1
|
Mishima Y, Okada S, Ishikawa A, Wang B, Waseda M, Kaneko MK, Kato Y, Kaneko S. Development of chimeric antigen receptor T cells targeting cancer-expressing podocalyxin. Regen Ther 2025; 28:292-300. [PMID: 39867135 PMCID: PMC11757227 DOI: 10.1016/j.reth.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/25/2024] [Accepted: 12/11/2024] [Indexed: 01/28/2025] Open
Abstract
Chimeric Antigen Receptor (CAR)-T cell therapy has revolutionized the treatment of CD19-positive B-cell malignancies. However, the field is rapidly evolving to target other antigens, such as podocalyxin (PODXL), a transmembrane protein implicated in tumor progression and poor prognosis in various cancers. This study explores the potential of PODXL-targeted CAR-T cells, utilizing a cancer-specific monoclonal antibody (CasMab) technique to enhance the specificity and safety of CAR-T cell therapy. We developed CAR-T cells based on the single-chain variable fragment (scFv) derived from the cancer-specific monoclonal antibody PcMab-6, which selectively targets glycosylation modifications on PODXL-expressing cancer cells. As a control, CAR-T cells were also generated from PcMab-47, a non-cancer-specific antibody for PODXL. In vitro experiments demonstrated that CAR-T cells based on PcMab-6 exhibited significant antitumor activity with reduced off-target effects on normal cells compared to PcMab-47-derived CAR-T cells. Additionally, to enhance the persistence and therapeutic efficacy of these CAR-T cells, we developed a humanized version of PcMab-6 scFv. The humanized CAR-T cells showed extended antitumor effects in vivo, demonstrating the potential for prolonged therapeutic activity. These findings underscore the utility of CasMab technology in generating highly specific and safer CAR-T cell therapies for solid tumors, highlighting the promise of humanized CAR-T cells for clinical application.
Collapse
Affiliation(s)
- Yuta Mishima
- Department of Cancer Immunotherapy and Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Division of Cancer Immunotherapy, Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Shintaro Okada
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Akihiro Ishikawa
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Bo Wang
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Masazumi Waseda
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Shin Kaneko
- Department of Cancer Immunotherapy and Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Division of Cancer Immunotherapy, Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
2
|
Bai X, Liu J, Zhou S, Wu L, Feng X, Zhang P. METTL14 suppresses the expression of YAP1 and the stemness of triple-negative breast cancer. J Exp Clin Cancer Res 2024; 43:307. [PMID: 39563370 PMCID: PMC11577812 DOI: 10.1186/s13046-024-03225-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) has pronounced stemness that is associated with relapse. N6-methyladenosine (m6A) plays a crucial role in shaping cellular behavior by modulating transcript expression. However, the role of m6A in TNBC stemness, as well as the mechanisms governing its abundance, has yet to be elucidated. METHODS We analyzed proteomic and transcriptomic data derived from breast cancer cohorts, with an emphasis on m6A regulators. To unravel the role of m6A in TNBC, we employed RNA sequencing, methylated RNA immunoprecipitation sequencing, RNA immunoprecipitation, chromatin immunoprecipitation, and luciferase reporter assays with mesenchymal stem-like (MSL) TNBC models. The clinical relevance was validated using human tissue microarrays and publicly accessible databases. RESULTS Our findings indicate that the global level of m6A modification in MSL TNBC is downregulated primarily due to the loss of methyltransferase-like 14 (METTL14). The diminished m6A modification is crucial for the maintenance of TNBC stemness, as it increases the expression of yes-associated protein 1 (YAP1) by blocking YTH domain-containing family protein 2 (YTHDF2)-mediated transcript decay, thereby promoting the activation of Hippo-independent YAP1 signaling. YAP1 is essential for sustaining the stemness regulated by METTL14. Furthermore, we demonstrated that the loss of METTL14 expression results from lysine-specific demethylase 1 (LSD1)-mediated removal of histone H3 lysine 4 methylation at the promoter region, which is critical for LSD1-driven stemness in TNBC. CONCLUSION These findings present an epi-transcriptional mechanism that maintains Hippo-independent YAP1 signaling and plays a role in preserving the undifferentiated state of TNBC, which indicates the potential for targeting the LSD1-METTL14 axis to address TNBC stemness.
Collapse
Affiliation(s)
- Xupeng Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Jiarui Liu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Shujie Zhou
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Lingzhi Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiaojie Feng
- Department of Gynecologic Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Pumin Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University School of Medicine, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
3
|
Peretz CAC, Kennedy VE, Walia A, Delley CL, Koh A, Tran E, Clark IC, Hayford CE, D'Amato C, Xue Y, Fontanez KM, May-Zhang AA, Smithers T, Agam Y, Wang Q, Dai HP, Roy R, Logan AC, Perl AE, Abate A, Olshen A, Smith CC. Multiomic single cell sequencing identifies stemlike nature of mixed phenotype acute leukemia. Nat Commun 2024; 15:8191. [PMID: 39294124 PMCID: PMC11411136 DOI: 10.1038/s41467-024-52317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
Despite recent work linking mixed phenotype acute leukemia (MPAL) to certain genetic lesions, specific driver mutations remain undefined for a significant proportion of patients and no genetic subtype is predictive of clinical outcomes. Moreover, therapeutic strategy for MPAL remains unclear, and prognosis is overall poor. We performed multiomic single cell profiling of 14 newly diagnosed adult MPAL patients to characterize the inter- and intra-tumoral transcriptional, immunophenotypic, and genetic landscapes of MPAL. We show that neither genetic profile nor transcriptome reliably correlate with specific MPAL immunophenotypes. Despite this, we find that MPAL blasts express a shared stem cell-like transcriptional profile indicative of high differentiation potential. Patients with the highest differentiation potential demonstrate inferior survival in our dataset. A gene set score, MPAL95, derived from genes highly enriched in the most stem-like MPAL cells, is applicable to bulk RNA sequencing data and is predictive of survival in an independent patient cohort, suggesting a potential strategy for clinical risk stratification.
Collapse
Affiliation(s)
- Cheryl A C Peretz
- Division of Hematology and Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Vanessa E Kennedy
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Anushka Walia
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Cyrille L Delley
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Andrew Koh
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Elaine Tran
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Iain C Clark
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | | | | | - Yi Xue
- Fluent Biosciences Inc., Watertown, MA, USA
| | | | | | | | - Yigal Agam
- Fluent Biosciences Inc., Watertown, MA, USA
| | - Qian Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Ritu Roy
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Aaron C Logan
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Alexander E Perl
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Abate
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Adam Olshen
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Catherine C Smith
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Edenhofer FC, Térmeg A, Ohnuki M, Jocher J, Kliesmete Z, Briem E, Hellmann I, Enard W. Generation and characterization of inducible KRAB-dCas9 iPSCs from primates for cross-species CRISPRi. iScience 2024; 27:110090. [PMID: 38947524 PMCID: PMC11214527 DOI: 10.1016/j.isci.2024.110090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/28/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Comparisons of molecular phenotypes across primates provide unique information to understand human biology and evolution, and single-cell RNA-seq CRISPR interference (CRISPRi) screens are a powerful approach to analyze them. Here, we generate and validate three human, three gorilla, and two cynomolgus iPS cell lines that carry a dox-inducible KRAB-dCas9 construct at the AAVS1 locus. We show that despite variable expression levels of KRAB-dCas9 among lines, comparable downregulation of target genes and comparable phenotypic effects are observed in a single-cell RNA-seq CRISPRi screen. Hence, we provide valuable resources for performing and further extending CRISPRi in human and non-human primates.
Collapse
Affiliation(s)
- Fiona C. Edenhofer
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Anita Térmeg
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Mari Ohnuki
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto 606-8501, Japan
- Hakubi Center, Kyoto University, Kyoto 606-8501, Japan
| | - Jessica Jocher
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Zane Kliesmete
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Eva Briem
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Ines Hellmann
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| |
Collapse
|
5
|
Shih HM, Chen YC, Yeh YT, Peng FS, Wu SC. Assessment of the feasibility of human amniotic membrane stem cell-derived cardiomyocytes in vitro. Heliyon 2024; 10:e28398. [PMID: 38560255 PMCID: PMC10979088 DOI: 10.1016/j.heliyon.2024.e28398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Myocardial infarction (MI) is a leading cause of death worldwide, resulting in extensive loss of cardiomyocytes and subsequent heart failure. Inducing cardiac differentiation of stem cells is a potential approach for myocardial regeneration therapy to improve post-MI prognosis. Mesenchymal stem cells (MSCs) have several advantages, including immune privilege and multipotent differentiation potential. This study aimed to explore the feasibility of chemically inducing human amniotic membrane MSCs (hAMSCs) to differentiate into cardiomyocytes in vitro. Human amniotic membrane (AM) samples were obtained from routine cesarean sections at Far Eastern Memorial Hospital. The isolated cells exhibited spindle-shaped morphology and expressed surface antigens CD73, CD90, CD105, and CD44, while lacking expression of CD19, CD11b, CD19, CD45, and HLA-DR. The SSEA-1, SSEA-3, and SSEA-4 markers were also positive, and the cells displayed the ability for tri-lineage differentiation into adipocytes, chondrocytes, and osteoblasts. The expression levels of MLC2v, Nkx2.5, and MyoD were analyzed using qPCR after applying various protocols for chemical induction, including BMP4, ActivinA, 5-azacytidine, CHIR99021, and IWP2 on hAMSCs. The group treated with 5 ng/ml BMP4, 10 ng/ml Activin A, 10 μM 5-azacytidine, 7.5 μM CHIR99021, and 5 μM IWP 2 expressed the highest levels of these genes. Furthermore, immunofluorescence staining demonstrated the expression of α-actinin and Troponin T in this group. In conclusion, this study demonstrated that hAMSCs can be chemically induced to differentiate into cardiomyocyte-like cells in vitro. However, to improve the functionality of the differentiated cells, further investigation of inductive protocols and regimens is needed.
Collapse
Affiliation(s)
- Hsiu-Man Shih
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yen-Ting Yeh
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | | | - Shinn-Chih Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Xiong G, Xie N, Nie M, Ling R, Yun B, Xie J, Ren L, Huang Y, Wang W, Yi C, Zhang M, Xu X, Zhang C, Zou B, Zhang L, Liu X, Huang H, Chen D, Cao W, Wang C. Single-cell transcriptomics reveals cell atlas and identifies cycling tumor cells responsible for recurrence in ameloblastoma. Int J Oral Sci 2024; 16:21. [PMID: 38424060 PMCID: PMC10904398 DOI: 10.1038/s41368-024-00281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 03/02/2024] Open
Abstract
Ameloblastoma is a benign tumor characterized by locally invasive phenotypes, leading to facial bone destruction and a high recurrence rate. However, the mechanisms governing tumor initiation and recurrence are poorly understood. Here, we uncovered cellular landscapes and mechanisms that underlie tumor recurrence in ameloblastoma at single-cell resolution. Our results revealed that ameloblastoma exhibits five tumor subpopulations varying with respect to immune response (IR), bone remodeling (BR), tooth development (TD), epithelial development (ED), and cell cycle (CC) signatures. Of note, we found that CC ameloblastoma cells were endowed with stemness and contributed to tumor recurrence, which was dominated by the EZH2-mediated program. Targeting EZH2 effectively eliminated CC ameloblastoma cells and inhibited tumor growth in ameloblastoma patient-derived organoids. These data described the tumor subpopulation and clarified the identity, function, and regulatory mechanism of CC ameloblastoma cells, providing a potential therapeutic target for ameloblastoma.
Collapse
Affiliation(s)
- Gan Xiong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Nan Xie
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Min Nie
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Rongsong Ling
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Bokai Yun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jiaxiang Xie
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Linlin Ren
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yaqi Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenjin Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chen Yi
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ming Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiuyun Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Caihua Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Leitao Zhang
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiqiang Liu
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongzhang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Demeng Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Cao
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Center for Stomatology, National Clinical Research Center for Oral diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Cheng Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Zhang X, Xiao Z, Zhang X, Li N, Sun T, Zhang J, Kang C, Fan S, Dai L, Liu X. Signature construction and molecular subtype identification based on liver-specific genes for prediction of prognosis, immune activity, and anti-cancer drug sensitivity in hepatocellular carcinoma. Cancer Cell Int 2024; 24:78. [PMID: 38374122 PMCID: PMC10875877 DOI: 10.1186/s12935-024-03242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Liver specific genes (LSGs) are crucial for hepatocyte differentiation and maintaining normal liver function. A deep understanding of LSGs and their heterogeneity in hepatocellular carcinoma (HCC) is necessary to provide clues for HCC diagnosis, prognosis, and treatment. METHODS The bulk and single-cell RNA-seq data of HCC were downloaded from TCGA, ICGC, and GEO databases. Through unsupervised cluster analysis, LSGs-based HCC subtypes were identified in TCGA-HCC samples. The prognostic effects of the subtypes were investigated with survival analyses. With GSVA and Wilcoxon test, the LSGs score, stemness score, aging score, immune score and stromal score of the samples were estimated and compared. The HCC subtype-specific genes were identified. The subtypes and their differences were validated in ICGC-HCC samples. LASSO regression analysis was used for key gene selection and risk model construction for HCC overall survival. The model performance was estimated and validated. The key genes were validated for their heterogeneities in HCC cell lines with quantitative real-time PCR and at single-cell level. Their dysregulations were investigated at protein level. Their correlations with HCC response to anti-cancer drugs were estimated in HCC cell lines. RESULTS We identified three LSGs-based HCC subtypes with different prognosis, tumor stemness, and aging level. The C1 subtype with low LSGs score and high immune score presented a poor survival, while the C2 subtype with high LSGs score and immune score indicated an enduring survival. Although no significant survival difference between C2 and C3 HCCs was shown, the C2 HCCs presented higher immune score and stroma score. The HCC subtypes and their differences were confirmed in ICGC-HCC dataset. A five-gene prognostic signature for HCC survival was constructed. Its good performance was shown in both the training and validation datasets. The five genes presented significant heterogeneities in different HCC cell lines and hepatocyte subclusters. Their dysregulations were confirmed at protein level. Furthermore, their significant associations with HCC sensitivities to anti-cancer drugs were shown. CONCLUSIONS LSGs-based HCC subtype classification and the five-gene risk model might provide useful clues not only for HCC stratification and risk prediction, but also for the development of more personalized therapies for effective HCC treatment.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, 451191, Henan, China
| | - Zhefeng Xiao
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xia Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, 451191, Henan, China
| | - Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, 451191, Henan, China
| | - Tao Sun
- Department of Pathology, Henan Medical College, Zhengzhou, 451191, Henan, China
| | - JinZhong Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, 451191, Henan, China
| | - Chunyan Kang
- Department of Pathology, Henan Medical College, Zhengzhou, 451191, Henan, China
| | - Shasha Fan
- Oncology Department, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, 410000, Hunan, China.
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Xiaoli Liu
- Laboratory Department, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
| |
Collapse
|
8
|
Andrieux G, Das T, Griffin M, Straehle J, Paine SML, Beck J, Boerries M, Heiland DH, Smith SJ, Rahman R, Chakraborty S. Spatially resolved transcriptomic profiles reveal unique defining molecular features of infiltrative 5ALA-metabolizing cells associated with glioblastoma recurrence. Genome Med 2023; 15:48. [PMID: 37434262 PMCID: PMC10337060 DOI: 10.1186/s13073-023-01207-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Spatiotemporal heterogeneity originating from genomic and transcriptional variation was found to contribute to subtype switching in isocitrate dehydrogenase-1 wild-type glioblastoma (GBM) prior to and upon recurrence. Fluorescence-guided neurosurgical resection utilizing 5-aminolevulinic acid (5ALA) enables intraoperative visualization of infiltrative tumors outside the magnetic resonance imaging contrast-enhanced regions. The cell population and functional status of tumor responsible for enhancing 5ALA-metabolism to fluorescence-active PpIX remain elusive. The close spatial proximity of 5ALA-metabolizing (5ALA +) cells to residual disease remaining post-surgery renders 5ALA + biology an early a priori proxy of GBM recurrence, which is poorly understood. METHODS We performed spatially resolved bulk RNA profiling (SPRP) analysis of unsorted Core, Rim, Invasive margin tissue, and FACS-isolated 5ALA + /5ALA - cells from the invasive margin across IDH-wt GBM patients (N = 10) coupled with histological, radiographic, and two-photon excitation fluorescence microscopic analyses. Deconvolution of SPRP followed by functional analyses was performed using CIBEROSRTx and UCell enrichment algorithms, respectively. We further investigated the spatial architecture of 5ALA + enriched regions by analyzing spatial transcriptomics from an independent IDH-wt GBM cohort (N = 16). Lastly, we performed survival analysis using Cox Proportinal-Hazards model on large GBM cohorts. RESULTS SPRP analysis integrated with single-cell and spatial transcriptomics uncovered that the GBM molecular subtype heterogeneity is likely to manifest regionally in a cell-type-specific manner. Infiltrative 5ALA + cell population(s) harboring transcriptionally concordant GBM and myeloid cells with mesenchymal subtype, -active wound response, and glycolytic metabolic signature, was shown to reside within the invasive margin spatially distinct from the tumor core. The spatial co-localization of the infiltrating MES GBM and myeloid cells within the 5ALA + region indicates PpIX fluorescence can effectively be utilized to resect the immune reactive zone beyond the tumor core. Finally, 5ALA + gene signatures were associated with poor survival and recurrence in GBM, signifying that the transition from primary to recurrent GBM is not discrete but rather a continuum whereby primary infiltrative 5ALA + remnant tumor cells more closely resemble the eventual recurrent GBM. CONCLUSIONS Elucidating the unique molecular and cellular features of the 5ALA + population within tumor invasive margin opens up unique possibilities to develop more effective treatments to delay or block GBM recurrence, and warrants commencement of such treatments as early as possible post-surgical resection of the primary neoplasm.
Collapse
Affiliation(s)
- Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tonmoy Das
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Systems Cell-Signaling Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Michaela Griffin
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jakob Straehle
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Simon M L Paine
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter H Heiland
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stuart J Smith
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK.
| | - Sajib Chakraborty
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Systems Cell-Signaling Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
9
|
Boo HJ, Min HY, Park CS, Park JS, Jeong JY, Lee SY, Kim WY, Lee JW, Oh SR, Park RW, Lee HY. Dual Impact of IGF2 on Alveolar Stem Cell Function during Tobacco-Induced Injury Repair and Development of Pulmonary Emphysema and Cancer. Cancer Res 2023; 83:1782-1799. [PMID: 36971490 DOI: 10.1158/0008-5472.can-22-3543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Pulmonary emphysema is a destructive inflammatory disease primarily caused by cigarette smoking (CS). Recovery from CS-induced injury requires proper stem cell (SC) activities with a tightly controlled balance of proliferation and differentiation. Here we show that acute alveolar injury induced by two representative tobacco carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene (N/B), increased IGF2 expression in alveolar type 2 (AT2) cells to promote their SC function and facilitate alveolar regeneration. Autocrine IGF2 signaling upregulated Wnt genes, particularly Wnt3, to stimulate AT2 proliferation and alveolar barrier regeneration after N/B-induced acute injury. In contrast, repetitive N/B exposure provoked sustained IGF2-Wnt signaling through DNMT3A-mediated epigenetic control of IGF2 expression, causing a proliferation/differentiation imbalance in AT2s and development of emphysema and cancer. Hypermethylation of the IGF2 promoter and overexpression of DNMT3A, IGF2, and the Wnt target gene AXIN2 were seen in the lungs of patients with CS-associated emphysema and cancer. Pharmacologic or genetic approaches targeting IGF2-Wnt signaling or DNMT prevented the development of N/B-induced pulmonary diseases. These findings support dual roles of AT2 cells, which can either stimulate alveolar repair or promote emphysema and cancer depending on IGF2 expression levels. SIGNIFICANCE IGF2-Wnt signaling plays a key role in AT2-mediated alveolar repair after cigarette smoking-induced injury but also drives pathogenesis of pulmonary emphysema and cancer when hyperactivated.
Collapse
Affiliation(s)
- Hye-Jin Boo
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hye-Young Min
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Choon-Sik Park
- Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Jong-Sook Park
- Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Woo-Young Kim
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Rang-Woon Park
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ho-Young Lee
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Barata T, Duarte I, Futschik ME. Integration of Stemness Gene Signatures Reveals Core Functional Modules of Stem Cells and Potential Novel Stemness Genes. Genes (Basel) 2023; 14:genes14030745. [PMID: 36981016 PMCID: PMC10048104 DOI: 10.3390/genes14030745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Stem cells encompass a variety of different cell types which converge on the dual capacity to self-renew and differentiate into one or more lineages. These characteristic features are key for the involvement of stem cells in crucial biological processes such as development and ageing. To decipher their underlying genetic substrate, it is important to identify so-called stemness genes that are common to different stem cell types and are consistently identified across different studies. In this meta-analysis, 21 individual stemness signatures for humans and another 21 for mice, obtained from a variety of stem cell types and experimental techniques, were compared. Although we observed biological and experimental variability, a highly significant overlap between gene signatures was identified. This enabled us to define integrated stemness signatures (ISSs) comprised of genes frequently occurring among individual stemness signatures. Such integrated signatures help to exclude false positives that can compromise individual studies and can provide a more robust basis for investigation. To gain further insights into the relevance of ISSs, their genes were functionally annotated and connected within a molecular interaction network. Most importantly, the present analysis points to the potential roles of several less well-studied genes in stemness and thus provides promising candidates for further experimental validation.
Collapse
Affiliation(s)
- Tânia Barata
- SysBioLab, Centre for Biomedical Research (CBMR), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Isabel Duarte
- Center for Research in Health Technologies and Information Systems (CINTESIS), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Matthias E Futschik
- SysBioLab, Centre for Biomedical Research (CBMR), Universidade do Algarve, 8005-139 Faro, Portugal
- School of Biomedical Sciences, Faculty of Health, Derriford Research Facility, University of Plymouth, Plymouth PL6 8BU, UK
- MRC London Institute of Medical Sciences (LMS), Imperial College London, London W12 0NN, UK
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
11
|
A Simplified and Effective Approach for the Isolation of Small Pluripotent Stem Cells Derived from Human Peripheral Blood. Biomedicines 2023; 11:biomedicines11030787. [PMID: 36979766 PMCID: PMC10045871 DOI: 10.3390/biomedicines11030787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Pluripotent stem cells are key players in regenerative medicine. Embryonic pluripotent stem cells, despite their significant advantages, are associated with limitations such as their inadequate availability and the ethical dilemmas in their isolation and clinical use. The discovery of very small embryonic-like (VSEL) stem cells addressed the aforementioned limitations, but their isolation technique remains a challenge due to their small cell size and their efficiency in isolation. Here, we report a simplified and effective approach for the isolation of small pluripotent stem cells derived from human peripheral blood. Our approach results in a high yield of small blood stem cell (SBSC) population, which expresses pluripotent embryonic markers (e.g., Nanog, SSEA-3) and the Yamanaka factors. Further, a fraction of SBSCs also co-express hematopoietic markers (e.g., CD45 and CD90) and/or mesenchymal markers (e.g., CD29, CD105 and PTH1R), suggesting a mixed stem cell population. Finally, quantitative proteomic profiling reveals that SBSCs contain various stem cell markers (CD9, ITGA6, MAPK1, MTHFD1, STAT3, HSPB1, HSPA4), and Transcription reg complex factors (e.g., STAT5B, PDLIM1, ANXA2, ATF6, CAMK1). In conclusion, we present a novel, simplified and effective isolating process that yields an abundant population of small-sized cells with characteristics of pluripotency from human peripheral blood.
Collapse
|
12
|
Stem Cell Therapy in Diabetic Polyneuropathy: Recent Advancements and Future Directions. Brain Sci 2023; 13:brainsci13020255. [PMID: 36831798 PMCID: PMC9954679 DOI: 10.3390/brainsci13020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Diabetic polyneuropathy (DPN) is the most frequent, although neglected, complication of long-term diabetes. Nearly 30% of hospitalized and 20% of community-dwelling patients with diabetes suffer from DPN; the incidence rate is approximately 2% annually. To date, there has been no curable therapy for DPN. Under these circumstances, cell therapy may be a vital candidate for the treatment of DPN. The epidemiology, classification, and treatment options for DPN are disclosed in the current review. Cell-based therapies using bone marrow-derived cells, embryonic stem cells, pluripotent stem cells, endothelial progenitor cells, mesenchymal stem cells, or dental pulp stem cells are our primary concern, which may be a useful treatment option to ease or to stop the progression of DPN. The importance of cryotherapies for treating DPN has been observed in several studies. These findings may help for the future researchers to establish more focused, accurate, effective, alternative, and safe therapy to reduce DPN. Cell-based therapy might be a permanent solution in the treatment and management of diabetes-induced neuropathy.
Collapse
|
13
|
Yoon S, Choi EH, Park SJ, Kim KP. α-Kleisin subunit of cohesin preserves the genome integrity of embryonic stem cells. BMB Rep 2023; 56:108-113. [PMID: 36571142 PMCID: PMC9978357 DOI: 10.5483/bmbrep.2022-0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/30/2022] [Accepted: 12/22/2022] [Indexed: 10/10/2023] Open
Abstract
Cohesin is a ring-shaped protein complex that comprises the SMC1, SMC3, and α-kleisin proteins, STAG1/2/3 subunits, and auxiliary factors. Cohesin participates in chromatin remodeling, chromosome segregation, DNA replication, and gene expression regulation during the cell cycle. Mitosis-specific α-kleisin factor RAD21 and meiosis-specific α-kleisin factor REC8 are expressed in embryonic stem cells (ESCs) to maintain pluripotency. Here, we demonstrated that RAD21 and REC8 were involved in maintaining genomic stability and modulating chromatin modification in murine ESCs. When the kleisin subunits were depleted, DNA repair genes were downregulated, thereby reducing cell viability and causing replication protein A (RPA) accumulation. This finding suggested that the repair of exposed single-stranded DNA was inefficient. Furthermore, the depletion of kleisin subunits induced DNA hypermethylation by upregulating DNA methylation proteins. Thus, we proposed that the cohesin complex plays two distinct roles in chromatin remodeling and genomic integrity to ensure the maintenance of pluripotency in ESCs. [BMB Reports 2023; 56(2): 108-113].
Collapse
Affiliation(s)
- Seobin Yoon
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Eui-Hwan Choi
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Seo Jung Park
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Keun Pil Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
14
|
Yoon S, Choi EH, Park SJ, Kim KP. α-Kleisin subunit of cohesin preserves the genome integrity of embryonic stem cells. BMB Rep 2023; 56:108-113. [PMID: 36571142 PMCID: PMC9978357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/30/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Cohesin is a ring-shaped protein complex that comprises the SMC1, SMC3, and α-kleisin proteins, STAG1/2/3 subunits, and auxiliary factors. Cohesin participates in chromatin remodeling, chromosome segregation, DNA replication, and gene expression regulation during the cell cycle. Mitosis-specific α-kleisin factor RAD21 and meiosis-specific α-kleisin factor REC8 are expressed in embryonic stem cells (ESCs) to maintain pluripotency. Here, we demonstrated that RAD21 and REC8 were involved in maintaining genomic stability and modulating chromatin modification in murine ESCs. When the kleisin subunits were depleted, DNA repair genes were downregulated, thereby reducing cell viability and causing replication protein A (RPA) accumulation. This finding suggested that the repair of exposed single-stranded DNA was inefficient. Furthermore, the depletion of kleisin subunits induced DNA hypermethylation by upregulating DNA methylation proteins. Thus, we proposed that the cohesin complex plays two distinct roles in chromatin remodeling and genomic integrity to ensure the maintenance of pluripotency in ESCs. [BMB Reports 2023; 56(2): 108-113].
Collapse
Affiliation(s)
- Seobin Yoon
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Eui-Hwan Choi
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Seo Jung Park
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Keun Pil Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
15
|
Zhou Q, Chen L, Yang L, Zhou H, Chen Y, Guo Y. Integrated systemic analysis of FAM72A to identify its clinical relevance, biological function, and relationship to drug sensitivity in hepatocellular carcinoma. Front Oncol 2022; 12:1046473. [DOI: 10.3389/fonc.2022.1046473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
BackgroundThe family with sequence similarity 72 member A (FAM72A) protein has been identified as an effector of multiple pathological processes in many cancers. The value of FAM72A in HCC remains largely unknown.MethodsData from TCGA-LIHC, ICGC-LIRI-JP, IMvigor210, cBioPortal, GeneMANIA, and TIMER were processed and visualized to explore the association between FAM72A and the prognosis, stemness phenotype, mutational burden, immune cell infiltration, and drug sensitivity in HCC patients. Potential pathways were also revealed. Furthermore, we experimentally verified the results in vivo and in vitro using immunohistochemistry, western blotting, and CCK-8 assays.ResultsFirst, FAM72A mRNA expression was significantly upregulated in HCC. High FAM72A expression was independently associated with a poor prognosis. Experimental validation confirmed that FAM72A was remarkably overexpressed in HCC patients and mice. Moreover, FAM72A knockdown suppressed HCC cell proliferation. In addition, the frequency of TP53 mutations was significantly higher in the high FAM72A expression group. Subsequently, the enrichment analysis revealed that FAM72A was closely related to immune processes and mTOR pathways. Silencing FAM72A increased the expression levels of mTOR in HCC cell lines. The FAM72A-mTOR pathway was strongly associated with a poor prognosis for patients with HCC. Patients with high FAM72A expression levels might be more resistant to sorafenib. Furthermore, the expression of FAM72A and mTOR was significantly associated with the abundance of some tumor-infiltrating immune cells, especially CD4+ T cells. Finally, patients with high levels of FAM72A and mTOR were more sensitive to immunotherapy.ConclusionsFAM72A, a member of the FAM72 family, might be a prognostic and immunotherapeutic target for HCC patients.
Collapse
|
16
|
He M, Gu W, Gao Y, Liu Y, Liu J, Li Z. Molecular subtypes and a prognostic model for hepatocellular carcinoma based on immune- and immunogenic cell death-related lncRNAs. Front Immunol 2022; 13:1043827. [PMID: 36479122 PMCID: PMC9720162 DOI: 10.3389/fimmu.2022.1043827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Background Accumulating evidence shows that immunogenic cell death (ICD) enhances immunotherapy effectiveness. In this study, we aimed to develop a prognostic model combining ICD, immunity, and long non-coding RNA biomarkers for predicting hepatocellular carcinoma (HCC) outcomes. Methods Immune- and immunogenic cell death-related lncRNAs (IICDLs) were identified from The Cancer Genome Atlas and Ensembl databases. IICDLs were extracted based on the results of differential expression and univariate Cox analyses and used to generate molecular subtypes using ConsensusClusterPlus. We created a prognostic signature based on IICDLs and a nomogram based on risk scores. Clinical characteristics, immune landscapes, immune checkpoint blocking (ICB) responses, stemness, and chemotherapy responses were also analyzed for different molecular subtypes and risk groups. Result A total of 81 IICDLs were identified, 20 of which were significantly associated with overall survival (OS) in patients with HCC. Cluster analysis divided patients with HCC into two distinct molecular subtypes (C1 and C2), with patients in C1 having a shorter survival time than those in C2. Four IICDLs (TMEM220-AS1, LINC02362, LINC01554, and LINC02499) were selected to develop a prognostic model that was an independent prognostic factor of HCC outcomes. C1 and the high-risk group had worse OS (hazard ratio > 1.5, p < 0.01), higher T stage (p < 0.05), higher clinical stage (p < 0.05), higher pathological grade (p < 0.05), low immune cell infiltration (CD4+ T cells, B cells, macrophages, neutrophils, and myeloid dendritic cells), low immune checkpoint gene expression, poor response to ICB therapy, and high stemness. Different molecular subtypes and risk groups showed significantly different responses to several chemotherapy drugs, such as doxorubicin (p < 0.001), 5-fluorouracil (p < 0.001), gemcitabine (p < 0.001), and sorafenib (p < 0.01). Conclusion Our study identified molecular subtypes and a prognostic signature based on IICDLs that could help predict the clinical prognosis and treatment response in patients with HCC.
Collapse
Affiliation(s)
- Mingang He
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenchao Gu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Yang Gao
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ying Liu
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Liu
- Cancer Center, Shandong Public Health Clinical Center, Public Health Clinical Center Affiliated to Shandong University, Jinan, China,*Correspondence: Jie Liu, ; Zengjun Li,
| | - Zengjun Li
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Jie Liu, ; Zengjun Li,
| |
Collapse
|
17
|
Li Z, Zeng T, Zhou C, Chen Y, Yin W. A prognostic signature model for unveiling tumor progression in lung adenocarcinoma. Front Oncol 2022; 12:1019442. [PMID: 36387251 PMCID: PMC9663930 DOI: 10.3389/fonc.2022.1019442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
A more accurate prognosis is important for clinical treatment of lung adenocarcinoma. However, due to the limitation of sample and technical bias, most prognostic signatures lacked reproducibility, and few were applied to clinical practice. In addition, understanding the molecular driving mechanism is indispensable for developing more promising therapies for lung adenocarcinoma. Here, we built an unbiased prognostic significance model to perform an integrative analysis, including differentially expressed genes and clinical data with lung adenocarcinoma patients from TCGA. Multivariable Cox proportional hazards model with the Lasso penalty and 10-fold cross-validate were used to identify the best gene signature. We generated a 17-gene signature for prognostic risk prediction based on the overall survival time of lung adenocarcinoma patients. To further test the model's predictive ability, we have applied an independent GEO database to verify the predictive ability of prognostic signature. The model can more objectively describe several biological processes related to tumors and reveal important molecular mechanisms in tumor development by GO and KEGG analysis. Furthermore, differential expression analysis by GSEA revealed that tumor microenvironments such as ER stress, exosome, and immune microenvironment were enriched. Using single-cell RNA sequence technology, we found that risk score was positively correlated with lung adenocarcinoma marker genes and copy number variation but negatively correlated with lung epithelial marker genes. High-risk cell populations with the model had stronger cancer stemness and tumor-related pathway activation. As we expected, the risk score was in accordance with the malignancy of each cluster from tumor progression. In conclusion, the risking model established in this study is more reliable than others in evaluating the prognosis of LUAD patients.
Collapse
Affiliation(s)
- Zijian Li
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Tao Zeng
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Chong Zhou
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yan Chen
- Department of Chinese Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Wu Yin, ; Yan Chen,
| | - Wu Yin
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu, China,*Correspondence: Wu Yin, ; Yan Chen,
| |
Collapse
|
18
|
Mining Transcriptomic Data to Uncover the Association between CBX Family Members and Cancer Stemness. Int J Mol Sci 2022; 23:ijms232113083. [PMID: 36361869 PMCID: PMC9656300 DOI: 10.3390/ijms232113083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
Genetic and epigenetic changes might facilitate the acquisition of stem cell-like phenotypes of tumors, resulting in worse patients outcome. Although the role of chromobox (CBX) domain proteins, a family of epigenetic factors that recognize specific histone marks, in the pathogenesis of several tumor types is well documented, little is known about their association with cancer stemness. Here, we have characterized the relationship between the CBX family members' expression and cancer stemness in liver, lung, pancreatic, and uterine tumors using publicly available TCGA and GEO databases and harnessing several bioinformatic tools (i.e., Oncomine, GEPIA2, TISIDB, GSCA, UALCAN, R2 platform, Enrichr, GSEA). We demonstrated that significant upregulation of CBX3 and downregulation of CBX7 are consistently associated with enriched cancer stem-cell-like phenotype across distinct tumor types. High CBX3 expression is observed in higher-grade tumors that exhibit stem cell-like traits, and CBX3-associated gene expression profiles are robustly enriched with stemness markers and targets for c-Myc transcription factor regardless of the tumor type. Similar to high-stemness tumors, CBX3-overexpressing cancers manifest a higher mutation load. On the other hand, higher-grade tumors are characterized by the significant downregulation of CBX7, and CBX7-associated gene expression profiles are significantly depleted with stem cell markers. In contrast to high-stemness tumors, cancer with CBX7 upregulation exhibit a lower mutation burden. Our results clearly demonstrate yet unrecognized association of high CBX3 and low CBX7 expression with cancer stem cell-like phenotype of solid tumors.
Collapse
|
19
|
Identification and Validation of a Potential Stemness-Associated Biomarker in Hepatocellular Carcinoma. Stem Cells Int 2022; 2022:1534593. [PMID: 35859724 PMCID: PMC9293570 DOI: 10.1155/2022/1534593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cancer stem cells (CSCs) are typically related to metastasis, recurrence, and drug resistance in malignant tumors. However, the biomarker and mechanism of CSCs need further exploration. This study is aimed at comprehensively depicting the stemness characteristics and identify a potential stemness-associated biomarker in hepatocellular carcinoma (HCC). Methods The data of HCC patients from The Cancer Genome Atlas (TCGA) were collected and divided based on the mRNA expression-based stemness index (mRNAsi) in this study. Weighted gene coexpression network analysis (WGCNA) and the protein-protein interaction (PPI) network were performed, and the genes were screened through the Cytoscape software. Then, we constructed a prognostic expression signature using the multivariable Cox analysis and verified using the GEO and ICGC databases. Even more importantly, we used the three-dimensional (3D) fibrin gel to enrich the tumor-repopulating cells (TRCs) to validate the expression of the signature in CSCs by quantitative RT-PCR. Results mRNAsi was significantly elevated in tumor and high-mRNAsi score was associated with poor overall survival in HCC. The positive stemness-associated (blue) module with 737 genes were screened based on WGCNA, and Budding uninhibited by benzimidazoles 1 (BUB1) was identified as the hub gene highly related to stemness in HCC. Then, the prognostic value and stemness characteristics were well validated in the ICGC and GSE14520 cohorts. Further analysis showed the expression of BUB1 was elevated in TRCs. Conclusion BUB1, as a potential stemness-associated biomarker, could serve as a therapeutic CSCs-target and predicted the clinical outcomes of patients with HCC.
Collapse
|
20
|
Liu P, Zhou Q, Li J. Integrated Multi-Omics Data Analysis Reveals Associations Between Glycosylation and Stemness in Hepatocellular Carcinoma. Front Oncol 2022; 12:913432. [PMID: 35814473 PMCID: PMC9259879 DOI: 10.3389/fonc.2022.913432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022] Open
Abstract
Background Glycosylation plays an essential role in driving the progression and treatment resistance of hepatocellular carcinoma (HCC). However, its function in regulating the acquisition and maintenance of the cancer stemness-like phenotype in HCC remains largely unknown. There is also very little known about how CAD and other potential glycosylation regulators may influence stemness. This study explores the relationship between glycosylation and stemness in HCC. Methods Gene set variance analysis (GSVA) was used to assess the TCGA pan-cancer enrichment in glycosylation-related pathways. Univariate, LASSO, and multivariate COX regression were then used to identify prognostic genes in the TCGA-LIHC and construct a prognostic signature. HCC patients were classified into high- and low-risk subgroups based on the signature. The relationship between gene expression profiles and stemness was confirmed using bulk and single-cell RNA-sequencing data. The role of CAD and other genes in regulating the stemness of HCC was also validated by RT-qPCR, CCK-8, and colony formation assay. Copy number variation (CNV), immune infiltration, and clinical features were further analyzed in different subgroups and subsequent gene expression profiles. Sensitive drugs were also screened. Results In the pan-cancer analysis, HCC was shown to have specific glycosylation alterations. Five genes, CAD, SLC51B, LGALS3, B3GAT3, and MT3, identified from 572 glycosylation-related genes, were used to construct a gene signature and predict HCC patient survival in the TCGA cohort. The results demonstrated a significant positive correlation between patients in the high-risk group and both elevated gene expression and HCC dedifferentiation status. A significant reduction in the stemness-related markers, CD24, CD44, CD20, FOXM1, and EpCAM, was found after the knockdown of CAD and other genes in HepG2 and Huh7 cells. Frequent mutations increased CNVs, immune-suppressive responses, and poor prognosis were also associated with the high-risk profile. The ICGC-LIRI-JP cohort confirmed a similar relationship between glycosylation-related subtypes and stemness. Finally, 84 sensitive drugs were screened for abnormal glycosylation of HCC, and carfilzomib was most highly correlated with CAD. Conclusions Glycosylation-related molecular subtypes are associated with HCC stemness and disease prognosis. These results provide new directions for further research on the relationship between glycosylation and stemness phenotypes.
Collapse
Affiliation(s)
- Peiyan Liu
- Department of Hepatology, Second People’s Clinical College of Tianjin Medical University, Tianjin, China
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China
| | - Qi Zhou
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Jia Li
- Department of Hepatology, Second People’s Clinical College of Tianjin Medical University, Tianjin, China
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China
- *Correspondence: Jia Li,
| |
Collapse
|
21
|
Baranovsky A, Ivanov T, Granovskaya M, Papatsenko D, Pervouchine DD. Transcriptome analysis reveals high tumor heterogeneity with respect to re-activation of stemness and proliferation programs. PLoS One 2022; 17:e0268626. [PMID: 35587924 PMCID: PMC9119523 DOI: 10.1371/journal.pone.0268626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/03/2022] [Indexed: 12/01/2022] Open
Abstract
Significant alterations in signaling pathways and transcriptional regulatory programs together represent major hallmarks of many cancers. These, among all, include the reactivation of stemness, which is registered by the expression of pathways that are active in the embryonic stem cells (ESCs). Here, we assembled gene sets that reflect the stemness and proliferation signatures and used them to analyze a large panel of RNA-seq data from The Cancer Genome Atlas (TCGA) Consortium in order to specifically assess the expression of stemness-related and proliferation-related genes across a collection of different tumor types. We introduced a metric that captures the collective similarity of the expression profile of a tumor to that of ESCs, which showed that stemness and proliferation signatures vary greatly between different tumor types. We also observed a high degree of intertumoral heterogeneity in the expression of stemness- and proliferation-related genes, which was associated with increased hazard ratios in a fraction of tumors and mirrored by high intratumoral heterogeneity and a remarkable stemness capacity in metastatic lesions across cancer cells in single cell RNA-seq datasets. Taken together, these results indicate that the expression of stemness signatures is highly heterogeneous and cannot be used as a universal determinant of cancer. This calls into question the universal validity of diagnostic tests that are based on stem cell markers.
Collapse
Affiliation(s)
- Artem Baranovsky
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Timofei Ivanov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | - Dmitri Papatsenko
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Dmitri D. Pervouchine
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- * E-mail:
| |
Collapse
|
22
|
H3K4 demethylase KDM5B regulates cancer cell identity and epigenetic plasticity. Oncogene 2022; 41:2958-2972. [PMID: 35440714 DOI: 10.1038/s41388-022-02311-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/08/2022]
Abstract
The H3K4 demethylase KDM5B is overexpressed in multiple cancer types, and elevated expression levels of KDM5B is associated with decreased survival. However, the underlying mechanistic contribution of dysregulated expression of KDM5B and H3K4 demethylation in cancer is poorly understood. Our results show that loss of KDM5B in multiple types of cancer cells leads to increased proliferation and elevated expression of cancer stem cell markers. In addition, we observed enhanced tumor formation following KDM5B depletion in a subset of representative cancer cell lines. Our findings also support a role for KDM5B in regulating epigenetic plasticity, where loss of KDM5B in cancer cells with elevated KDM5B expression leads to alterations in activity of chromatin states, which facilitate activation or repression of alternative transcriptional programs. In addition, we define KDM5B-centric epigenetic and transcriptional patterns that support cancer cell plasticity, where KDM5B depleted cancer cells exhibit altered epigenetic and transcriptional profiles resembling a more primitive cellular state. This study also provides a resource for evaluating associations between alterations in epigenetic patterning upon depletion of KDM5B and gene expression in a diverse set of cancer cells.
Collapse
|
23
|
Yu W, Liu F, Lei Q, Wu P, Yang L, Zhang Y. Identification of Key Pathways and Genes Related to Immunotherapy Resistance of LUAD Based on WGCNA Analysis. Front Oncol 2022; 11:814014. [PMID: 35071018 PMCID: PMC8770266 DOI: 10.3389/fonc.2021.814014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/06/2021] [Indexed: 01/15/2023] Open
Abstract
Immunotherapy resistance is a major barrier in the application of immune checkpoint inhibitors (ICI) in lung adenocarcinoma (LUAD) patients. Although recent studies have found several mechanisms and potential genes responsible for immunotherapy resistance, ways to solve this problem are still lacking. Tumor immune dysfunction and exclusion (TIDE) algorithm is a newly developed method to calculate potential regulators and indicators of ICI resistance. In this article, we combined TIDE and weighted gene co-expression network analysis (WGCNA) to screen potential modules and hub genes that are highly associated with immunotherapy resistance using the Cancer Genome Atlas (TCGA) dataset of LUAD patients. We identified 45 gene co-expression modules, and the pink module was most correlated with TIDE score and other immunosuppressive features. After considering the potential factors in immunotherapy resistance, we found that the pink module was also highly related to cancer stemness. Further analysis showed enriched immunosuppressive cells in the extracellular matrix (ECM), immunotherapy resistance indicators, and common cancer-related signaling pathways in the pink module. Seven hub genes in the pink module were shown to be significantly upregulated in tumor tissues compared with normal lung tissue, and were related to poor survival of LUAD patients. Among them, THY1 was the gene most associated with TIDE score, a gene highly related to suppressive immune states, and was shown to be strongly expressed in late-stage patients. Immunohistochemistry (IHC) results demonstrated that THY1 level was higher in the progressive disease (PD) group of LUAD patients receiving a PD-1 monoclonal antibody (mAb) and positively correlated with SOX9. Collectively, we identified that THY1 could be a critical biomarker in predicting ICI efficiency and a potential target for avoiding tumor immunotherapy resistance.
Collapse
Affiliation(s)
- Weina Yu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Fengsen Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Qingyang Lei
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Peng Wu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Czerwinska P, Jaworska AM, Wlodarczyk NA, Cisek M, Karwacka M, Lipowicz J, Ostapowicz J, Rosochowicz M, Mackiewicz AA. The association between bromodomain (BrD) proteins and cancer stemness in different solid tumor types. Int J Cancer 2022; 150:1838-1849. [PMID: 35049055 PMCID: PMC9303422 DOI: 10.1002/ijc.33937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022]
Abstract
Cancer stemness, which covers the stem cell‐like molecular traits of cancer cells, is essential for tumor development, progression and relapse. Both transcriptional and epigenetic aberrations are essentially connected with cancer stemness. The engagement of bromodomain (BrD) proteins—a family of epigenetic factors—has been presented in the pathogenesis of several tumor types, although their association with cancer stemness remains largely unknown. Here, we harnessed TCGA and GEO databases and used several bioinformatic tools (ie, Oncomine, PrognoScan, GEPIA2, TIMER2.0, TISIDB, GSEA, R2 platform) to characterize the association between the BrD family members' expression and cancer stemness in solid tumors. Our results demonstrate that significant upregulation of ATAD2 and SMARCA4, and downregulation of SMARCA2 is consistently associated with enriched cancer stem cell‐like phenotype, respectively. Especially, higher‐grade tumors that display stem cell‐like properties overexpress ATAD2. In contrast to most BrD members, the gene expression profiles of ATAD2HIGH expressing tumors are strongly enriched with known markers of stem cells and with specific targets for c‐Myc transcription factor. For other BrD proteins, the association with cancer de‐differentiation status is rather tumor‐specific. Our results demonstrate for the first time the relation between distinct BrD family proteins and cancer stemness across 27 solid tumor types. Specifically, our approach allowed us to discover a robust association of high ATAD2 expression with cancer stemness and reveal its' versatility in tumors. As bromodomains are attractive targets from a chemical and structural perspective, we propose ATAD2 as a novel druggable target for de‐differentiated tumors, especially those overexpressing MYC.
Collapse
Affiliation(s)
- Patrycja Czerwinska
- Department of Cancer Immunology, Chair of Medical Biotechnology Poznan University of Medical Sciences, 15 Garbary St. Poznan Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre,15 Garbary St., 61‐866 Poznan Poland
| | - Anna Maria Jaworska
- Department of Cancer Immunology, Chair of Medical Biotechnology Poznan University of Medical Sciences, 15 Garbary St. Poznan Poland
| | - Nikola Agata Wlodarczyk
- Department of Cancer Immunology, Chair of Medical Biotechnology Poznan University of Medical Sciences, 15 Garbary St. Poznan Poland
| | - Małgorzata Cisek
- Department of Cancer Immunology, Chair of Medical Biotechnology Poznan University of Medical Sciences, 15 Garbary St. Poznan Poland
| | - Marianna Karwacka
- Department of Cancer Immunology, Chair of Medical Biotechnology Poznan University of Medical Sciences, 15 Garbary St. Poznan Poland
| | - Julia Lipowicz
- Department of Cancer Immunology, Chair of Medical Biotechnology Poznan University of Medical Sciences, 15 Garbary St. Poznan Poland
| | - Julia Ostapowicz
- Department of Cancer Immunology, Chair of Medical Biotechnology Poznan University of Medical Sciences, 15 Garbary St. Poznan Poland
| | - Monika Rosochowicz
- Department of Cancer Immunology, Chair of Medical Biotechnology Poznan University of Medical Sciences, 15 Garbary St. Poznan Poland
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology Poznan University of Medical Sciences, 15 Garbary St. Poznan Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre,15 Garbary St., 61‐866 Poznan Poland
| |
Collapse
|
25
|
Novak G, Kyriakis D, Grzyb K, Bernini M, Rodius S, Dittmar G, Finkbeiner S, Skupin A. Single-cell transcriptomics of human iPSC differentiation dynamics reveal a core molecular network of Parkinson's disease. Commun Biol 2022; 5:49. [PMID: 35027645 PMCID: PMC8758783 DOI: 10.1038/s42003-021-02973-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/14/2021] [Indexed: 01/02/2023] Open
Abstract
Parkinson's disease (PD) is the second-most prevalent neurodegenerative disorder, characterized by the loss of dopaminergic neurons (mDA) in the midbrain. The underlying mechanisms are only partly understood and there is no treatment to reverse PD progression. Here, we investigated the disease mechanism using mDA neurons differentiated from human induced pluripotent stem cells (hiPSCs) carrying the ILE368ASN mutation within the PINK1 gene, which is strongly associated with PD. Single-cell RNA sequencing (RNAseq) and gene expression analysis of a PINK1-ILE368ASN and a control cell line identified genes differentially expressed during mDA neuron differentiation. Network analysis revealed that these genes form a core network, members of which interact with all known 19 protein-coding Parkinson's disease-associated genes. This core network encompasses key PD-associated pathways, including ubiquitination, mitochondrial function, protein processing, RNA metabolism, and vesicular transport. Proteomics analysis showed a consistent alteration in proteins of dopamine metabolism, indicating a defect of dopaminergic metabolism in PINK1-ILE368ASN neurons. Our findings suggest the existence of a network onto which pathways associated with PD pathology converge, and offers an inclusive interpretation of the phenotypic heterogeneity of PD.
Collapse
Affiliation(s)
- Gabriela Novak
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
- Center for Systems and Therapeutics, the Gladstone Institutes and Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Dimitrios Kyriakis
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Kamil Grzyb
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michela Bernini
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sophie Rodius
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Gunnar Dittmar
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, the Gladstone Institutes and Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Alexander Skupin
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
26
|
El-Kadiry AEH, Rafei M, Shammaa R. Cell Therapy: Types, Regulation, and Clinical Benefits. Front Med (Lausanne) 2021; 8:756029. [PMID: 34881261 PMCID: PMC8645794 DOI: 10.3389/fmed.2021.756029] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Cell therapy practices date back to the 19th century and continue to expand on investigational and investment grounds. Cell therapy includes stem cell- and non-stem cell-based, unicellular and multicellular therapies, with different immunophenotypic profiles, isolation techniques, mechanisms of action, and regulatory levels. Following the steps of their predecessor cell therapies that have become established or commercialized, investigational and premarket approval-exempt cell therapies continue to provide patients with promising therapeutic benefits in different disease areas. In this review article, we delineate the vast types of cell therapy, including stem cell-based and non-stem cell-based cell therapies, and create the first-in-literature compilation of the different "multicellular" therapies used in clinical settings. Besides providing the nuts and bolts of FDA policies regulating their use, we discuss the benefits of cell therapies reported in 3 therapeutic areas-regenerative medicine, immune diseases, and cancer. Finally, we contemplate the recent attention shift toward combined therapy approaches, highlighting the factors that render multicellular therapies a more attractive option than their unicellular counterparts.
Collapse
Affiliation(s)
- Abed El-Hakim El-Kadiry
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Center, Montreal, QC, Canada
- Department of Biomedical Sciences, Université de Montréal, Montreal, QC, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
- Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Riam Shammaa
- Canadian Centre for Regenerative Therapy, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Redox Homeostasis and Regulation in Pluripotent Stem Cells: Uniqueness or Versatility? Int J Mol Sci 2021; 22:ijms222010946. [PMID: 34681606 PMCID: PMC8535588 DOI: 10.3390/ijms222010946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022] Open
Abstract
Pluripotent stem cells (PSCs) hold great potential both in studies on developmental biology and clinical practice. Mitochondrial metabolism that encompasses pathways that generate ATP and produce ROS significantly differs between PSCs and somatic cells. Correspondingly, for quite a long time it was believed that the redox homeostasis in PSCs is also highly specific due to the hypoxic niche of their origin-within the pre-implantation blastocyst. However, recent research showed that redox parameters of cultivated PSCs have much in common with that of their differentiated progeny cells. Moreover, it has been proven that, similar to somatic cells, maintaining the physiological ROS level is critical for the regulation of PSC identity, proliferation, differentiation, and de-differentiation. In this review, we aimed to summarize the studies of redox metabolism and signaling in PSCs to compare the redox profiles of pluripotent and differentiated somatic cells. We collected evidence that PSCs possess metabolic plasticity and are able to adapt to both hypoxia and normoxia, that pluripotency is not strictly associated with anaerobic conditions, and that cellular redox homeostasis is similar in PSCs and many other somatic cells under in vitro conditions that may be explained by the high conservatism of the redox regulation system.
Collapse
|
28
|
Czerwinska P, Mackiewicz AA. Low Levels of TRIM28-Interacting KRAB-ZNF Genes Associate with Cancer Stemness and Predict Poor Prognosis of Kidney Renal Clear Cell Carcinoma Patients. Cancers (Basel) 2021; 13:cancers13194835. [PMID: 34638319 PMCID: PMC8508054 DOI: 10.3390/cancers13194835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary This is the first report investigating the involvement of TRIM28-interacting KRAB-ZNFs in kidney cancer progression. We demonstrate a significant negative association between KRAB-ZNFs and cancer stemness followed by an attenuated immune-suppressive response and reveal the prognostic role for several KRAB-ZNFs. Our findings may help better understand the molecular basis of kidney cancer and ultimately pave the way to more appropriate prognostic tools and novel therapeutic strategies directly eradicating the dedifferentiated compartment of the tumor. Abstract Krüppel-associated box zinc finger (KRAB-ZNF) proteins are known to regulate diverse biological processes, such as embryonic development, tissue-specific gene expression, and cancer progression. However, their involvement in the regulation of cancer stemness-like phenotype acquisition and maintenance is scarcely explored across solid tumor types, and to date, there are no data for kidney renal clear cell cancer (KIRC). We have harnessed The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database transcriptomic data and used several bioinformatic tools (i.e., GEPIA2, GSCALite, TISIDB, GSEA, CIBERSORT) to verify the relation between the expression and genomic alterations in KRAB-ZNFs and kidney cancer, focusing primarily on tumor dedifferentiation status and antitumor immune response. Our results demonstrate a significant negative correlation between KRAB-ZNFs and kidney cancer dedifferentiation status followed by an attenuated immune-suppressive response. The transcriptomic profiles of high KRAB-ZNF-expressing kidney tumors are significantly enriched with stem cell markers and show a depletion of several inflammatory pathways known for favoring cancer stemness. Moreover, we show for the first time the prognostic role for several KRAB-ZNFs in kidney cancer. Our results provide new insight into the role of selected KRAB-ZNF proteins in kidney cancer development. We believe that our findings may help better understand the molecular basis of KIRC.
Collapse
Affiliation(s)
- Patrycja Czerwinska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; or
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
- Correspondence: or
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; or
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| |
Collapse
|
29
|
Alajem A, Roth H, Ratgauzer S, Bavli D, Motzik A, Lahav S, Peled I, Ram O. DNA methylation patterns expose variations in enhancer-chromatin modifications during embryonic stem cell differentiation. PLoS Genet 2021; 17:e1009498. [PMID: 33844685 PMCID: PMC8062104 DOI: 10.1371/journal.pgen.1009498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 04/22/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
In mammals, cellular identity is defined through strict regulation of chromatin modifications and DNA methylation that control gene expression. Methylation of cytosines at CpG sites in the genome is mainly associated with suppression; however, the reason for enhancer-specific methylation is not fully understood. We used sequential ChIP-bisulfite-sequencing for H3K4me1 and H3K27ac histone marks. By collecting data from the same genomic region, we identified enhancers differentially methylated between these two marks. We observed a global gain of CpG methylation primarily in H3K4me1-marked nucleosomes during mouse embryonic stem cell differentiation. This gain occurred largely in enhancer regions that regulate genes critical for differentiation. The higher levels of DNA methylation in H3K4me1- versus H3K27ac-marked enhancers, despite it being the same genomic region, indicates cellular heterogeneity of enhancer states. Analysis of single-cell RNA-seq profiles demonstrated that this heterogeneity correlates with gene expression during differentiation. Furthermore, heterogeneity of enhancer methylation correlates with transcription start site methylation. Our results provide insights into enhancer-based functional variation in complex biological systems. Cellular dynamics are underlined by numerous regulatory layers. The regulatory mechanism of interest in this work are enhancers. Enhancers are regulatory regions responsible, mainly, for increasing the possibility of transcription of a certain gene. Enhancers are marked by two distinct chemical groups-H3K4me1 and H3K27ac on the tail of histones. Histones are the proteins responsible for DNA packaging into condensed chromatin structure. In contrast, DNA methylation is a chemical modification often found on enhancers, and is traditionally associated with repression. A long-debated question revolves around the functional relevance of DNA methylation in the context of enhancers. Here, we combined the two regulatory layers, histone marks and DNA methylation, to a single measurement that can highlight DNA methylation separately on each histone mark but at the same genomic region. When isolated with H3K4me1, enhancers showed higher levels of methylation compared to H3K27ac. As we measured the same genomic locations, we show that differences of DNA methylation between these marks can only be explained by cellular heterogeneity. We also demonstrated that these enhancers tend to play roles in stem cell differentiation and expression levels of the genes they control correlate with cell-to-cell variation.
Collapse
Affiliation(s)
- Adi Alajem
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Hava Roth
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Sofia Ratgauzer
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Danny Bavli
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Alex Motzik
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Shlomtzion Lahav
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Itay Peled
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Oren Ram
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
30
|
The Association between TIF1 Family Members and Cancer Stemness in Solid Tumors. Cancers (Basel) 2021; 13:cancers13071528. [PMID: 33810347 PMCID: PMC8061774 DOI: 10.3390/cancers13071528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Stem cell-associated molecular features of solid tumors, collectively known as cancer stemness, are of great importance in the development, progression, and reoccurrence of cancer. Transcriptional and epigenetic dysregulation is significantly associated with cancer stemness. Here, we investigated the association between the Transcriptional Intermediary Factor 1 (TIF1) family members and cancer stemness in solid tumors. We aimed to evaluate the potential value of TIF1 members in predicting a stem-like cancer phenotype. Our results indicate that only TIF1β (also known as Tripartite Motif protein 28, TRIM28) high expression is consequently associated with a “stemness high” phenotype, regardless of the tumor type, resulting in a worse prognosis for cancer patients. The oncogenic signature of TRIM28HIGH tumors significantly reflects the enrichment of “stemness high” cancers with targets for c-Myc (MYC Proto-Oncogene). TRIM28-associated gene expression profiles are also robustly enriched with stemness markers. Our results demonstrate that the association between high TRIM28 expression and an enriched cancer stem cell-like phenotype is a common phenomenon across solid tumors. Abstract Cancer progression entails a gradual loss of a differentiated phenotype in parallel with the acquisition of stem cell-like features. Cancer de-differentiation and the acquisition of stemness features are mediated by the transcriptional and epigenetic dysregulation of cancer cells. Here, using publicly available data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and harnessing several bioinformatic tools, we characterized the association between Transcriptional Intermediary Factor 1 (TIF1) family members and cancer stemness in 27 distinct types of solid tumors. We aimed to define the prognostic value for TIF1 members in predicting a stem cell-like cancer phenotype and patient outcome. Our results demonstrate that high expression of only one member of the TIF1 family, namely TIF1β (also known as Tripartite Motif protein 28, TRIM28) is consequently associated with enriched cancer stemness across the tested solid tumor types, resulting in a worse prognosis for cancer patients. TRIM28 is highly expressed in higher grade tumors that exhibit stem cell-like traits. In contrast to other TIF1 members, only TIF1β/TRIM28-associated gene expression profiles were robustly enriched with stemness markers regardless of the tumor type. Our work demonstrates that TIF1 family members exhibit distinct expression patterns in stem cell-like tumors, despite their structural and functional similarity. Among other TIF1 members, only TRIM28 might serve as a marker of cancer stemness features.
Collapse
|
31
|
Markers of Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Cruvinel E, Ogusuku I, Cerioni R, Rodrigues S, Gonçalves J, Góes ME, Alvim JM, Silva AC, Lino VDS, Boccardo E, Goulart E, Pereira A, Dariolli R, Valadares M, Biagi D. Long-term single-cell passaging of human iPSC fully supports pluripotency and high-efficient trilineage differentiation capacity. SAGE Open Med 2020; 8:2050312120966456. [PMID: 33149912 PMCID: PMC7586033 DOI: 10.1177/2050312120966456] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives: To establish a straightforward single-cell passaging cultivation method that enables high-quality maintenance of human induced pluripotent stem cells without the appearance of karyotypic abnormalities or loss of pluripotency. Methods: Cells were kept in culture for over 50 passages, following a structured chronogram of passage and monitoring cell growth by population doubling time calculation and cell confluence. Standard procedures for human induced pluripotent stem cells monitoring as embryonic body formation, karyotyping and pluripotency markers expression were evaluated in order to assess the cellular state in long-term culture. Cells that underwent these tests were then subjected to differentiation into keratinocytes, cardiomyocytes and definitive endoderm to evaluate its differentiation capacity. Results: Human induced pluripotent stem cells clones maintained its pluripotent capability as well as chromosomal integrity and were able to generate derivatives from the three germ layers at high passages by embryoid body formation and high-efficient direct differentiation into keratinocytes, cardiomyocytes and definitive endoderm. Conclusions: Our findings support the routine of human induced pluripotent stem cells single-cell passaging as a reliable procedure even after long-term cultivation, providing healthy human induced pluripotent stem cells to be used in drug discovery, toxicity, and disease modeling as well as for therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Elisa Góes
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Vanesca de Souza Lino
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Enrique Boccardo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ernesto Goulart
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre Pereira
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Rafael Dariolli
- PluriCell Biotech, São Paulo, Brazil.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | |
Collapse
|
33
|
Czerwinska P, Jaworska AM, Wlodarczyk NA, Mackiewicz AA. Melanoma Stem Cell-Like Phenotype and Significant Suppression of Immune Response within a Tumor Are Regulated by TRIM28 Protein. Cancers (Basel) 2020; 12:E2998. [PMID: 33076560 PMCID: PMC7650661 DOI: 10.3390/cancers12102998] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
TRIM28 emerged as a guard of the intrinsic "state of cell differentiation", facilitating self-renewal of pluripotent stem cells. Recent reports imply TRIM28 engagement in cancer stem cell (CSC) maintenance, although the exact mechanism remains unresolved. TRIM28 high expression is associated with worse melanoma patient outcomes. Here, we investigated the association between TRIM28 level and melanoma stemness, and aligned it with the antitumor immune response to find the mechanism of "stemness high/immune low" melanoma phenotype acquisition. Based on the SKCM TCGA data, the TRIM28 expression profile, clinicopathological features, expression of correlated genes, and the level of stemness and immune scores were analyzed in patient samples. The biological function for differentially expressed genes was annotated with GSEA. Results were validated with additional datasets from R2: Genomics Analysis and Visualization Platform and in vitro with a panel of seven melanoma cell lines. All statistical analyses were accomplished using GraphPad Prism 8. TRIM28HIGH-expressing melanoma patients are characterized by worse outcomes and significantly different gene expression profiles than the TRIM28NORM cohort. TRIM28 high level related to higher melanoma stemness as measured with several distinct scores and TRIM28HIGH-expressing melanoma cell lines possess the greater potential of melanosphere formation. Moreover, TRIM28HIGH melanoma tumors were significantly depleted with infiltrating immune cells, especially cytotoxic T cells, helper T cells, and B cells. Furthermore, TRIM28 emerged as a good predictor of "stemness high/immune low" melanoma phenotype. Our data indicate that TRIM28 might facilitate this phenotype by direct repression of interferon signaling. TRIM28 emerged as a direct link between stem cell-like phenotype and attenuated antitumor immune response in melanoma, although further studies are needed to evaluate the direct mechanism of TRIM28-mediated stem-like phenotype acquisition.
Collapse
Affiliation(s)
- Patrycja Czerwinska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (A.M.J.); (N.A.W.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Anna Maria Jaworska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (A.M.J.); (N.A.W.)
| | - Nikola Agata Wlodarczyk
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (A.M.J.); (N.A.W.)
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (A.M.J.); (N.A.W.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| |
Collapse
|
34
|
A cancer-specific anti-podocalyxin monoclonal antibody (60-mG 2a-f) exerts antitumor effects in mouse xenograft models of pancreatic carcinoma. Biochem Biophys Rep 2020; 24:100826. [PMID: 33088928 PMCID: PMC7559861 DOI: 10.1016/j.bbrep.2020.100826] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/22/2020] [Accepted: 10/07/2020] [Indexed: 01/22/2023] Open
Abstract
Overexpression of podocalyxin (PODXL) is associated with progression, metastasis, and poor outcomes in several cancers. PODXL also plays an important role in the development of normal tissues. For antibody-based therapy to target PODXL-expressing cancers using monoclonal antibodies (mAbs), cancer-specificity is necessary to reduce the risk of adverse effects to normal tissues. In this study, we developed an anti-PODXL cancer-specific mAb (CasMab), named as PcMab-60 (IgM, kappa) by immunizing mice with soluble PODXL, which is overexpressed in LN229 glioblastoma cells. The PcMab-60 reacted with the PODXL-overexpressing LN229 (LN229/PODXL) cells and MIA PaCa-2 pancreatic cancer cells in flow cytometry but did not react with normal vascular endothelial cells (VECs), whereas one of non-CasMabs, PcMab-47 showed high reactivity for not only LN229/PODXL and MIA PaCa-2 cells but also VECs, indicating that PcMab-60 is a CasMab. Next, we engineered PcMab-60 into a mouse IgG2a-type mAb, named as 60-mG2a, to add antibody-dependent cellular cytotoxicity (ADCC). We further developed a core fucose-deficient type of 60-mG2a, named as 60-mG2a-f, to augment its ADCC activity. In vivo analysis revealed that 60-mG2a-f exerted antitumor activity in MIA PaCa-2 xenograft models at a dose of 100 μg/mouse/week administered three times. These results suggested that 60-mG2a-f could be useful for antibody-based therapy against PODXL-expressing pancreatic cancers. PODXL is associated with poor outcomes in several cancers. We developed an anti-PODXL cancer-specific mAb (PcMab-60). A core fucose-deficient IgG2a type of PcMab-60 (60-mG2a-f) exerted antitumor activity in MIA PaCa-2 xenograft models. 60-mG2a-f could be useful for antibody-based therapy against PODXL-expressing pancreatic cancers.
Collapse
|
35
|
Lorenzo-Martín LF, Menacho-Márquez M, Bustelo XR. Drug Vulnerabilities and Disease Prognosis Linked to the Stem Cell-Like Gene Expression Program Triggered by the RHO GTPase Activator VAV2 in Hyperplastic Keratinocytes and Head and Neck Cancer. Cancers (Basel) 2020; 12:cancers12092498. [PMID: 32899210 PMCID: PMC7563609 DOI: 10.3390/cancers12092498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Head and neck squamous cell carcinoma are epithelial tumors with a very poor prognosis. They are also in high need of new targeted and immune-based therapeutics to limit tumor recurrence and improve long-term survival. The poor prognosis of patients with head and neck tumors is usually associated with histological features associated with poor differentiation and high proliferative activity found in their tumor biopsies. Therefore, it is of paramount importance to identify vulnerabilities associated with such pathobiological programs. In this work, the authors utilize a stem cell-like program linked to the deregulated activity of VAV2, a protein frequently overexpressed in this type of tumors, to identify new therapeutic targets that can discriminate tumors from healthy cells. The authors also show that this gene expression program can be used to stratify patients according to long-term prognosis. Abstract We have recently shown that VAV2, a guanosine nucleotide exchange factor that catalyzes the stimulation step of RHO GTPases, is involved in a stem cell-like (SCL) regenerative proliferation program that is important for the development and subsequent maintenance of the tumorigenesis of both cutaneous (cSCC) and head and neck squamous cell carcinomas (hnSCC). In line with this, we have observed that the levels of the VAV2 mRNA and VAV2-regulated gene signatures are associated with poor prognosis in the case of human papillomavirus-negative hnSCC patients. These results suggest that the SCL program elicited by VAV2 in those cells can harbor therapeutically actionable downstream targets. We have addressed this issue using a combination of both in silico and wet-lab approaches. Here, we show that the VAV2-regulated SCL program does harbor a number of cell cycle- and signaling-related kinases that are essential for the viability of undifferentiated keratinocytes and hnSCC patient-derived cells endowed with high levels of VAV2 activity. Our results also show that the VAV2-regulated SCL gene signature is associated with poor hnSCC patient prognosis. Collectively, these data underscore the critical role of this VAV2-regulated SCL program for the viability of both preneoplastic and fully transformed keratinocytes.
Collapse
Affiliation(s)
- Luis Francisco Lorenzo-Martín
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
- Correspondence: (L.F.L.-M.); (X.R.B.)
| | - Mauricio Menacho-Márquez
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
- Correspondence: (L.F.L.-M.); (X.R.B.)
| |
Collapse
|
36
|
RNA-Seq analysis reveals pluripotency-associated genes and their interaction networks in human embryonic stem cells. Comput Biol Chem 2020; 85:107239. [DOI: 10.1016/j.compbiolchem.2020.107239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/25/2022]
|
37
|
Targeting cancer stem cells by melatonin: Effective therapy for cancer treatment. Pathol Res Pract 2020; 216:152919. [PMID: 32171553 DOI: 10.1016/j.prp.2020.152919] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/21/2020] [Accepted: 03/07/2020] [Indexed: 12/15/2022]
Abstract
Melatonin is a physiological hormone produced by the pineal gland. In recent decades, enormous investigations showed that melatonin can prompt apoptosis in cancer cells and inhibit tumor metastasis and angiogenesis in variety of malignancies such as ovarian, melanoma, colon, and breast cancer; therefore, its possible therapeutic usage in cancer treatment was confirmed. CSCs, which has received much attention from researchers in past decades, are major challenges in the treatment of cancer. Because CSCs are resistant to chemotherapeutic drugs and cause recurrence of cancer and also have the ability to be regenerated; they can cause serious problems in the treatment of various cancers. For these reasons, the researchers are trying to find a solution to destroy these cells within the tumor mass. In recent years, the effect of melatonin on CSCs has been investigated in some cancers. Given the importance of CSCs in the process of cancer treatment, this article reviewed the studies conducted on the effect of melatonin on CSCs as a solution to the problems caused by CSCs in the treatment of various cancers.
Collapse
|
38
|
Zhang B, Xu H, Huang Y, Shu W, Feng H, Cai J, Zhong JF, Chen Y. Improving single-cell transcriptome sequencing efficiency with a microfluidic phase-switch device. Analyst 2019; 144:7185-7191. [PMID: 31688860 PMCID: PMC6925944 DOI: 10.1039/c9an00823c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this paper, we present a novel method to improve the efficiency of single-cell transcriptome sequencing for analyzing valuable cell samples. The microfluidic device we designed integrates multiple single-cell isolation chambers with hydrodynamic traps and achieves a nearly 100% single-cell capture rate and minimal cell loss, making it particularly suitable for samples with limited numbers of cells. Single cells were encapsulated using a novel phase-switch method into picoliter-sized hydrogel droplets and easily recovered for subsequent reactions. Minimizing the reaction volume resulted in a high reverse transcription (RT) efficiency for RNA sequencing (RNA-Seq). With this novel microfluidic platform, we captured dozens of hESCs (H9) simultaneously and obtained live cells in individual picoliter volumes, thus allowing for the convenient construction of a high-quality library for deep single-cell RNA-Seq. Our single-cell RNA-Seq results confirmed that a spectrum of pluripotency existed within an H9 colony. This integrated microfluidic platform can be applied to various cell types for the investigation of rare cellular events, and the phase-switch single-cell processing strategy will improve the efficiency and accessibility of single-cell transcriptome sequencing analysis.
Collapse
Affiliation(s)
- Baoyue Zhang
- Key Lab for Health Informatics of Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Saito K, Iioka H, Maruyama S, Sumardika IW, Sakaguchi M, Kondo E. PODXL1 promotes metastasis of the pancreatic ductal adenocarcinoma by activating the C5aR/C5a axis from the tumor microenvironment. Neoplasia 2019; 21:1121-1132. [PMID: 31759250 PMCID: PMC6872781 DOI: 10.1016/j.neo.2019.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
Pancreatic invasive ductal adenocarcinoma (PDAC) is a representative intractable malignancy under the current cancer therapies, and is considered a scirrhous carcinoma because it develops dense stroma. Both PODXL1, a member of CD34 family molecules, and C5aR, a critical cell motility inducer, have gained recent attention, as their expression was reported to correlate with poor prognosis for patients with diverse origins including PDAC; however, previous studies reported independently on their respective biological significance. Here we demonstrate that PODXL1 is essential for metastasis of PDAC cells through its specific interaction with C5aR. In vitro assay demonstrated that PODXL1 bound to C5aR, which stabilized C5aR protein and recruited it to cancer cell plasma membranes to receive C5a, an inflammatory chemoattractant factor. PODXL1 knockout in PDAC cells abrogated their metastatic property in vivo, emulating the liver metastatic mouse model treated with anti-C5a neutralizing antibody. In molecular studies, PODXL1 triggered EMT on PDAC cells in response to stimulation by C5a, corroborating PODXL1 involvement in PDAC cellular invasive properties via specific interaction with the C5aR/C5a axis. Confirming the molecular assays, histological examination showed coexpression of PODXL1 and C5aR at the invasive front of primary cancer nests as well as in liver metastatic foci of PDAC both in the mouse metastasis model and patient tissues. Hence, the novel direct interaction between PODXL1 and the C5aR/C5a axis may provide a better integrated understanding of PDAC biological characteristics including its tumor microenvironment factors.
Collapse
Key Words
- podxl1, podocalyxin-like 1
- pdac, pancreatic invasive ductal adenocarcinoma
- c5ar, complement component 5a receptor 1 (c5ar1, cd88)
- caf, cancer-associated fibroblast
- emt, epithelial-mesenchymal transition
- ips, induced pluripotent stem
- itgb1, integrin β1
- wt, wild type
- ko, knockout
- ihc, immunohistochemistry
- ib, immunoblot
- ip, immunoprecipitation
- if, immunofluorescence
- hpne, human immortalized pancreatic ductal epithelium
- nhdf, normal human dermal fibroblast
- mmp, matrix metalloproteinases
- ab, antibody
Collapse
Affiliation(s)
- Ken Saito
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, 757 Ichibancho, Asahimachi-dori, Chuo Ward, Niigata City 951-8510, Japan
| | - Hidekazu Iioka
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, 757 Ichibancho, Asahimachi-dori, Chuo Ward, Niigata City 951-8510, Japan
| | - Satoshi Maruyama
- Oral Pathology Section, Department of Surgical Pathology, Niigata University Hospital, 2-5274 Gakkoucho-dori, Chuo Ward, Niigata City 951-8514, Japan
| | - I Wayan Sumardika
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558 Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558 Japan
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, 757 Ichibancho, Asahimachi-dori, Chuo Ward, Niigata City 951-8510, Japan.
| |
Collapse
|
40
|
Hwang JH, Yoon J, Cho YH, Cha PH, Park JC, Choi KY. A mutant KRAS-induced factor REG4 promotes cancer stem cell properties via Wnt/β-catenin signaling. Int J Cancer 2019; 146:2877-2890. [PMID: 31605540 DOI: 10.1002/ijc.32728] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/22/2019] [Accepted: 10/01/2019] [Indexed: 01/02/2023]
Abstract
Mutant KRAS provides a driving force for enhancement of cancer stem cells (CSCs) characteristics contributing transformation of colorectal cancer (CRC) cells harboring adenomatous polyposis coli (APC) mutations. Here, we identified the factors mediating the promotion of CSCs properties induced by KRAS mutation through microarray analyses of genes specifically induced in CRC spheroids harboring both KRAS and APC mutations. Among them, REG4 was identified as a key factor since CRISPR/Cas9-mediated knockout of REG4 most significantly affected the stem cell characteristics in which CSCs markers were effectively suppressed. We show that REG4 mediates promotion of CSCs properties via Wnt/β-catenin signaling in various in vitro studies including tumor organoid systems. Furthermore, expression patterns of CSCs markers and REG4 correlated in intestinal tumors from Apcmin/+ /KrasG12D LA2 mice and in CRC patient tissues harboring both KRAS and APC mutations. The role of REG4 in the tumor-initiating capacity accompanied by enhancement of CSCs characteristics was also revealed by NSG mice xenograft system. Collectively, our study highlights the importance of REG4 in promoting CSCs properties induced by KRAS mutation, and provides a new therapeutic strategy for CRC harboring both APC and KRAS mutations.
Collapse
Affiliation(s)
- Jeong-Ha Hwang
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Department of Biomaterials Science and Engineering, Yonsei University, Seoul, South Korea
| | - Junyong Yoon
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yong-Hee Cho
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Pu-Hyeon Cha
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jong-Chan Park
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,CK Biotechnology Inc., Seoul, South Korea
| |
Collapse
|
41
|
Yu H, Zhang S, Ibrahim AN, Wang J, Deng Z, Wang M. RCC2 promotes proliferation and radio-resistance in glioblastoma via activating transcription of DNMT1. Biochem Biophys Res Commun 2019; 516:999-1006. [PMID: 31277942 DOI: 10.1016/j.bbrc.2019.06.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022]
Abstract
Regulator of chromosome condensation 2 (RCC2) is a regulator of cell-cycle progression linked in multiple cancers to pro-tumorigenic phenomena including promotion of tumor growth, tumor metastases and poorer patient prognoses. However, the role of RCC2 in GBM remains under-investigated. Here, we sought to determine the relevance of RCC2 in GBM, as well as its roles in GBM development, progression and prognosis. Initial clinical evaluation determined significant RCC2 enrichment in GBM when compared to normal brain tissue, and elevated expression was closely associated with a poorer prognosis in glioma patients. Via shRNA inhibition, we determined that RCC2 is essential to tumor proliferation and tumorigenicity in vitro and in vivo. Additionally, RCC2 was determined to promote radioresistance of GBM tumor cells. Investigation of the underlying mechanisms implicated DNA mismatch repair, JAK-STAT pathway and activated transcription of DNA methyltransferase 1 (DNMT1). For validation, pharmacologic inhibition via administration of a DNMT1 inhibitor demonstrated attenuated GBM tumor growth both in vitro and in vivo. Collectively, this study determined a novel therapeutic target for GBM in the form of RCC2, which plays a pivotal role in GBM proliferation and radio-resistance via regulation of DNMT1 expression in a p-STAT3 dependent manner.
Collapse
Affiliation(s)
- Hai Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430073, China
| | - Ahmed N Ibrahim
- Department of Neurology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhong Deng
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
42
|
Berger A, Brady NJ, Bareja R, Robinson B, Conteduca V, Augello MA, Puca L, Ahmed A, Dardenne E, Lu X, Hwang I, Bagadion AM, Sboner A, Elemento O, Paik J, Yu J, Barbieri CE, Dephoure N, Beltran H, Rickman DS. N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer. J Clin Invest 2019; 129:3924-3940. [PMID: 31260412 DOI: 10.1172/jci127961] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite recent therapeutic advances, prostate cancer remains a leading cause of cancer-related death. A subset of castration resistant prostate cancers become androgen receptor (AR) signaling-independent and develop neuroendocrine prostate cancer (NEPC) features through lineage plasticity. These NEPC tumors, associated with aggressive disease and poor prognosis, are driven, in part, by aberrant expression of N-Myc, through mechanisms that remain unclear. Integrative analysis of the N-Myc transcriptome, cistrome and interactome using in vivo, in vitro and ex vivo models (including patient-derived organoids) identified a lineage switch towards a neural identity associated with epigenetic reprogramming. N-Myc and known AR-co-factors (e.g., FOXA1 and HOXB13) overlapped, independently of AR, at genomic loci implicated in neural lineage specification. Moreover, histone marks specifically associated with lineage-defining genes were reprogrammed by N-Myc. We also demonstrated that the N-Myc-induced molecular program accurately classifies our cohort of patients with advanced prostate cancer. Finally, we revealed the potential for EZH2 inhibition to reverse the N-Myc-induced suppression of epithelial lineage genes. Altogether, our data provide insights on how N-Myc regulates lineage plasticity and epigenetic reprogramming associated with lineage-specification. The N-Myc signature we defined could also help predict the evolution of prostate cancer and thus better guide the choice of future therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Rohan Bareja
- Caryl and Israel Englander Institute for Precision Medicine, NewYork-Presbyterian Hospital
| | - Brian Robinson
- Department of Pathology and Laboratory Medicine.,Caryl and Israel Englander Institute for Precision Medicine, NewYork-Presbyterian Hospital
| | | | | | | | - Adnan Ahmed
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| | | | - Xiaodong Lu
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Inah Hwang
- Department of Pathology and Laboratory Medicine
| | | | - Andrea Sboner
- Department of Pathology and Laboratory Medicine.,Caryl and Israel Englander Institute for Precision Medicine, NewYork-Presbyterian Hospital.,Department of Physiology and Biophysics, Institute for Computational Biomedicine, and.,Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, NewYork-Presbyterian Hospital.,Department of Physiology and Biophysics, Institute for Computational Biomedicine, and.,Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine.,Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Jindan Yu
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Christopher E Barbieri
- Caryl and Israel Englander Institute for Precision Medicine, NewYork-Presbyterian Hospital.,Department of Urology, and.,Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Noah Dephoure
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA.,Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Himisha Beltran
- Caryl and Israel Englander Institute for Precision Medicine, NewYork-Presbyterian Hospital.,Department of Medicine.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David S Rickman
- Department of Pathology and Laboratory Medicine.,Caryl and Israel Englander Institute for Precision Medicine, NewYork-Presbyterian Hospital.,Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
43
|
Miranda A, Hamilton PT, Zhang AW, Pattnaik S, Becht E, Mezheyeuski A, Bruun J, Micke P, de Reynies A, Nelson BH. Cancer stemness, intratumoral heterogeneity, and immune response across cancers. Proc Natl Acad Sci U S A 2019; 116:9020-9029. [PMID: 30996127 PMCID: PMC6500180 DOI: 10.1073/pnas.1818210116] [Citation(s) in RCA: 364] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Regulatory programs that control the function of stem cells are active in cancer and confer properties that promote progression and therapy resistance. However, the impact of a stem cell-like tumor phenotype ("stemness") on the immunological properties of cancer has not been systematically explored. Using gene-expression-based metrics, we evaluated the association of stemness with immune cell infiltration and genomic, transcriptomic, and clinical parameters across 21 solid cancers. We found pervasive negative associations between cancer stemness and anticancer immunity. This occurred despite high stemness cancers exhibiting increased mutation load, cancer-testis antigen expression, and intratumoral heterogeneity. Stemness was also strongly associated with cell-intrinsic suppression of endogenous retroviruses and type I IFN signaling, and increased expression of multiple therapeutically accessible immunosuppressive pathways. Thus, stemness is not only a fundamental process in cancer progression but may provide a mechanistic link between antigenicity, intratumoral heterogeneity, and immune suppression across cancers.
Collapse
Affiliation(s)
- Alex Miranda
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
| | | | - Allen W Zhang
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Graduate Bioinformatics Training Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Swetansu Pattnaik
- The Kinghorn Cancer Centre and Cancer Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Etienne Becht
- Singapore Immunology Network, Agency for Science, Technology and Research, 138648 Singapore
| | - Artur Mezheyeuski
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Jarle Bruun
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Patrick Micke
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Aurélien de Reynies
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada;
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 3E6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
44
|
Peng Q, Yue C, Chen ACH, Lee KC, Fong SW, Yeung WSB, Lee YL. Connexin 43 is involved in early differentiation of human embryonic stem cells. Differentiation 2019; 105:33-44. [DOI: 10.1016/j.diff.2018.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/05/2018] [Accepted: 12/18/2018] [Indexed: 11/25/2022]
|
45
|
Kim Y, Kang K, Lee SB, Seo D, Yoon S, Kim SJ, Jang K, Jung YK, Lee KG, Factor VM, Jeong J, Choi D. Small molecule-mediated reprogramming of human hepatocytes into bipotent progenitor cells. J Hepatol 2019; 70:97-107. [PMID: 30240598 DOI: 10.1016/j.jhep.2018.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 08/02/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Currently, much effort is directed towards the development of new cell sources for clinical therapy using cell fate conversion by small molecules. Direct lineage reprogramming to a progenitor state has been reported in terminally differentiated rodent hepatocytes, yet remains a challenge in human hepatocytes. METHODS Human hepatocytes were isolated from healthy and diseased donor livers and reprogrammed into progenitor cells by 2 small molecules, A83-01 and CHIR99021 (AC), in the presence of EGF and HGF. The stemness properties of human chemically derived hepatic progenitors (hCdHs) were tested by standard in vitro and in vivo assays and transcriptome profiling. RESULTS We developed a robust culture system for generating hCdHs with therapeutic potential. The use of HGF proved to be an essential determinant of the fate conversion process. Based on functional evidence, activation of the HGF/MET signal transduction system collaborated with A83-01 and CHIR99021 to allow a rapid expansion of progenitor cells through the activation of the ERK pathway. hCdHs expressed hepatic progenitor markers and could self-renew for at least 10 passages while retaining a normal karyotype and potential to differentiate into functional hepatocytes and biliary epithelial cells in vitro. Gene expression profiling using RNAseq confirmed the transcriptional reprogramming of hCdHs towards a progenitor state and the suppression of mature hepatocyte transcripts. Upon intrasplenic transplantation in several models of therapeutic liver repopulation, hCdHs effectively repopulated the damaged parenchyma. CONCLUSION Our study is the first report of successful reprogramming of human hepatocytes to a population of proliferating bipotent cells with regenerative potential. hCdHs may provide a novel tool that permits expansion and genetic manipulation of patient-specific progenitors to study regeneration and the repair of diseased livers. LAY SUMMARY Human primary hepatocytes were reprogrammed towards hepatic progenitor cells by a combined treatment with 2 small molecules, A83-01 and CHIR99021, and HGF. Chemically derived hepatic progenitors exhibited a high proliferation potential and the ability to differentiate into hepatocytes and biliary epithelial cells both in vitro and in vivo. This approach enables the generation of patient-specific hepatic progenitors and provides a platform for personal and stem cell-based regenerative medicine.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyojin Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Bum Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul 01812, Republic of Korea
| | - Daekwan Seo
- Macrogen Corporation, Rockville, MD 20850, USA
| | - Sangtae Yoon
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea
| | - Sung Joo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul 03063, Republic of Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Yun Kyung Jung
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Kyeong Geun Lee
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Valentina M Factor
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jaemin Jeong
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea.
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
46
|
Shekari F, Han CL, Lee J, Mirzaei M, Gupta V, Haynes PA, Lee B, Baharvand H, Chen YJ, Hosseini Salekdeh G. Surface markers of human embryonic stem cells: a meta analysis of membrane proteomics reports. Expert Rev Proteomics 2018; 15:911-922. [PMID: 30358457 DOI: 10.1080/14789450.2018.1539669] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Human embryonic stem cells (hESCs) have unique biological features and attributes that make them attractive in various areas of biomedical research. With heightened applications, there is an ever increasing need for advancement of proteome analysis. Membrane proteins are one of the most important subset of hESC proteins as they can be used as surface markers. Areas covered: This review discusses commonly used surface markers of hESCs, and provides in-depth analysis of available hESC membrane proteome reports and the existence of these markers in many other cell types, especially cancer cells. Appreciating, existing ambiguity in the definition of a membrane protein, we have attempted a meta analysis of the published membrane protein reports of hESCs by using a combination of protein databases and prediction tools to find the most confident plasma membrane proteins in hESCs. Furthermore, responsiveness of plasma membrane proteins to differentiation has been discussed based on available transcriptome profiling data bank. Expert commentary: Combined transcriptome and membrane proteome analysis highlighted additional proteins that may eventually find utility as new cell surface markers.
Collapse
Affiliation(s)
- Faezeh Shekari
- a Department of Molecular Systems Biology at Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran.,b Department of Developmental Biology , University of Science and Culture, ACECR , Tehran , Iran
| | - Chia-Li Han
- c Chemical Biology and Molecular Biophysics Program , Institute of Chemistry , Taipei , Taiwan , Republic of China
| | - Jaesuk Lee
- d Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute , Gachon University , Incheon , Republic of Korea
| | - Mehdi Mirzaei
- e Department of Molecular Sciences , Macquarie University , Sydney , NSW , Australia.,f Australian Proteome Analysis Facility , Macquarie University , Sydney , NSW , Australia.,g Department of Clinical Medicine , Macquarie University , Sydney , NSW , Australia
| | - Vivek Gupta
- g Department of Clinical Medicine , Macquarie University , Sydney , NSW , Australia
| | - Paul A Haynes
- e Department of Molecular Sciences , Macquarie University , Sydney , NSW , Australia
| | - Bonghee Lee
- d Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute , Gachon University , Incheon , Republic of Korea
| | - Hossein Baharvand
- b Department of Developmental Biology , University of Science and Culture, ACECR , Tehran , Iran.,h Department of Stem Cells and Developmental Biology at Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
| | - Yu-Ju Chen
- c Chemical Biology and Molecular Biophysics Program , Institute of Chemistry , Taipei , Taiwan , Republic of China
| | - Ghasem Hosseini Salekdeh
- a Department of Molecular Systems Biology at Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran.,e Department of Molecular Sciences , Macquarie University , Sydney , NSW , Australia.,i Department of Systems and Synthetic biology , Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization , Karaj , Iran
| |
Collapse
|
47
|
Mai T, Markov GJ, Brady JJ, Palla A, Zeng H, Sebastiano V, Blau HM. NKX3-1 is required for induced pluripotent stem cell reprogramming and can replace OCT4 in mouse and human iPSC induction. Nat Cell Biol 2018; 20:900-908. [PMID: 30013107 PMCID: PMC6101038 DOI: 10.1038/s41556-018-0136-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 06/04/2018] [Indexed: 12/21/2022]
Abstract
Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) is now routinely accomplished by overexpression of the four Yamanaka factors (OCT4, SOX2, KLF4, MYC (or OSKM))1. These iPSCs can be derived from patients' somatic cells and differentiated toward diverse fates, serving as a resource for basic and translational research. However, mechanistic insights into regulators and pathways that initiate the pluripotency network remain to be resolved. In particular, naturally occurring molecules that activate endogenous OCT4 and replace exogenous OCT4 in human iPSC reprogramming have yet to be found. Using a heterokaryon reprogramming system we identified NKX3-1 as an early and transiently expressed homeobox transcription factor. Following knockdown of NKX3-1, iPSC reprogramming is abrogated. NKX3-1 functions downstream of the IL-6-STAT3 regulatory network to activate endogenous OCT4. Importantly, NKX3-1 substitutes for exogenous OCT4 to reprogram both mouse and human fibroblasts at comparable efficiencies and generate fully pluripotent stem cells. Our findings establish an essential role for NKX3-1, a prostate-specific tumour suppressor, in iPSC reprogramming.
Collapse
Affiliation(s)
- Thach Mai
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Glenn J Markov
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Jennifer J Brady
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA.,23andMe Inc, Mountain View, CA, USA
| | - Adelaida Palla
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Hong Zeng
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA.,Department of Obstetrics and Gynecology, Stanford School of Medicine, Stanford, CA, USA
| | - Vittorio Sebastiano
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA.,Department of Obstetrics and Gynecology, Stanford School of Medicine, Stanford, CA, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA. .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA.
| |
Collapse
|
48
|
Anti-podocalyxin antibody exerts antitumor effects via antibody-dependent cellular cytotoxicity in mouse xenograft models of oral squamous cell carcinoma. Oncotarget 2018; 9:22480-22497. [PMID: 29854293 PMCID: PMC5976479 DOI: 10.18632/oncotarget.25132] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/24/2018] [Indexed: 01/03/2023] Open
Abstract
Podocalyxin (PODXL) overexpression is associated with progression, metastasis, and poor outcomes in cancers. We recently produced the novel anti-PODXL monoclonal antibody (mAb) PcMab-47 (IgG1, kappa). Herein, we engineered PcMab-47 into 47-mG2a, a mouse IgG2a-type mAb, to add antibody-dependent cellular cytotoxicity (ADCC). We further developed 47-mG2a-f, a core fucose-deficient type of 47-mG2a to augment its ADCC. Immunohistochemical analysis of oral cancer tissues using PcMab-47 and 47-mG2a revealed that the latter stained oral squamous cell carcinoma (OSCC) cells in a cytoplasmic pattern at a much lower concentration. PcMab-47 and 47-mG2a detected PODXL in 163/201 (81.1%) and in 197/201 (98.0%) OSCC samples, respectively. 47-mG2a-f also detected PODXL in OSCCs at a similar frequency as 47-mG2a. In vitro analysis revealed that both 47-mG2a and 47-mG2a-f exhibited strong complement-dependent cytotoxicity (CDC) against CHO/hPODXL cells. In contrast, 47-mG2a-f exhibited much stronger ADCC than 47-mG2a against OSCC cells, indicating that ADCC and CDC of those anti-PODXL mAbs depend on target cells. In vivo analysis revealed that both 47-mG2a and 47-mG2a-f exerted antitumor activity in CHO/hPODXL xenograft models at a dose of 100 μg or 500 μg/mouse/week administered twice. 47-mG2a-f, but not 47-mG2a, exerted antitumor activity in SAS and HSC-2 xenograft models at a dose of 100 μg/mouse/week administered three times. Although both 47-mG2a and 47-mG2a-f exerted antitumor activity in HSC-2 xenograft models at a dose of 500 μg/mouse/week administered twice, 47-mG2a-f also showed higher antitumor activity than 47-mG2a. These results suggested that a core fucose-deficient anti-PODXL mAb could be useful for antibody-based therapy against PODXL-expressing OSCCs.
Collapse
|
49
|
Capturing the interactome of newly transcribed RNA. Nat Methods 2018; 15:213-220. [PMID: 29431736 DOI: 10.1038/nmeth.4595] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
Abstract
We combine the labeling of newly transcribed RNAs with 5-ethynyluridine with the characterization of bound proteins. This approach, named capture of the newly transcribed RNA interactome using click chemistry (RICK), systematically captures proteins bound to a wide range of RNAs, including nascent RNAs and traditionally neglected nonpolyadenylated RNAs. RICK has identified mitotic regulators amongst other novel RNA-binding proteins with preferential affinity for nonpolyadenylated RNAs, revealed a link between metabolic enzymes/factors and nascent RNAs, and expanded the known RNA-bound proteome of mouse embryonic stem cells. RICK will facilitate an in-depth interrogation of the total RNA-bound proteome in different cells and systems.
Collapse
|
50
|
Selection of Suitable Reference Genes for Quantitative Real-Time PCR Normalization in Human Stem Cell Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:151-168. [PMID: 30267307 DOI: 10.1007/5584_2018_277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quantitative real-time polymerase chain reaction (qRT-PCR) is a widely utilized method for evaluating the gene expressions in stem cell research. This method enables researchers to obtain fast and precise results, but the accuracy of the data depends on certain factors, such as those associated with biological sample preparation and PCR efficiency. In order to achieve accurate and reliable results, it is of utmost importance to designate the reference genes, the expressions of which are suitable to all kinds of experimental conditions. Hence it is vital to normalize the qRT-PCR data by using the reference genes. In recent years, it has been found that the expression levels of reference genes widely used in stem cell research present a substantial amount of variation and are not necessarily suitable for normalization. This chapter at hand stresses the significance of selecting suitable reference genes from the point view of human stem cell research.
Collapse
|