading to subarachnoid hemorrhage and severe outcome in case of rupture. Here, we identified one rare nonsense variant (c.1378A>T) in the last exon of ANGPTL6 (Angiopoietin-Like 6)-which encodes a circulating pro-angiogenic factor mainly secreted from the liver-shared by the four tested affected members of a large pedigree with multiple IA-affected case subjects. We showed a 50% reduction of ANGPTL6 serum concentration in individuals heterozygous for the c.1378A>T allele (p.Lys460Ter) compared to relatives homozygous for the normal allele, probably due to the non-secretion of the truncated protein produced by the c.1378A>T transcripts. Sequencing ANGPTL6 in a series of 94 additional index case subjects with familial IA identified three other rare coding variants in five case subjects. Overall, we detected a significant enrichment (p = 0.023) in rare coding variants within this gene among the 95 index case subjects with familial IA, compared to a reference population of 404 individuals with French ancestry. Among the 6 recruited families, 12 out of 13 (92%) individuals carrying IA also carry such variants in ANGPTL6, versus 15 out of 41 (37%) unaffected ones. We observed a higher rate of individuals with a history of high blood pressure among affected versus healthy individuals carrying ANGPTL6 variants, suggesting that ANGPTL6 could trigger cerebrovascular lesions when combined with other risk factors such as hypertension. Altogether, our results indicate that rare coding variants in ANGPTL6 are causally related to familial forms of IA.
Collapse
|
29
|
Zong S, Li W, Li H, Han S, Liu S, Shi Q, Hou F. Identification of hypoxia-regulated angiogenic genes in colorectal cancer. Biochem Biophys Res Commun 2017; 493:461-467. [PMID: 28928094 DOI: 10.1016/j.bbrc.2017.08.169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 01/11/2023]
Abstract
The tumour hypoxia would trigger the angiogenesis switch for survival, and increase the ability of cancer cells to invade and metastasis. However, hypoxia regulated genes that invovled in angiogenesis in colorectal cancer (CRC) have not been explored in detail. The aim of this study was to explore angiogenic genes under hypoxia condition in CRC. Here, we found that endothelial cells tube formation and cancer cells invasion ability were promoted even under chronic hypoxia condition (72 h) in colon adenocarcinoma HCT-116 cells. Then, we explored the differentially expressed genes (DEGs) under chronic hypoxia condition by microarray from Gene Expression Omnibus (GEO) database. Subsequent bioinformatic analysis identified 17 genes that invovled in angiogenesis, blood vessel development, blood vessel morphgensis, vascular development. of these genes, VEGF-A, Smad7, Jun, IL-8, CXCR-4, PDGF-A, TGF-A, ANGPTL-4 expression levels up-regulated under hypoxia condition. Additionally, the gene expression level in acute hypoxia (24 h) was significantly higher than chronic condition (72 h). Finally, knockdown of hypoxia inducible factor (HIF-1α) by shRNA reversed the role of Smad7, CXCR-4, PDGF-A, TGF-A and ANGPTL-4 overexpression in HCT-116 cells, these findings provide the potential angiogenic targets for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Shaoqi Zong
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| | - Wen Li
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| | - Hongjia Li
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Susu Han
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Shanshan Liu
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Qi Shi
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| | - Fenggang Hou
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| |
Collapse
|
30
|
Kang SG, Yi HS, Choi MJ, Ryu MJ, Jung S, Chung HK, Chang JY, Kim YK, Lee SE, Kim HW, Choi H, Kim DS, Lee JH, Kim KS, Kim HJ, Lee CH, Oike Y, Shong M. ANGPTL6 expression is coupled with mitochondrial OXPHOS function to regulate adipose FGF21. J Endocrinol 2017; 233:105-118. [PMID: 28184000 DOI: 10.1530/joe-16-0549] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022]
Abstract
Recent studies revealed that the inhibition of mitochondrial oxidative phosphorylation (OXPHOS) is coupled with the mitochondrial unfolded protein response, thereby stimulating the secretion of non-cell autonomous factors, which may control systemic energy metabolism and longevity. However, the nature and roles of non-cell autonomous factors induced in adipose tissue in response to reduced OXPHOS function remain to be clarified in mammals. CR6-interacting factor 1 (CRIF1) is an essential mitoribosomal protein for the intramitochondrial production of mtDNA-encoded OXPHOS subunits. Deficiency of CRIF1 impairs the proper formation of the OXPHOS complex, resulting in reduced function. To determine which secretory factors are induced in response to reduced mitochondrial OXPHOS function, we analyzed gene expression datasets in Crif1-depleted mouse embryonic fibroblasts. Crif1 deficiency preferentially increased the expression of angiopoietin-like 6 (Angptl6) and did not affect other members of the ANGPTL family. Moreover, treatment with mitochondrial OXPHOS inhibitors increased the expression of Angptl6 in cultured adipocytes. To confirm Angptl6 induction in vivo, we generated a murine model of reduced mitochondrial OXPHOS function using adipose tissue-specific Crif1-deficient mice and verified the upregulation of Angptl6 and fibroblast growth factor 21 (Fgf21) in white adipose tissue. Treatment with recombinant ANGPTL6 protein increased oxygen consumption and Pparα expression through the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway in cultured adipocytes. Furthermore, the ANGPTL6-mediated increase in Pparα expression resulted in increased FGF21 expression, thereby promoting β-oxidation. In conclusion, mitochondrial OXPHOS function governs the expression of ANGPTL6, which is an essential factor for FGF21 production in adipose tissue and cultured adipocytes.
Collapse
Affiliation(s)
- Seul Gi Kang
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | | | - Saetbyel Jung
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Seong Eun Lee
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | - Hyeon-Woo Kim
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | - Hoil Choi
- Department of BiochemistryChungnam National University School of Medicine, Daejeon, Korea
| | - Dong Seok Kim
- Department of BiochemistryChungnam National University School of Medicine, Daejeon, Korea
| | - Ju Hee Lee
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Hyun Jin Kim
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Chul-Ho Lee
- Animal Model CenterKorea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Yuichi Oike
- Department of Molecular GeneticsGraduate School of Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Minho Shong
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
31
|
Yang LK, Zhu J, Chen YH, Wang DL, Li H, Zhang LJ, Zhou JR, Liu W. Knockdown of Angiopoietin-Like Protein 2 Inhibits Proliferation and Invasion in Glioma Cells via Suppressing the ERK/MAPK Signaling Pathway. Oncol Res 2017; 25:1349-1355. [PMID: 28247845 PMCID: PMC7841190 DOI: 10.3727/096504017x14874337324615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Angiopoietin-like protein 2 (ANGPTL2), a member of the glycoprotein family, is mainly secreted by adipose tissues under normal conditions. Recently, ANGPTL2 has been found to be upregulated in some types of cancers and is considered to be a tumor promoter. However, the functional significance of ANGPTL2 in glioma has not yet been elucidated. In this study, we investigated the specific role of ANGPTL2 in glioma. The results showed that ANGPTL2 was highly expressed in glioma tissues and cell lines. Knockdown of ANGPTL2 reduced the proliferative and invasive abilities of glioma cells. Moreover, the tumorigenesis assay showed that ANGPTL2 knockdown inhibited glioma tumor growth in vivo. We also found that ANGPTL2 knockdown decreased the protein levels of p-ERK1/2 in glioma cells and thus blocked the activity of the ERK/MAPK signaling pathway. Taken together, our study provided the first evidence that ANGPTL2 played an oncogenic role in glioma development and might be considered as a new therapeutic target for glioma treatment.
Collapse
|
32
|
Cinkajzlova A, Lacinova Z, Klouckova J, Kavalkova P, Trachta P, Kosak M, Haluzikova D, Papezova H, Mraz M, Haluzík M. Angiopoietin-like protein 6 in patients with obesity, type 2 diabetes mellitus, and anorexia nervosa: The influence of very low-calorie diet, bariatric surgery, and partial realimentation. Endocr Res 2017; 42:22-30. [PMID: 27135654 DOI: 10.3109/07435800.2016.1169544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIM OF THE STUDY Angiopoietin-like protein 6 (ANGPTL6) is a circulating protein with a potential role in energy homeostasis. The aim of the study was to explore the changes in ANGPTL6 levels in patients with obesity (Body mass index, BMI > 40 kg/m2) with and without type 2 diabetes mellitus (T2DM) undergoing dietary intervention (very low calorie diet - VLCD) and in a subgroup of T2DM patients after bariatric surgery. Additionally, we examined changes in ANGPTL6 in anorexia nervosa (AN) patients at baseline and after partial realimentation. We also explored the changes in ANGPTL6 mRNA expression in subcutaneous adipose tissue (SAT) of obese subjects. MATERIALS AND METHODS The study included 23 non-diabetic obese patients, 40 obese patients with T2DM (27 underwent VLCD and 13 underwent bariatric surgery), 22 patients with AN, and 37 healthy control subjects. RESULTS ANGPTL6 levels of AN patients were increased relative to the control group (68.6 ± 9.9 ng/ml) and decreased from 110.2 ± 13.3 to 73.6 ± 7.1 ng/ml (p = 0.004) after partial realimentation. Baseline ANGPTL6 levels in patients with obesity and T2DM did not differ from the control group. VLCD decreased ANGPTL6 levels only in obese patients with T2DM. Bariatric surgery induced a transient elevation of ANGPTL6 levels with a subsequent decrease to baseline levels. ANGPTL6 mRNA expression transiently increased after bariatric surgery and returned to baseline levels after 12 months. CONCLUSIONS Collectively, our data suggest that serum ANGPTL6 levels and ANGPTL6 mRNA expression in SAT are affected by metabolic disorders and their treatment but do not appear to directly reflect nutritional status.
Collapse
Affiliation(s)
- Anna Cinkajzlova
- a Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine , Charles University in Prague and General University Hospital , Prague , Czech Republic
| | - Zdenka Lacinova
- a Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine , Charles University in Prague and General University Hospital , Prague , Czech Republic
- b Third Department of Medicine-Department of Endocrinology and Metabolism, First Faculty of Medicine , Charles University in Prague and General University Hospital , Prague , Czech Republic
| | - Jana Klouckova
- a Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine , Charles University in Prague and General University Hospital , Prague , Czech Republic
| | - Petra Kavalkova
- a Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine , Charles University in Prague and General University Hospital , Prague , Czech Republic
| | - Pavel Trachta
- b Third Department of Medicine-Department of Endocrinology and Metabolism, First Faculty of Medicine , Charles University in Prague and General University Hospital , Prague , Czech Republic
| | - Mikulas Kosak
- b Third Department of Medicine-Department of Endocrinology and Metabolism, First Faculty of Medicine , Charles University in Prague and General University Hospital , Prague , Czech Republic
| | - Denisa Haluzikova
- c Department of Sports Medicine, First Faculty of Medicine , Charles University in Prague and General University Hospital , Prague , Czech Republic
| | - Hana Papezova
- d Department of Psychiatry, First Faculty of Medicine , Charles University in Prague and General University Hospital , Prague , Czech Republic
| | - Milos Mraz
- a Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine , Charles University in Prague and General University Hospital , Prague , Czech Republic
- b Third Department of Medicine-Department of Endocrinology and Metabolism, First Faculty of Medicine , Charles University in Prague and General University Hospital , Prague , Czech Republic
| | - Martin Haluzík
- e Department of Obesitology , Institute of Endocrinology , Prague , Czech Republic
| |
Collapse
|
33
|
Nie H, Liang Y, Wang HX, Ren HL, Wang YW, Li FD, Zheng YH. Angiopoietin-related growth factor is independently associated with lower extremity peripheral arterial disease. J Diabetes Complications 2017; 31:433-438. [PMID: 27866700 DOI: 10.1016/j.jdiacomp.2016.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/22/2016] [Accepted: 10/16/2016] [Indexed: 02/06/2023]
Abstract
AIMS The present study investigated the association of serum levels of angiopoietin-related growth factor (AGF) with lower extremity peripheral arterial disease (LEPAD). METHODS The study group is comprised of 105 patients with lower extremity peripheral arterial disease. The control group consisted of 80 individuals without lower extremity peripheral arterial disease. Serum AGF concentrations were determined by enzyme-linked immunosorbent assay. The relationship between AGF and clinical and biochemical parameters was studied. Besides, this study analyzed AGF levels in LEPAD patients according to disease severity and evaluated the prognostic value of AGF for amputation and mortality in LEPAD patients after a follow-up period of 1.7years. RESULTS Median serum AGF levels were significantly higher in LEPAD group (103.70±64.69ng/mL) as compared with control group (53.83±37.87ng/mL) (P<0.001). In addition, T2DM patients with LEPAD exhibited markedly higher serum AGF concentrations (118.7±60.90ng/mL) than those without LEPAD (60.23±32.62ng/mL) (P<0.0001). Moreover, LEPAD positively predicted AGF concentrations in multivariate linear regression analysis (P<0.0001). Serum AGF levels were independently associated with LEPAD in binary logistic regression analysis model. Among LEPAD patients, those with critical limb ischemia (n=43) showed higher AGF levels (124.9±73.9 vs. 88.98±53.26ng/mL, P=0.01) compared with those with intermittent claudication (n=62). Furthermore, patients with the highest AGF tertile had an increased all-cause mortality and cardiovascular mortality (P=0.033 and P=0.025, respectively). CONCLUSIONS Our results suggested that lower extremity peripheral artery disease was positively associated with AGF serum levels. High serum AGF level was a potential risk factor for LEPAD and associates with disease severity and poor outcome in LEPAD patients.
Collapse
Affiliation(s)
- Hao Nie
- Department of Vascular Surgery, Peking Union Medical Hospital, Beijing, 100000, PR China
| | - Yue Liang
- Department of Vascular Surgery, Peking Union Medical Hospital, Beijing, 100000, PR China
| | - Hong-Xia Wang
- Department of Physiology and Physiopathology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100000, PR China
| | - Hua-Liang Ren
- Department of Vascular Surgery, Peking Union Medical Hospital, Beijing, 100000, PR China
| | - Yue-Wei Wang
- Department of Vascular Surgery, Peking Union Medical Hospital, Beijing, 100000, PR China
| | - Fang-Da Li
- Department of Vascular Surgery, Peking Union Medical Hospital, Beijing, 100000, PR China
| | - Yue-Hong Zheng
- Department of Vascular Surgery, Peking Union Medical Hospital, Beijing, 100000, PR China.
| |
Collapse
|
34
|
La Paglia L, Listì A, Caruso S, Amodeo V, Passiglia F, Bazan V, Fanale D. Potential Role of ANGPTL4 in the Cross Talk between Metabolism and Cancer through PPAR Signaling Pathway. PPAR Res 2017; 2017:8187235. [PMID: 28182091 PMCID: PMC5274667 DOI: 10.1155/2017/8187235] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
The angiopoietin-like 4 (ANGPTL4) protein belongs to a superfamily of secreted proteins structurally related to factors modulating angiogenesis known as angiopoietins. At first, ANGPTL4 has been identified as an adipokine exclusively involved in lipid metabolism, because of its prevalent expression in liver and adipose tissue. This protein regulates lipid metabolism by inhibiting lipoprotein lipase (LPL) activity and stimulating lipolysis of white adipose tissue (WAT), resulting in increased levels of plasma triglycerides (TG) and fatty acids. Subsequently, ANGPTL4 has been shown to be involved in several nonmetabolic and metabolic conditions, both physiological and pathological, including angiogenesis and vascular permeability, cell differentiation, tumorigenesis, glucose homoeostasis, lipid metabolism, energy homeostasis, wound healing, inflammation, and redox regulation. The transcriptional regulation of ANGPTL4 can be modulated by several transcription factors, including PPARα, PPARβ/δ, PPARγ, and HIF-1α, and nutritional and hormonal conditions. Several studies showed that high levels of ANGPTL4 are associated with poor prognosis in patients with various solid tumors, suggesting an important role in cancer onset and progression, metastasis, and anoikis resistance. Here, we have discussed the potential role of ANGPTL4 in mediating the cross talk between metabolic syndromes, such as diabetes and obesity, and cancer through regulation of its expression by PPARs.
Collapse
Affiliation(s)
- Laura La Paglia
- ICAR-CNR, National Research Council of Italy, 90146 Palermo, Italy
| | - Angela Listì
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Stefano Caruso
- Génomique Fonctionnelle des Tumeurs Solides, INSERM, UMR 1162, 75010 Paris, France
| | - Valeria Amodeo
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Francesco Passiglia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
35
|
Elci E, Kaya C, Cim N, Yildizhan R, Elci GG. Evaluation of cardiac risk marker levels in obese and non-obese patients with polycystic ovaries. Gynecol Endocrinol 2017; 33:43-47. [PMID: 27425379 DOI: 10.1080/09513590.2016.1203893] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE To compare cardiac risk markers such as asymmetric dimethyl arginine (ADMA), C-reactive protein (CRP), homocystein (Hcy), plasminogen activator inhibitor-1 (PAI-1), vascular endothelial growth factor (VEGF), angiopoietin-related growth factor 6 (ANGPTL6) in obese and non-obese patients with polycystic ovary syndrome (PCOS). STUDY DESIGN Thirty obese (BMI >30 kg/m2) and 30 non-obese (BMI < 30 kg/m2) patients diagnosed with PCOS and 30 age-matched healthy controls were included in the study. The ages of subjects were varying between 18 and 30 years. Serum ADMA, CRP, Hcy, PAI-1, VEGF and ANGPTL6 levels were analyzed for each subject. RESULTS Serum ADMA, CRP, Hcy, PAI-1, VEGF and ANGPTL6 levels were significantly elevated in obese and non-obese women with PCOS in comparison to control subjects (p < 0.05). This elevation was more obvious in the obese PCOS group than in the other group. CONCLUSIONS Cardiovascular risk markers such as ADMA, CRP, Hcy, PAI-1, VEGF and ANGPTL6 levels are elevated in women with PCOS.
Collapse
Affiliation(s)
- Erkan Elci
- a Van Ipekyolu Maternity and Children's Disease Hospital, Clinic of Obstetrics and Gynecology , Van , Turkey
| | - Cihan Kaya
- b Bakirkoy Dr Sadi Konuk Training and Research Hospital Department of Obstetrics and Gynecology , Istanbul , Turkey , and
| | - Numan Cim
- c Yüzüncü Yil University Faculty of Medicine Department of Obstetrics and Gynecology , Van , Turkey
| | - Recep Yildizhan
- c Yüzüncü Yil University Faculty of Medicine Department of Obstetrics and Gynecology , Van , Turkey
| | - Gulhan Gunes Elci
- c Yüzüncü Yil University Faculty of Medicine Department of Obstetrics and Gynecology , Van , Turkey
| |
Collapse
|
36
|
Tanigawa H, Miyata K, Tian Z, Aoi J, Kadomatsu T, Fukushima S, Ogata A, Takeda N, Zhao J, Zhu S, Terada K, Endo M, Morinaga J, Sugizaki T, Sato M, Morioka MS, Manabe I, Mashimo Y, Hata A, Taketomi Y, Yamamoto K, Murakami M, Araki K, Jinnin M, Ihn H, Oike Y. Upregulation of ANGPTL6 in mouse keratinocytes enhances susceptibility to psoriasis. Sci Rep 2016; 6:34690. [PMID: 27698489 PMCID: PMC5048131 DOI: 10.1038/srep34690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/16/2016] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease marked by aberrant tissue repair. Mutant mice modeling psoriasis skin characteristics have provided useful information relevant to molecular mechanisms and could serve to evaluate therapeutic strategies. Here, we found that epidermal ANGPTL6 expression was markedly induced during tissue repair in mice. Analysis of mice overexpressing ANGPTL6 in keratinocytes (K14-Angptl6 Tg mice) revealed that epidermal ANGPTL6 activity promotes aberrant epidermal barrier function due to hyperproliferation of prematurely differentiated keratinocytes. Moreover, skin tissues of K14-Angptl6 Tg mice showed aberrantly activated skin tissue inflammation seen in psoriasis. Levels of the proteins S100A9, recently proposed as therapeutic targets for psoriasis, also increased in skin tissue of K14-Angptl6 Tg mice, but psoriasis-like inflammatory phenotypes in those mice were not rescued by S100A9 deletion. This finding suggests that decreasing S100A9 levels may not ameliorate all cases of psoriasis and that diverse mechanisms underlie the condition. Finally, we observed enhanced levels of epidermal ANGPTL6 in tissue specimens from some psoriasis patients. We conclude that the K14-Angptl6 Tg mouse is useful to investigate psoriasis pathogenesis and for preclinical testing of new therapeutics. Our study also suggests that ANGPTL6 activation in keratinocytes enhances psoriasis susceptibility.
Collapse
Affiliation(s)
- Hiroki Tanigawa
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.,Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.,Department of Immunology, Allergy and Vascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Zhe Tian
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Jun Aoi
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Aki Ogata
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Naoki Takeda
- Division of Developmental Genetics, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Jiabin Zhao
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Shunshun Zhu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Motoyoshi Endo
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Taichi Sugizaki
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Masaki Suimye Morioka
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ichiro Manabe
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Youichi Mashimo
- Department of Public Health, Chiba University, 1-8-1 Inohara, Chuo-ku, Chiba 260-8670, Japan
| | - Akira Hata
- Department of Public Health, Chiba University, 1-8-1 Inohara, Chuo-ku, Chiba 260-8670, Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Kei Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Faculty of Bioscience and Bioindustry, Tokushima University, 2-1 Minami-Josanjima, Tokushima 770-8506, Japan
| | - Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Masatoshi Jinnin
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
37
|
Sanchez N, Chapdelaine P, Rousseau J, Raymond F, Corbeil J, Tremblay JP. Characterization of frataxin gene network in Friedreich's ataxia fibroblasts using the RNA-Seq technique. Mitochondrion 2016; 30:59-66. [PMID: 27350085 DOI: 10.1016/j.mito.2016.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 06/11/2016] [Accepted: 06/15/2016] [Indexed: 11/25/2022]
Affiliation(s)
- Noëlia Sanchez
- Axe neurosciences, Centre de recherche du CHUL, Université Laval, Québec City, QC, Canada.
| | - Pierre Chapdelaine
- Axe neurosciences, Centre de recherche du CHUL, Université Laval, Québec City, QC, Canada.
| | - Joël Rousseau
- Axe neurosciences, Centre de recherche du CHUL, Université Laval, Québec City, QC, Canada.
| | - Frédéric Raymond
- Axe maladies infectieuses et immunitaires, Centre de recherche du CHUL, Université Laval, Québec City, QC, Canada.
| | - Jacques Corbeil
- Axe maladies infectieuses et immunitaires, Centre de recherche du CHUL, Université Laval, Québec City, QC, Canada.
| | - Jacques P Tremblay
- Axe neurosciences, Centre de recherche du CHUL, Université Laval, Québec City, QC, Canada.
| |
Collapse
|
38
|
Lim JA, Kim HJ, Ahn HY, Park KU, Yi KH, Park DJ, Jang HC, Park YJ. Influence of thyroid dysfunction on serum levels of angiopoietin-like protein 6. Metabolism 2015; 64:1279-83. [PMID: 26189599 DOI: 10.1016/j.metabol.2015.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 12/01/2022]
Abstract
Angiopoietin-like protein 6 (ANGPTL6) is a novel metabolic regulator that modulates energy expenditure as well as glucose and lipid metabolism. Thyroid hormone can induce metabolic changes that are similar to those induced by ANGPTL6. Herein, we investigated whether circulating ANGPTL6 levels change according to thyroid hormone status in humans. We measured the serum levels of ANGPTL6 and metabolic parameters in 150 drug-naïve subjects with overt hyperthyroid, subclinical hyperthyroid, euthyroid, subclinical hypothyroid, or overt hypothyroid status (n=30 in each group). Serum ANGPTL6 levels were significantly higher in patients with overt hypothyroidism than in the other subjects. Women had significantly higher serum levels of ANGPTL6 than men. ANGPTL6 levels correlated positively with thyroid stimulating hormone (TSH), total cholesterol, aspartate aminotransferase, and alanine aminotransferase (ALT) and negatively with serum free thyroxine (T4) level. Multiple stepwise linear regression analysis revealed that sex, TSH, free T4, and ALT were independent predictors of serum ANGPTL6 levels. In summary, serum ANGPTL6 levels increased in patients with a hypothyroid status, and both TSH and free T4 levels are associated with ANGPLT6 levels, suggesting a possible association between thyroid function and ANGPTL6 levels. Whether the upregulated ANGPTL6 level in the hypothyroid status is primarily owing to a direct association or a compensatory mechanism remains to be determined.
Collapse
Affiliation(s)
- Jung Ah Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul; Department of Internal Medicine, National Medical Center, Seoul
| | - Hyo Jeong Kim
- Department of Internal Medicine, Eulji University School of Medicine, Eulji Medical Center, Seoul
| | - Hwa Young Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul; Department of Internal Medicine, Chung-Ang University Hospital, Seoul
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ka Hee Yi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul
| | - Do Joon Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul
| | - Hak Chul Jang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul.
| |
Collapse
|
39
|
Lin MI, Price EN, Boatman S, Hagedorn EJ, Trompouki E, Satishchandran S, Carspecken CW, Uong A, DiBiase A, Yang S, Canver MC, Dahlberg A, Lu Z, Zhang CC, Orkin SH, Bernstein ID, Aster JC, White RM, Zon LI. Angiopoietin-like proteins stimulate HSPC development through interaction with notch receptor signaling. eLife 2015; 4. [PMID: 25714926 PMCID: PMC4371382 DOI: 10.7554/elife.05544] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/23/2015] [Indexed: 12/13/2022] Open
Abstract
Angiopoietin-like proteins (angptls) are capable of ex vivo expansion of mouse and human hematopoietic stem and progenitor cells (HSPCs). Despite this intriguing ability, their mechanism is unknown. In this study, we show that angptl2 overexpression is sufficient to expand definitive HSPCs in zebrafish embryos. Angptl1/2 are required for definitive hematopoiesis and vascular specification of the hemogenic endothelium. The loss-of-function phenotype is reminiscent of the notch mutant mindbomb (mib), and a strong genetic interaction occurs between angptls and notch. Overexpressing angptl2 rescues mib while overexpressing notch rescues angptl1/2 morphants. Gene expression studies in ANGPTL2-stimulated CD34(+) cells showed a strong MYC activation signature and myc overexpression in angptl1/2 morphants or mib restored HSPCs formation. ANGPTL2 can increase NOTCH activation in cultured cells and ANGPTL receptor interacted with NOTCH to regulate NOTCH cleavage. Together our data provide insight to the angptl-mediated notch activation through receptor interaction and subsequent activation of myc targets.
Collapse
Affiliation(s)
- Michelle I Lin
- Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Emily N Price
- Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Sonja Boatman
- Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Elliott J Hagedorn
- Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Eirini Trompouki
- Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Sruthi Satishchandran
- Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Charles W Carspecken
- Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Audrey Uong
- Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Anthony DiBiase
- Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Matthew C Canver
- Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Ann Dahlberg
- Pediatric Oncology, Clinical Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Zhigang Lu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Cheng Cheng Zhang
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Stuart H Orkin
- Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Irwin D Bernstein
- Pediatric Oncology, Clinical Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Boston, United States
| | - Richard M White
- Department of Cancer Biology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
40
|
Tuuri AL, Jauhiainen MS, Ehnholm CP, Tikkanen MJ, Nicholls MG, Kaaja RJ. Elevated serum angiopoietin-like protein 6 in women with subsequent pregnancy-induced hypertension: a preliminary study. Hypertens Pregnancy 2014; 32:203-13. [PMID: 23905605 DOI: 10.3109/10641955.2013.784783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Association of maternal angiopoietin-like protein 6 (Angptl6) levels with subsequent development of pregnancy-induced hypertension (PIH). METHODS At 24 and 32 weeks of gestation in 47 relatively overweight (BMI ≥ 24 kg/m(2)), nulliparous pregnant women serum concentrations of Angptl6 were quantified prospectively. Insulin sensitivity and lipids were measured at 24 weeks. RESULTS Angptl6 levels at 24 weeks, but not at 32 weeks, were significantly higher in women with subsequent PIH. Metabolic factors at 24 weeks did not correlate with Angptl6 levels. CONCLUSION This preliminary study suggests that in the second trimester, Angptl6 levels are higher in women with subsequent PIH.
Collapse
Affiliation(s)
- Anna L Tuuri
- Department of Obstetrics and Gynecology, Hospital District of Helsinki and Uusimaa, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
41
|
Parri M, Pietrovito L, Grandi A, Campagnoli S, De Camilli E, Bianchini F, Marchiò S, Bussolino F, Jin B, Sarmientos P, Grandi G, Viale G, Pileri P, Chiarugi P, Grifantini R. Angiopoietin-like 7, a novel pro-angiogenetic factor over-expressed in cancer. Angiogenesis 2014; 17:881-96. [PMID: 24903490 DOI: 10.1007/s10456-014-9435-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/22/2014] [Indexed: 12/21/2022]
Abstract
Angiopoietin-like (ANGPTL) proteins are secreted proteins showing structural similarity to members of the angiopoietin family. Some ANGPTL proteins possess pleiotropic activities, being involved in cancer lipid, glucose energy metabolisms, and angiogenesis. ANGPTL7 is the less characterized member of the family whose functional role is only marginally known. In this study, we provide experimental evidences that ANGPTL7 is over-expressed in different human cancers. To understand the role played by ANGPTL7 in tumor biology, we asked whether ANGPTL7 is endogenously expressed by malignant cells or in response to environmental stimuli. We found that ANGPTL7 is marginally expressed under standard growth condition while it is specifically up-regulated by hypoxia. Interestingly, the protein is secreted and partially associated with the exosomal fraction, suggesting that it could be found in the systemic circulation of oncologic patients and act in an endocrine way. Moreover, we found that ANGPTL7 exerts a pro-angiogenetic effect on human differentiated endothelial cells by stimulating their proliferation, motility, invasiveness, and capability to form capillary-like networks while it does not stimulate progenitor endothelial cells. Finally, we showed that ANGPTL7 promotes vascularization in vivo in the mouse Matrigel sponge assay, thereby accrediting this molecule as a pro-angiogenic factor.
Collapse
Affiliation(s)
- Matteo Parri
- Externautics SpA, Via Fiorentina 1, 53100, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Khong TL, Thairu N, Larsen H, Dawson PM, Kiriakidis S, Paleolog EM. Identification of the angiogenic gene signature induced by EGF and hypoxia in colorectal cancer. BMC Cancer 2013; 13:518. [PMID: 24180698 PMCID: PMC4228238 DOI: 10.1186/1471-2407-13-518] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 10/23/2013] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is characterised by hypoxia, which activates gene transcription through hypoxia-inducible factors (HIF), as well as by expression of epidermal growth factor (EGF) and EGF receptors, targeting of which has been demonstrated to provide therapeutic benefit in CRC. Although EGF has been demonstrated to induce expression of angiogenic mediators, potential interactions in CRC between EGF-mediated signalling and the hypoxia/HIF pathway remain uncharacterised. METHODS PCR-based profiling was applied to identify angiogenic genes in Caco-2 CRC cells regulated by hypoxia, the hypoxia mimetic dimethyloxallylglycine (DMOG) and/or EGF. Western blotting was used to determine the role of HIF-1alpha, HIF-2alpha and MAPK cell signalling in mediating the angiogenic responses. RESULTS We identified a total of 9 angiogenic genes, including angiopoietin-like (ANGPTL) 4, ephrin (EFNA) 3, transforming growth factor (TGF) β1 and vascular endothelial growth factor (VEGF), to be upregulated in a HIF dependent manner in Caco-2 CRC cells in response to both hypoxia and the hypoxia mimetic dimethyloxallylglycine (DMOG). Stimulation with EGF resulted in EGFR tyrosine autophosphorylation, activation of p42/p44 MAP kinases and stabilisation of HIF-1α and HIF-2α proteins. However, expression of 84 angiogenic genes remained unchanged in response to EGF alone. Crucially, addition of DMOG in combination with EGF significantly increased expression of a further 11 genes (in addition to the 9 genes upregulated in response to either DMOG alone or hypoxia alone). These additional genes included chemokines (CCL-11/eotaxin-1 and interleukin-8), collagen type IV α3 chain, integrin β3 chain, TGFα and VEGF receptor KDR. CONCLUSION These findings suggest that although EGFR phosphorylation activates the MAP kinase signalling and promotes HIF stabilisation in CRC, this alone is not sufficient to induce angiogenic gene expression. In contrast, HIF activation downstream of hypoxia/DMOG drives expression of genes such as ANGPTL4, EFNA3, TGFβ1 and VEGF. Finally, HIF activation synergises with EGF-mediated signalling to additionally induce a unique sub-group of candidate angiogenic genes. Our data highlight the complex interrelationship between tumour hypoxia, EGF and angiogenesis in the pathogenesis of CRC.
Collapse
Affiliation(s)
| | | | | | | | | | - Ewa M Paleolog
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College, London, UK.
| |
Collapse
|
43
|
New therapeutic targets for intraocular pressure lowering. ISRN OPHTHALMOLOGY 2013; 2013:261386. [PMID: 24558600 PMCID: PMC3914177 DOI: 10.1155/2013/261386] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/30/2013] [Indexed: 01/08/2023]
Abstract
Primary open-angle glaucoma (POAG) is a leading cause of irreversible and preventable blindness and ocular hypertension is the strongest known risk factor. With current classes of drugs, management of the disease focuses on lowering intraocular pressure (IOP). Despite of their use to modify the course of the disease, none of the current medications for POAG is able to reduce the IOP by more than 25%-30%. Also, some glaucoma patients show disease progression despite of the therapeutics. This paper examines the new described physiological targets for reducing the IOP. The main cause of elevated IOP in POAG is thought to be an increased outflow resistance via the pressure-dependent trabecular outflow system, so there is a crescent interest in increasing trabecular meshwork outflow by extracellular matrix remodeling and/or by modulation of contractility/TM cytoskeleton disruption. Modulation of new agents that act mainly on trabecular meshwork outflow may be the future hypotensive treatment for glaucoma patients. There are also other agents in which modulation may decrease aqueous humour production or increase uveoscleral outflow by different mechanisms from those drugs available for glaucoma treatment. Recently, a role for the ghrelin-GHSR system in the pathophysiology modulation of the anterior segment, particularly regarding glaucoma, has been proposed.
Collapse
|
44
|
Kokotas H, Kroupis C, Chiras D, Grigoriadou M, Lamnissou K, Petersen MB, Kitsos G. Biomarkers in primary open angle glaucoma. Clin Chem Lab Med 2013; 50:2107-19. [PMID: 22745021 DOI: 10.1515/cclm-2012-0048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 05/20/2012] [Indexed: 11/15/2022]
Abstract
Glaucoma, a leading cause of blindness worldwide, is currently defined as a disturbance of the structural or functional integrity of the optic nerve that causes characteristic atrophic changes in the optic nerve, which may lead to specific visual field defects over time. This disturbance usually can be arrested or diminished by adequate lowering of intraocular pressure (IOP). Glaucoma can be divided roughly into two main categories, ‘ open angle ’ and ‘ closed angle ’ glaucoma.Open angle, chronic glaucoma tends to progress at a slower rate and patients may not notice loss of vision until the disease has progressed significantly. Primary open angle glaucoma(POAG) is described distinctly as a multifactorial optic neuropathy that is chronic and progressive with a characteristic acquired loss of optic nerve fibers. Such loss develops in the presence of open anterior chamber angles, characteristic visual field abnormalities, and IOP that is too high for the healthy eye. It manifests by cupping and atrophy of the optic disc, in the absence of other known causes of glaucomatous disease. Several biological markers have been implicated with the disease. The purpose of this study was to summarize the current knowledge regarding the non-genetic molecular markers which have been predicted to have an association with POAG but have not yet been validated.
Collapse
Affiliation(s)
- Haris Kokotas
- Department of Genetics, Institute of Child Health , Aghia Sophia Children's Hospital, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
45
|
Yokouchi H, Eto K, Nishimura W, Takeda N, Kaburagi Y, Yamamoto S, Yasuda K. Angiopoietin-like protein 4 (ANGPTL4) is induced by high glucose in retinal pigment epithelial cells and exhibits potent angiogenic activity on retinal endothelial cells. Acta Ophthalmol 2013; 91:e289-97. [PMID: 23387337 DOI: 10.1111/aos.12097] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE Hyperglycaemia has been identified as major risk factor for diabetic retinopathy (DR). It is widely accepted that the progression of DR is mainly due to a local imbalance of pro- versus anti-angiogenic factors in the retina. In this study, we investigated whether retinal pigment epithelial (RPE) cells produced pro-angiogenic factors under high glucose (HG) conditions in vitro. METHODS Cultured human retinal endothelial (RE) cells were exposed to conditioned medium from retinal pigment epithelium cells (ARPE-19) grown in HG medium and assessed for tube formation. Based on the expression profiles of ARPE-19, we investigated whether ANGPTL4 was a major angiogenic factor released from ARPE-19 under HG conditions using cultured human RE cells as the test system for experiments with recombinant protein, conditioned medium from ARPE-19 and RNA interference (RNAi). RESULTS The conditioned medium from ARPE-19 cultured under HG conditions promoted tube formation of cultured human RE cells. GeneChip analysis showed that ANGPTL4 was one of the highest upregulated genes under HG conditions. In addition, recombinant ANGPTL4 promoted all of the elements of angiogenesis in human RE cells in vitro. The results of experiments using conditioned medium from ARPE-19 combined with RNAi demonstrated that ANGPTL4 was a major angiogenic factor released from ARPE-19 under HG conditions. CONCLUSIONS ANGPTL4 was induced by high glucose in RPE cells and exhibited potent angiogenic activity on RE cells. Our results are unique and may potentially add a new candidate to the long list of molecules involved in diabetic retinopathy.
Collapse
Affiliation(s)
- Hirotaka Yokouchi
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Xia G, Fang M, He Y, Zhang T, Jin Y, Jiang L. Alterations of angiopoietin-related growth factor (Angptl6) during pregnancy and in pre-eclampsia. J Obstet Gynaecol Res 2013; 39:1137-41. [PMID: 23718665 DOI: 10.1111/jog.12039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 11/30/2012] [Indexed: 11/26/2022]
Abstract
AIM The aim of this study was to clarify the alterations of angiopoietin-related growth factor (AGF, also known as Angptl6/ARP5) in the serum of normally pregnant women and pre-eclamptic women and to explore the role of AGF in pre-eclampsia. MATERIAL AND METHODS Thirty healthy non-pregnant women, 118 normally pregnant women (30 at 6-12 gestational weeks, 30 at 13-28 weeks and 58 at 29-40 weeks, respectively) and 46 pre-eclamptic women were recruited. Fasting blood samples were obtained from all subjects. Fifteen women of healthy pregnant women provided their blood samples at 24 and 48 h after cesarean section, respectively. Enzyme-linked immunosorbent assay was used to determine the serum level of AGF. RESULTS Serum levels of AGF were significantly higher in normally pregnant women than non-pregnant women (P < 0.001 of all). Although serum AGF of the first trimester was significantly higher than that of the second trimester (P = 0.033), there were no significant differences of serum AGF in the comparison between the first and third trimester (P = 0.064) and between the second and third trimester (P = 0.546). Serum AGF significantly decreased after delivery (P < 0.05). There were no significant differences in AGF of maternal serum between pre-eclamptic women and normally pregnant control women (P = 0.285). There were no significant differences in circulating AGF concentration between non-pregnant women and postpartum groups (P = 0.052 for 24 h after delivery and P = 0.083 for 48 h after delivery). CONCLUSION The serum level of AGF was elevated in normal pregnancy compared with non-pregnant women, suggesting that placenta is an important source of circulating AGF during pregnancy.
Collapse
Affiliation(s)
- Guiyu Xia
- Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang, China
| | | | | | | | | | | |
Collapse
|
47
|
Farhat N, Thorin-Trescases N, Mamarbachi M, Villeneuve L, Yu C, Martel C, Duquette N, Gayda M, Nigam A, Juneau M, Allen BG, Thorin E. Angiopoietin-like 2 promotes atherogenesis in mice. J Am Heart Assoc 2013; 2:e000201. [PMID: 23666461 PMCID: PMC3698785 DOI: 10.1161/jaha.113.000201] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Angiopoietin like-2 (angptl2), a proinflammatory protein, is overexpressed in endothelial cells (ECs) from patients with coronary artery disease (CAD). Whether angptl2 contributes to atherogenesis is unknown. We tested the hypothesis that angptl2 promotes inflammation and leukocyte adhesion onto ECs, thereby accelerating atherogenesis in preatherosclerotic dyslipidemic mice. METHODS AND RESULTS In ECs freshly isolated from the aorta, basal expression of TNF-α and IL-6 mRNA was higher in 3-month-old severely dyslipidemic mice (LDLr(-/-); hApoB100(+/+) [ATX]) than in control healthy wild-type (WT) mice (P<0.05) and was increased in both groups by exogenous angptl2 (100 nmol/L). Angptl2 stimulated the adhesion of leukocytes ex vivo on the native aortic endothelium of ATX, but not WT mice, in association with higher expression of ICAM-1 and P-selectin in ECs (P<0.05). Antibodies against these endothelial adhesion molecules prevented leukocyte adhesion. Intravenous administration of angptl2 for 1 month in preatherosclerotic 3-month-old ATX mice increased (P<0.05) total cholesterol and LDL-cholesterol levels, strongly induced (P<0.05) the expression of endothelial proinflammatory cytokines and adhesion molecules while accelerating atherosclerotic lesion formation by 10-fold (P<0.05). Plasma and aortic tissue levels of angptl2 increased (P<0.05) with age and were higher in 6- and 12-month-old ATX mice than in age-matched WT mice. Angptl2 accumulated to high levels in the atherosclerotic lesions (P<0.05). Finally, angptl2 was greatly expressed (P<0.05) in ECs cultured from CAD patients, and circulating angptl2 levels were 6-fold higher in CAD patients compared with age-matched healthy volunteers. CONCLUSIONS Angptl2 contributes to the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Nada Farhat
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Katanasaka Y, Kodera Y, Kitamura Y, Morimoto T, Tamura T, Koizumi F. Epidermal growth factor receptor variant type III markedly accelerates angiogenesis and tumor growth via inducing c-myc mediated angiopoietin-like 4 expression in malignant glioma. Mol Cancer 2013; 12:31. [PMID: 23617883 PMCID: PMC3641008 DOI: 10.1186/1476-4598-12-31] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 04/17/2013] [Indexed: 12/20/2022] Open
Abstract
Background Expression of the constitutively activated mutant EGFR variant III (EGFRvIII), the most common mutation in glioblastoma multiforme (GBMs), has been clinically correlated with tumor proliferation, invasion, and angiogenesis. In this study, we examined the role of EGFRvIII on the tumor microenvironment, especially on angiogenesis. Methods To study the role of EGFRvIII in tumor angiogenesis, we prepared LN229 glioblastoma transfected with enhanced green fluorescent protein (EGFP), wild-type EGFR, or EGFRvIII (LN229-WT or -vIII), and examined tumor growth and microvessel density in the tumors. Additionally, the potential angiogenic factors were identified by real-time PCR analysis, and the functions in LN229-vIII cells were examined. Results LN229-vIII cells showed more aggressive tumor growth and higher vascularity as compared to LN229-WT cells in vivo, although there was no significant difference in the cell growth rates in vitro. We next investigated the expression of 60 angiogenesis-related factors to clarify the mechanisms underlying the difference in vascularity between tumor xenografts of LN229-vIII and LN229-WT. We found that the mRNA and protein expressions of angiopoietin-like 4 (Angptl4), a secreted protein involved in angiogenesis and metabolism regulation, were significantly induced by EGFRvIII overexpression, both in vitro and in vivo. Constitutive knockdown of Angptl4 in LN229-vIII using shRNA significantly decreased the microvessel density in the tumor xenografts and suppressed tumor growth. To clarify the regulatory mechanisms of Angptl4 by EGFRvIII, we analyzed the signaling pathways and transcription factors by pharmacological inhibition and RNA interference. U0126, an ERK signal inhibitor dramatically suppressed Angptl4 expression. The transcription factor c-Myc, which is regulated by ERK, was activated in the LN229-vIII cells and knockdown of c-Myc using siRNA also attenuated Angptl4 expression in the LN229-vIII cells. Furthermore, chromatin immunoprecipitation (ChIP) assay revealed increased recruitment of c-Myc to the promoter region of Angptl4 in the LN229-vIII cells. Conclusions In summary, we demonstrated that EGFRvIII induces Angptl4 expression through the ERK/c-Myc pathway and promotes tumor angiogenesis in malignant gliomas.
Collapse
Affiliation(s)
- Yasufumi Katanasaka
- Shien-lab, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Akhter S, Rahman MM, Lee HS, Kim HJ, Hong ST. Dynamic roles of angiopoietin-like proteins 1, 2, 3, 4, 6 and 7 in the survival and enhancement of ex vivo expansion of bone-marrow hematopoietic stem cells. Protein Cell 2013; 4:220-30. [PMID: 23483483 DOI: 10.1007/s13238-013-2066-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 12/18/2012] [Indexed: 01/07/2023] Open
Abstract
Recent advances in hematopoietic stem cells (HSCs) expansion by growth factors including angiopoietin-like proteins (Angptls) have opened up the possibility to use HSCs in regenerative medicine. However, the unavailability of true in vitro HSCs expansion by these growth factors has limited the understanding of the cellular and molecular mechanism of HSCs expansion. Here, we report the functional role of mouse Angptls 1, 2, 3, 4, 6 and 7 and growth factors SCF, TPO, IGF-2 and FGF-1 on purified mouse bone-marrow (BM) Lineage(-)Sca-1(+)(Lin-Sca-1(+)) HSCs. The recombinant retroviral transduced-CHO-S cells that secrete Angptls in serum-free medium were used alone or in combination with growth factors (SCF, TPO, IGF-2 and FGF-1). None of the Angptls stimulated HSC proliferation, enhanced or inhibited HSCs colony formation, but they did support the survival of HSCs. By contrast, any of the six Angptls together with saturating levels of growth factors dramatically stimulated a 3- to 4.5-fold net expansion of HSCs compared to stimulation with a combination of those growth factors alone. These findings lead to an understanding of the basic function of Angptls on signaling pathways for the survival as well as expansion of HSCs in the bone marrow niche.
Collapse
Affiliation(s)
- Shahina Akhter
- Department of Microbiology and Genetics and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, 561-712, South Korea
| | | | | | | | | |
Collapse
|
50
|
Wang H, Feng L, Hu J, Xie C, Wang F. Differentiating vitreous proteomes in proliferative diabetic retinopathy using high-performance liquid chromatography coupled to tandem mass spectrometry. Exp Eye Res 2012; 108:110-9. [PMID: 23276812 DOI: 10.1016/j.exer.2012.11.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/06/2012] [Accepted: 11/28/2012] [Indexed: 01/03/2023]
Abstract
Proliferative diabetic retinopathy (PDR) is a serious microangiopathic complication of diabetes mellitus and a major cause of blindness in working-age adults. Diabetes-induced alterations in the vitreous protein composition in diabetic patients with PDR may be responsible for the presence of PDR. Therefore, we performed a comprehensive proteomic analysis and compared the protein profiles of vitreous humor from type 2 diabetic patients with PDR (n = 8) and that from normal human eyes donated for corneal transplant (n = 8). Using reversed phase high-performance liquid chromatography (RP-HPLC) coupled to electrospray Ionization tandem mass spectrometry (ESI-MS/MS), we identified 96 significant differentially expressed proteins (abundance ratio > 1.5, p < 0.05), including 37 and 59 proteins up- and downregulated in PDR vitreous compared with the control, respectively. Biological pathway analysis revealed 44 proteins involved in 56 biological pathways; among them, the most remarkable pathways differentially represented between PDR and normal vitreous were the glycolysis/gluconeogenesis, complement and coagulation cascades, gap junction, and phagosome pathways. The differential expressions of angiopoietin-related protein 6, apolipoprotein A-I, estrogen receptor alpha, and tubulin were confirmed by western blot analysis. These data provide insight into the molecular events possibly involved in the pathogenesis of PDR and widen the scope of potential avenues for new therapies for PDR.
Collapse
Affiliation(s)
- Hao Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai 200072, China
| | | | | | | | | |
Collapse
|