1
|
Navarro S, Talucci I, Göb V, Hartmann S, Beck S, Orth V, Stoll G, Maric HM, Stegner D, Nieswandt B. The humanized platelet glycoprotein VI Fab inhibitor EMA601 protects from arterial thrombosis and ischaemic stroke in mice. Eur Heart J 2024; 45:4582-4597. [PMID: 39150906 PMCID: PMC11560278 DOI: 10.1093/eurheartj/ehae482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024] Open
Abstract
BACKGROUND AND AIMS Glycoprotein VI (GPVI) is a platelet collagen/fibrin(ogen) receptor and an emerging pharmacological target for the treatment of thrombotic and thrombo-inflammatory diseases, notably ischaemic stroke. A first anti-human GPVI (hGPVI) antibody Fab-fragment (ACT017/glenzocimab, KD: 4.1 nM) recently passed a clinical phase 1b/2a study in patients with acute ischaemic stroke and was found to be well tolerated, safe, and potentially beneficial. In this study, a novel humanized anti-GPVI antibody Fab-fragment (EMA601; KD: 0.195 nM) was developed that inhibits hGPVI function with very high potency in vitro and in vivo. METHODS Fab-fragments of the mouse anti-hGPVI IgG Emf6.1 were tested for functional GPVI inhibition in human platelets and in hGPVI expressing (hGP6tg/tg) mouse platelets. The in vivo effect of Emf6.1Fab was assessed in a tail bleeding assay, an arterial thrombosis model and the transient middle cerebral artery occlusion (tMCAO) model of ischaemic stroke. Using complementary-determining region grafting, a humanized version of Emf6.1Fab (EMA601) was generated. Emf6.1Fab/EMA601 interaction with hGPVI was mapped in array format and kinetics and quantified by bio-layer interferometry. RESULTS Emf6.1Fab (KD: 0.427 nM) blocked GPVI function in human and hGP6tg/tg mouse platelets in multiple assays in vitro at concentrations ≥5 µg/mL. Emf6.1Fab (4 mg/kg)-treated hGP6tg/tg mice showed potent hGPVI inhibition ex vivo and were profoundly protected from arterial thrombosis as well as from cerebral infarct growth after tMCAO, whereas tail-bleeding times remained unaffected. Emf6.1Fab binds to a so far undescribed membrane proximal epitope in GPVI. The humanized variant EMA601 displayed further increased affinity for hGPVI (KD: 0.195 nM) and fully inhibited the receptor at 0.5 µg/mL, corresponding to a >50-fold potency compared with ACT017. CONCLUSIONS EMA601 is a conceptually novel and promising anti-platelet agent to efficiently prevent or treat arterial thrombosis and thrombo-inflammatory pathologies in humans at risk.
Collapse
Affiliation(s)
- Stefano Navarro
- Institute of Experimental Biomedicine I, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ivan Talucci
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Vanessa Göb
- Institute of Experimental Biomedicine I, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Stefanie Hartmann
- Institute of Experimental Biomedicine I, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Sarah Beck
- Institute of Experimental Biomedicine I, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | | | - Guido Stoll
- Institute of Experimental Biomedicine I, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Hans M Maric
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - David Stegner
- Institute of Experimental Biomedicine I, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
- EMFRET Analytics GmbH, Eibelstadt, Germany
| |
Collapse
|
2
|
Sim MMS, Shiferawe S, Wood JP. Novel strategies in antithrombotic therapy: targeting thrombosis while preserving hemostasis. Front Cardiovasc Med 2023; 10:1272971. [PMID: 37937289 PMCID: PMC10626538 DOI: 10.3389/fcvm.2023.1272971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Antithrombotic therapy is a delicate balance between the benefits of preventing a thrombotic event and the risks of inducing a major bleed. Traditional approaches have included antiplatelet and anticoagulant medications, require careful dosing and monitoring, and all carry some risk of bleeding. In recent years, several new targets have been identified, both in the platelet and coagulation systems, which may mitigate this bleeding risk. In this review, we briefly describe the current state of antithrombotic therapy, and then present a detailed discussion of the new generation of drugs that are being developed to target more safely existing or newly identified pathways, alongside the strategies to reverse direct oral anticoagulants, showcasing the breadth of approaches. Combined, these exciting advances in antithrombotic therapy bring us closer than we have ever been to the "holy grail" of the field, a treatment that separates the hemostatic and thrombotic systems, preventing clots without any concurrent bleeding risk.
Collapse
Affiliation(s)
- Martha M. S. Sim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
| | - Semekidus Shiferawe
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
| | - Jeremy P. Wood
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
- Division of Cardiovascular Medicine Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
3
|
Modulation of Glycoprotein VI and Its Downstream Signaling Pathways as an Antiplatelet Target. Int J Mol Sci 2022; 23:ijms23179882. [PMID: 36077280 PMCID: PMC9456422 DOI: 10.3390/ijms23179882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Antiplatelet therapy aims to reduce the risk of thrombotic events while maintaining hemostasis. A promising current approach is the inhibition of platelet glycoprotein GPVI-mediated adhesion pathways; pathways that do not involve coagulation. GPVI is a signaling receptor integral for collagen-induced platelet activation and participates in the thrombus consolidation process, being a suitable target for thrombosis prevention. Considering this, the blocking or antibody-mediated depletion of GPVI is a promising antiplatelet therapy for the effective and safe treatment of thrombotic diseases without a significant risk of bleeding and impaired hemostatic plug formation. This review describes the current knowledge concerning pharmaceutical approaches to platelet GPVI modulation and its downstream signaling pathways in this context.
Collapse
|
4
|
Jourdi G, Lordkipanidzé M, Philippe A, Bachelot-Loza C, Gaussem P. Current and Novel Antiplatelet Therapies for the Treatment of Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms222313079. [PMID: 34884884 PMCID: PMC8658271 DOI: 10.3390/ijms222313079] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Over the last decades, antiplatelet agents, mainly aspirin and P2Y12 receptor antagonists, have significantly reduced morbidity and mortality associated with arterial thrombosis. Their pharmacological characteristics, including pharmacokinetic/pharmacodynamics profiles, have been extensively studied, and a significant number of clinical trials assessing their efficacy and safety in various clinical settings have established antithrombotic efficacy. Notwithstanding, antiplatelet agents carry an inherent risk of bleeding. Given that bleeding is associated with adverse cardiovascular outcomes and mortality, there is an unmet clinical need to develop novel antiplatelet therapies that inhibit thrombosis while maintaining hemostasis. In this review, we present the currently available antiplatelet agents, with a particular focus on their targets, pharmacological characteristics, and patterns of use. We will further discuss the novel antiplatelet therapies in the pipeline, with the goal of improved clinical outcomes among patients with atherothrombotic diseases.
Collapse
Affiliation(s)
- Georges Jourdi
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Correspondence: (G.J.); (P.G.)
| | - Marie Lordkipanidzé
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Aurélien Philippe
- INSERM, Innovations Thérapeutiques en Hémostase, Université de Paris, F-75006 Paris, France; (A.P.); (C.B.-L.)
- Service d’Hématologie Biologique, AP-HP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Christilla Bachelot-Loza
- INSERM, Innovations Thérapeutiques en Hémostase, Université de Paris, F-75006 Paris, France; (A.P.); (C.B.-L.)
| | - Pascale Gaussem
- INSERM, Innovations Thérapeutiques en Hémostase, Université de Paris, F-75006 Paris, France; (A.P.); (C.B.-L.)
- Service d’Hématologie Biologique, AP-HP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
- Correspondence: (G.J.); (P.G.)
| |
Collapse
|
5
|
Molecular Drivers of Platelet Activation: Unraveling Novel Targets for Anti-Thrombotic and Anti-Thrombo-Inflammatory Therapy. Int J Mol Sci 2020; 21:ijms21217906. [PMID: 33114406 PMCID: PMC7662962 DOI: 10.3390/ijms21217906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally-partly a consequence of increased population size and ageing-and are major contributors to reduced quality of life. Platelets play a major role in hemostasis and thrombosis. While platelet activation and aggregation are essential for hemostasis at sites of vascular injury, uncontrolled platelet activation leads to pathological thrombus formation and provokes thrombosis leading to myocardial infarction or stroke. Platelet activation and thrombus formation is a multistage process with different signaling pathways involved to trigger platelet shape change, integrin activation, stable platelet adhesion, aggregation, and degranulation. Apart from thrombotic events, thrombo-inflammation contributes to organ damage and dysfunction in CVDs and is mediated by platelets and inflammatory cells. Therefore, in the past, many efforts have been made to investigate specific signaling pathways in platelets to identify innovative and promising approaches for novel antithrombotic and anti-thrombo-inflammatory strategies that do not interfere with hemostasis. In this review, we focus on some of the most recent data reported on different platelet receptors, including GPIb-vWF interactions, GPVI activation, platelet chemokine receptors, regulation of integrin signaling, and channel homeostasis of NMDAR and PANX1.
Collapse
|
6
|
Schuhmann MK, Stoll G, Bieber M, Vögtle T, Hofmann S, Klaus V, Kraft P, Seyhan M, Kollikowski AM, Papp L, Heuschmann PU, Pham M, Nieswandt B, Stegner D. CD84 Links T Cell and Platelet Activity in Cerebral Thrombo-Inflammation in Acute Stroke. Circ Res 2020; 127:1023-1035. [PMID: 32762491 PMCID: PMC7508294 DOI: 10.1161/circresaha.120.316655] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023]
Abstract
RATIONALE Ischemic stroke is a leading cause of morbidity and mortality worldwide. Recanalization of the occluded vessel is essential but not sufficient to guarantee brain salvage. Experimental and clinical data suggest that infarcts often develop further due to a thromboinflammatory process critically involving platelets and T cells, but the underlying mechanisms are unknown. OBJECTIVE We aimed to determine the role of CD (cluster of differentiation)-84 in acute ischemic stroke after recanalization and to dissect the underlying molecular thromboinflammatory mechanisms. METHODS AND RESULTS Here, we show that mice lacking CD84-a homophilic immunoreceptor of the SLAM (signaling lymphocyte activation molecule) family-on either platelets or T cells displayed reduced cerebral CD4+ T-cell infiltration and thrombotic activity following experimental stroke resulting in reduced neurological damage. In vitro, platelet-derived soluble CD84 enhanced motility of wild-type but not of Cd84-/- CD4+ T cells suggesting homophilic CD84 interactions to drive this process. Clinically, human arterial blood directly sampled from the ischemic cerebral circulation indicated local shedding of platelet CD84. Moreover, high platelet CD84 expression levels were associated with poor outcome in patients with stroke. CONCLUSIONS These results establish CD84 as a critical pathogenic effector and thus a potential pharmacological target in ischemic stroke.
Collapse
Affiliation(s)
- Michael K. Schuhmann
- From the Department of Neurology (M.K.S., G.S., M.B., P.K., L.P.), University Hospital Würzburg, Germany
| | - Guido Stoll
- From the Department of Neurology (M.K.S., G.S., M.B., P.K., L.P.), University Hospital Würzburg, Germany
| | - Michael Bieber
- From the Department of Neurology (M.K.S., G.S., M.B., P.K., L.P.), University Hospital Würzburg, Germany
| | - Timo Vögtle
- Department I, Institute of Experimental Biomedicine (T.V., S.H., V.K., B.N., D.S.), University Hospital Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging (T.V., S.H., B.N., D.S.), University of Würzburg, Germany
| | - Sebastian Hofmann
- Department I, Institute of Experimental Biomedicine (T.V., S.H., V.K., B.N., D.S.), University Hospital Würzburg, Germany
| | - Vanessa Klaus
- Department I, Institute of Experimental Biomedicine (T.V., S.H., V.K., B.N., D.S.), University Hospital Würzburg, Germany
| | - Peter Kraft
- From the Department of Neurology (M.K.S., G.S., M.B., P.K., L.P.), University Hospital Würzburg, Germany
- Department of Neurology, Klinikum Main-Spessart, Lohr, Germany (P.K.)
| | - Mert Seyhan
- Institute of Clinical Epidemiology and Biometry (M.S., P.U.H.), University of Würzburg, Germany
| | | | - Lena Papp
- From the Department of Neurology (M.K.S., G.S., M.B., P.K., L.P.), University Hospital Würzburg, Germany
| | - Peter U. Heuschmann
- Institute of Clinical Epidemiology and Biometry (M.S., P.U.H.), University of Würzburg, Germany
| | - Mirko Pham
- Department of Neuroradiology (A.M.K., M.P.), University Hospital Würzburg, Germany
| | - Bernhard Nieswandt
- Rudolf Virchow Center for Integrative and Translational Bioimaging (T.V., S.H., B.N., D.S.), University of Würzburg, Germany
| | - David Stegner
- Department I, Institute of Experimental Biomedicine (T.V., S.H., V.K., B.N., D.S.), University Hospital Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging (T.V., S.H., B.N., D.S.), University of Würzburg, Germany
| |
Collapse
|
7
|
Donner L, Toska LM, Krüger I, Gröniger S, Barroso R, Burleigh A, Mezzano D, Pfeiler S, Kelm M, Gerdes N, Watson SP, Sun Y, Elvers M. The collagen receptor glycoprotein VI promotes platelet-mediated aggregation of β-amyloid. Sci Signal 2020; 13:13/643/eaba9872. [PMID: 32753479 DOI: 10.1126/scisignal.aba9872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerebral amyloid angiopathy (CAA) and β-amyloid (Aβ) deposition in the brain parenchyma are hallmarks of Alzheimer's disease (AD). We previously reported that platelets contribute to Aβ aggregation in cerebral vessels by secreting the factor clusterin upon binding of Aβ40 to the fibrinogen receptor integrin αIIbβ3 Here, we investigated the contribution of the collagen receptor GPVI (glycoprotein VI) in platelet-induced amyloid aggregation. Using platelets isolated from GPVI-wild type and GPVI-deficient human donors and mice, we found that Aβ40 bound to GPVI, which induced the release of ATP and fibrinogen, resulting in platelet aggregation. Binding of Aβ40 to integrin αIIbβ3, fibrinogen, and GPVI collectively contributed to the formation of amyloid clusters at the platelet surface. Consequently, blockade of αIIbβ3 or genetic loss of GPVI reduced amyloid fibril formation in cultured platelets and decreased the adhesion of Aβ-activated platelets to injured carotid arteries in mice. Application of losartan to inhibit collagen binding to GPVI resulted in decreased Aβ40-stimulated platelet activation, factor secretion, and platelet aggregation. Furthermore, the application of GPVI- or integrin-blocking antibodies reduced the formation of platelet-associated amyloid aggregates. Our findings indicate that Aβ40 promotes platelet-mediated amyloid aggregation by binding to both GPVI and integrin αIIbβ3 Blocking these pathways may therapeutically reduce amyloid plaque formation in cerebral vessels and the brain parenchyma of patients.
Collapse
Affiliation(s)
- Lili Donner
- Department of Vascular and Endovascular Surgery, Heinrich-Heine University Medical Center, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Laura Mara Toska
- Department of Vascular and Endovascular Surgery, Heinrich-Heine University Medical Center, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Irena Krüger
- Department of Vascular and Endovascular Surgery, Heinrich-Heine University Medical Center, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Sandra Gröniger
- Department of Vascular and Endovascular Surgery, Heinrich-Heine University Medical Center, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Ruben Barroso
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Alice Burleigh
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Diego Mezzano
- Department of Hematology and Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile
| | - Susanne Pfeiler
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Steve P Watson
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands B12 2TT, UK
| | - Yi Sun
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands B12 2TT, UK
| | - Margitta Elvers
- Department of Vascular and Endovascular Surgery, Heinrich-Heine University Medical Center, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
8
|
Therapeutic strategies for thrombosis: new targets and approaches. Nat Rev Drug Discov 2020; 19:333-352. [PMID: 32132678 DOI: 10.1038/s41573-020-0061-0] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Antiplatelet agents and anticoagulants are a mainstay for the prevention and treatment of thrombosis. However, despite advances in antithrombotic therapy, a fundamental challenge is the side effect of bleeding. Improved understanding of the mechanisms of haemostasis and thrombosis has revealed new targets for attenuating thrombosis with the potential for less bleeding, including glycoprotein VI on platelets and factor XIa of the coagulation system. The efficacy and safety of new agents are currently being evaluated in phase III trials. This Review provides an overview of haemostasis and thrombosis, details the current landscape of antithrombotic agents, addresses challenges with preventing thromboembolic events in patients at high risk and describes the emerging therapeutic strategies that may break the inexorable link between antithrombotic therapy and bleeding risk.
Collapse
|
9
|
Inhibition of platelet GPVI induces intratumor hemorrhage and increases efficacy of chemotherapy in mice. Blood 2019; 133:2696-2706. [PMID: 30952674 DOI: 10.1182/blood.2018877043] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/19/2019] [Indexed: 01/02/2023] Open
Abstract
Maintenance of tumor vasculature integrity is indispensable for tumor growth and thus affects tumor progression. Previous studies have identified platelets as major regulators of tumor vascular integrity, as their depletion selectively rendered tumor vessels highly permeable and caused massive intratumoral hemorrhage. While these results established platelets as potential targets for antitumor therapy, their depletion is not a treatment option due to their essential role in hemostasis. Thus, a detailed understanding of how platelets safeguard vascular integrity in tumors is urgently demanded. Here, we show for the first time that functional inhibition of glycoprotein VI (GPVI) on the platelet surface with an antibody (JAQ1) F(ab)2 fragment rapidly induces tumor hemorrhage and diminishes tumor growth similar to complete platelet depletion while not inducing systemic bleeding complications. The intratumor bleeding and tumor growth arrest could be reverted by depletion of Ly6G+ cells, confirming them to be responsible for the induction of bleeding and necrosis within the tumor. In addition, JAQ1 F(ab)2-mediated GPVI inhibition increased intratumoral accumulation of coadministered chemotherapeutic agents, such as Doxil and paclitaxel, thereby resulting in a profound antitumor effect. In summary, our findings identify platelet GPVI as a key regulator of vascular integrity specifically in growing tumors and could serve as a basis for the development of antitumor strategies based on the interference with platelet function.
Collapse
|
10
|
|
11
|
Vögtle T, Cherpokova D, Bender M, Nieswandt B. Targeting platelet receptors in thrombotic and thrombo-inflammatory disorders. Hamostaseologie 2017; 35:235-43. [DOI: 10.5482/hamo-14-10-0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/21/2015] [Indexed: 12/20/2022] Open
Abstract
SummaryPlatelet activation at sites of vascular injury is critical for the formation of a hemostatic plug which limits excessive blood loss, but also represents a major pathomechanism of ischemic cardio- and cerebrovascular diseases. Although currently available antiplatelet therapies have proved beneficial in preventing the recurrence of vascular events, their adverse effects on primary hemostasis emphasize the necessity to identify and characterize novel pharmacological targets for platelet inhibition. Increasing experimental evidence has suggested that several major platelet surface receptors which regulate initial steps of platelet adhesion and activation may become promising new targets for anti-platelet drugs due to their involvement in thrombotic and thrombo-inflammatory signaling cascades.This review summarizes recent developments in understanding the function of glycoprotein (GP)Ib, GPVI and the C-type lectin-like receptor 2 (CLEC-2) in hemostasis, arterial thrombosis and thrombo-inflammation and will discuss the suitability of the receptors as novel targets to treat these diseases in humans.
Collapse
|
12
|
Arthur JF, Gardiner EE, Andrews RK, Al-Tamimi M. Focusing on plasma glycoprotein VI. Thromb Haemost 2017; 107:648-55. [DOI: 10.1160/th11-10-0745] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/10/2011] [Indexed: 12/18/2022]
Abstract
SummaryNew methods for analysing both platelet and plasma forms of the platelet-specific collagen receptor, glycoprotein VI (GPVI) in experimental models or human clinical samples, and the development of the first therapeutic compounds based on dimeric soluble GPVI-Fc or anti-GPVI antibody-based constructs, coincide with increased understanding of the potential pathophysiological role of GPVI ligand binding and shedding. Platelet GPVI not only mediates platelet activation at the site of vascular injury where collagen is exposed, but is also implicated in the pathogenesis of other diseases, such as atherosclerosis and coagulopathy, rheumatoid arthritis and tumour metastasis. Here, we describe some of the critical mechanisms for generating soluble GPVI from platelets, and future avenues for exploiting this unique platelet-specific receptor for diagnosis and/or disease prevention.
Collapse
|
13
|
Jamasbi J, Ayabe K, Goto S, Nieswandt B, Peter K, Siess W. Platelet receptors as therapeutic targets: Past, present and future. Thromb Haemost 2017; 117:1249-1257. [DOI: 10.1160/th16-12-0911] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/08/2017] [Indexed: 01/08/2023]
Abstract
SummaryAnti-platelet drugs reduce arterial thrombosis after plaque rupture and erosion, prevent stent thrombosis and are used to prevent and treat myocardial infarction and ischaemic stroke. Some of them may also be helpful in treating less frequent diseases such as thrombotic thrombocytopenic purpura. The present concise review aims to cover current and future developments of anti-platelet drugs interfering with the interaction of von Willebrand factor (VWF) with glycoprotein (GP) Ibα, and directed against GPVI, GPIIb/IIIa (integrin αIIbβ3), the thrombin receptor PAR-1, and the ADP receptor P2Y12. The high expectations of having novel antiplatelet drugs which selectively inhibit arterial thrombosis without interfering with normal haemostasis could possibly be met in the near future.
Collapse
|
14
|
Arthur JF, Jandeleit-Dahm K, Andrews RK. Platelet Hyperreactivity in Diabetes: Focus on GPVI Signaling-Are Useful Drugs Already Available? Diabetes 2017; 66:7-13. [PMID: 27999100 DOI: 10.2337/db16-1098] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/24/2016] [Indexed: 11/13/2022]
Abstract
Adults with diabetes are 2-4 times more likely to suffer from heart disease or ischemic stroke than adults without diabetes, yet standard antiplatelet therapy, which is the cornerstone for primary and secondary prevention of cardiovascular disease, fails in many patients with diabetes. Three independent but often interrelated variables that contribute to platelet hyperreactivity-high blood glucose, oxidative stress, and elevated vascular shear forces-coexist in patients with diabetes, creating a perilous concurrence of risk factors for cardiovascular events. Recent research has focused attention on the platelet-specific collagen receptor glycoprotein VI (GPVI) as a potential antithrombotic target. Signaling events downstream of GPVI are influenced by hyperglycemia, oxidative stress, and shear stress. Importantly, drugs targeting these GPVI signaling pathways are already in existence. The potential to repurpose existing drugs is a high-gain strategy for yielding new antiplatelet agents and could have particular benefit in individuals with diabetes.
Collapse
Affiliation(s)
- Jane F Arthur
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | | | - Robert K Andrews
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| |
Collapse
|
15
|
May F, Krupka J, Fries M, Thielmann I, Pragst I, Weimer T, Panousis C, Nieswandt B, Stoll G, Dickneite G, Schulte S, Nolte MW. FXIIa inhibitor rHA-Infestin-4: Safe thromboprotection in experimental venous, arterial and foreign surface-induced thrombosis. Br J Haematol 2016; 173:769-78. [DOI: 10.1111/bjh.13990] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/04/2015] [Indexed: 12/11/2022]
Affiliation(s)
| | | | | | - Ina Thielmann
- Chair of Vascular Medicine; University Hospital Wuerzburg and Rudolf Virchow Centre for Experimental Biomedicine; Wuerzburg Germany
| | | | | | - Con Panousis
- CSL Limited; Bio21 Institute; Parkville Victoria Australia
| | - Bernhard Nieswandt
- Chair of Vascular Medicine; University Hospital Wuerzburg and Rudolf Virchow Centre for Experimental Biomedicine; Wuerzburg Germany
| | - Guido Stoll
- Department of Neurology; University Hospital Wuerzburg; Wuerzburg Germany
| | | | | | | |
Collapse
|
16
|
Tang C, Wang Y, Lei D, Huang L, Wang G, Chi Q, Zheng Y, Gachet C, Mangin PH, Zhu L. Standardization of a well-controlled in vivo mouse model of thrombus formation induced by mechanical injury. Thromb Res 2016; 141:49-57. [PMID: 26967532 DOI: 10.1016/j.thromres.2016.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/12/2016] [Accepted: 02/29/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Vascular plug formation by mechanical injury that exposes abundant extracellular matrix is an ideal model to mimic thrombus formation. The objective of this study was to standardize our previously established in vivo mouse model of thrombus formation induced by mechanical injury. RESULTS The mechanical injury was exerted by pinching the abdominal aorta with hemostatic forceps for either 15 (moderate injury) or 60 (severe injury) seconds. Thrombus formation was monitored for 20min in real time using a fluorescent microscope coupled to a CCD camera. In the moderate injury, thrombus formation peaked at approximately 1min after injury and resolved within 3min, with the mean AUC (area under the curve) of 165.2±17.29mm(2), whereas a larger thrombus was observed upon the severe injury, with the mean AUC of 600.5±37.77mm(2). Using scanning electron microscopy and HE staining, a complete deformation of the endothelium in the moderate injury model and the exposure of the media in the severe injury model were observed. The model was also evaluate for its application on the effects of antithrombotic drugs targeting GP IIb-IIIa (eptifibatide), ADP receptor P2Y1 (MRS2500) and P2Y12 (clopidogrel), and thrombin (hirudin) on thrombus formation. CONCLUSIONS We have improved a vascular injury model with optimal reproducibility and feasibility that allows evaluating the effect of anti-thrombotic drugs on thrombus formation in vivo.
Collapse
Affiliation(s)
- Chaojun Tang
- Cyrus Tang Hematology Center, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Key Lab of Preventive and Translational Medicine for Geriatric Diseases, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.
| | - Yinyan Wang
- Cyrus Tang Hematology Center, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Key Lab of Preventive and Translational Medicine for Geriatric Diseases, Jiangsu Institute of Hematology, Soochow University, Suzhou, China
| | - Daoxi Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Lu Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Qingjia Chi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Yiming Zheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Christian Gachet
- Unité Mixte de Recherche (UMR) S949, Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération de médecine translationelle (FMTS) de Strasbourg, Université de Strasbourg, Etablissement Français du Sang (EFS)-Alsace, Strasbourg, France
| | - Pierre H Mangin
- Unité Mixte de Recherche (UMR) S949, Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération de médecine translationelle (FMTS) de Strasbourg, Université de Strasbourg, Etablissement Français du Sang (EFS)-Alsace, Strasbourg, France
| | - Li Zhu
- Cyrus Tang Hematology Center, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Key Lab of Preventive and Translational Medicine for Geriatric Diseases, Jiangsu Institute of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
17
|
Schaff M, Gachet C, Mangin PH. [Anti-platelets without a bleeding risk: novel targets and strategies]. Biol Aujourdhui 2016; 209:211-28. [PMID: 26820829 DOI: 10.1051/jbio/2015023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 01/29/2023]
Abstract
Anti-platelet agents such as aspirin, clopidogrel and antagonists of integrin αIIbβ3 allowed to efficiently reduce morbidity and mortality associated with arterial thrombosis. A major limit of these drugs is that they increase the risk of bleeding. During the last few years, several innovative anti-thrombotic strategies with a potentially low bleeding risk were proposed. These approaches target the collagen receptor glycoprotein (GP) VI, the GPIb/von Willebrand factor axis, the thrombin receptor PAR-1, the activated form of integrin αIIbβ3 or the ADP receptor P2Y1. While an antagonist of PAR-1 was recently marketed, the clinical proofs of the efficiency and safety of the other agents remain to be established. This review evaluates these new anti-platelet approaches toward safer anti-thrombotic therapies.
Collapse
Affiliation(s)
- Mathieu Schaff
- Atherothrombosis and Vascular Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australie
| | - Christian Gachet
- UMR_S949, INSERM, Etablissement Français du Sang (EFS)-Alsace, Université de Strasbourg, Strasbourg, France
| | - Pierre Henri Mangin
- UMR_S949, INSERM, Etablissement Français du Sang (EFS)-Alsace, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
18
|
Murray KN, Parry-Jones AR, Allan SM. Interleukin-1 and acute brain injury. Front Cell Neurosci 2015; 9:18. [PMID: 25705177 PMCID: PMC4319479 DOI: 10.3389/fncel.2015.00018] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/12/2015] [Indexed: 01/05/2023] Open
Abstract
Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection) have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL)-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review.
Collapse
Affiliation(s)
- Katie N Murray
- Faculty of Life Sciences, University of Manchester Manchester, UK
| | | | - Stuart M Allan
- Faculty of Life Sciences, University of Manchester Manchester, UK
| |
Collapse
|
19
|
Flierl U, Nero TL, Lim B, Arthur JF, Yao Y, Jung SM, Gitz E, Pollitt AY, Zaldivia MTK, Jandrot-Perrus M, Schäfer A, Nieswandt B, Andrews RK, Parker MW, Gardiner EE, Peter K. Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators. ACTA ACUST UNITED AC 2015; 212:129-37. [PMID: 25646267 PMCID: PMC4322051 DOI: 10.1084/jem.20140391] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Flierl et al. show that phosphorothioate (PS) oligonucleotides activate platelets via interacting with the collagen receptor GPVI. As PS backbone modification is currently used for nucleotide-based drug candidates, the findings suggest that this widely used method may present a risk to patients in the form of arterial thrombosis. Nucleotide-based drug candidates such as antisense oligonucleotides, aptamers, immunoreceptor-activating nucleotides, or (anti)microRNAs hold great therapeutic promise for many human diseases. Phosphorothioate (PS) backbone modification of nucleotide-based drugs is common practice to protect these promising drug candidates from rapid degradation by plasma and intracellular nucleases. Effects of the changes in physicochemical properties associated with PS modification on platelets have not been elucidated so far. Here we report the unexpected binding of PS-modified oligonucleotides to platelets eliciting strong platelet activation, signaling, reactive oxygen species generation, adhesion, spreading, aggregation, and thrombus formation in vitro and in vivo. Mechanistically, the platelet-specific receptor glycoprotein VI (GPVI) mediates these platelet-activating effects. Notably, platelets from GPVI function–deficient patients do not exhibit binding of PS-modified oligonucleotides, and platelet activation is fully abolished. Our data demonstrate a novel, unexpected, PS backbone–dependent, platelet-activating effect of nucleotide-based drug candidates mediated by GPVI. This unforeseen effect should be considered in the ongoing development programs for the broad range of upcoming and promising DNA/RNA therapeutics.
Collapse
Affiliation(s)
- Ulrike Flierl
- Baker IDI Heart and Diabetes Institute, St. Vincent's Institute of Medical Research, and Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Tracy L Nero
- Baker IDI Heart and Diabetes Institute, St. Vincent's Institute of Medical Research, and Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia Baker IDI Heart and Diabetes Institute, St. Vincent's Institute of Medical Research, and Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Bock Lim
- Baker IDI Heart and Diabetes Institute, St. Vincent's Institute of Medical Research, and Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jane F Arthur
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Yu Yao
- Baker IDI Heart and Diabetes Institute, St. Vincent's Institute of Medical Research, and Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Stephanie M Jung
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England, UK
| | - Eelo Gitz
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Alice Y Pollitt
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Maria T K Zaldivia
- Baker IDI Heart and Diabetes Institute, St. Vincent's Institute of Medical Research, and Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | - Andreas Schäfer
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Bernhard Nieswandt
- Rudolf Virchow Centre for Experimental Biomedicine, D-97080 Würzburg, Germany
| | - Robert K Andrews
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Michael W Parker
- Baker IDI Heart and Diabetes Institute, St. Vincent's Institute of Medical Research, and Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia Baker IDI Heart and Diabetes Institute, St. Vincent's Institute of Medical Research, and Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Elizabeth E Gardiner
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Karlheinz Peter
- Baker IDI Heart and Diabetes Institute, St. Vincent's Institute of Medical Research, and Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
20
|
Bynagari-Settipalli YS, Cornelissen I, Palmer D, Duong D, Concengco C, Ware J, Coughlin SR. Redundancy and interaction of thrombin- and collagen-mediated platelet activation in tail bleeding and carotid thrombosis in mice. Arterioscler Thromb Vasc Biol 2014; 34:2563-9. [PMID: 25278288 DOI: 10.1161/atvbaha.114.304244] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Current antiplatelet strategies to prevent myocardial infarction and stroke are limited by bleeding risk. A better understanding of the roles of distinct platelet-activating pathways is needed. We determined whether platelet activation by 2 key primary activators, thrombin and collagen, plays distinct, redundant, or interacting roles in tail bleeding and carotid thrombosis in mice. APPROACH AND RESULTS Platelets from mice deficient for the thrombin receptor protease-activated receptor-4 (Par4) and the collagen receptor glycoprotein VI protein (GPVI) lack responses to thrombin and collagen, respectively. We examined tail bleeding and FeCl3-induced carotid artery occlusion in mice lacking Par4, GPVI, or both. We also examined a series of Par mutants with increasing impairment of thrombin signaling in platelets. Ablation of thrombin signaling alone by Par4 deficiency increased blood loss in the tail bleeding assay and impaired occlusive thrombus formation in the carotid occlusion assay. GPVI deficiency alone had no effect. Superimposing GPVI deficiency on Par4 deficiency markedly increased effect size in both assays. In contrast to complete ablation of thrombin signaling, 9- and 19-fold increases in EC50 for thrombin-induced platelet activation had only modest effects. CONCLUSIONS The observation that loss of Par4 uncovered large effects of GPVI deficiency implies that Par4 and GPVI made independent, partially redundant contributions to occlusive thrombus formation in the carotid and to hemostatic clot formation in the tail under the experimental conditions examined. At face value, these results suggest that thrombin- and collagen-induced platelet activation can play partially redundant roles, despite important differences in how these agonists are made available to platelets.
Collapse
Affiliation(s)
- Yamini S Bynagari-Settipalli
- From the Cardiovascular Research Institute, University of California, San Francisco (Y.S.B.-S., I.C., D.P., D.D., C.C., S.R.C.); and Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.)
| | - Ivo Cornelissen
- From the Cardiovascular Research Institute, University of California, San Francisco (Y.S.B.-S., I.C., D.P., D.D., C.C., S.R.C.); and Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.)
| | - Daniel Palmer
- From the Cardiovascular Research Institute, University of California, San Francisco (Y.S.B.-S., I.C., D.P., D.D., C.C., S.R.C.); and Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.)
| | - Daniel Duong
- From the Cardiovascular Research Institute, University of California, San Francisco (Y.S.B.-S., I.C., D.P., D.D., C.C., S.R.C.); and Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.)
| | - Cherry Concengco
- From the Cardiovascular Research Institute, University of California, San Francisco (Y.S.B.-S., I.C., D.P., D.D., C.C., S.R.C.); and Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.)
| | - Jerry Ware
- From the Cardiovascular Research Institute, University of California, San Francisco (Y.S.B.-S., I.C., D.P., D.D., C.C., S.R.C.); and Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.)
| | - Shaun R Coughlin
- From the Cardiovascular Research Institute, University of California, San Francisco (Y.S.B.-S., I.C., D.P., D.D., C.C., S.R.C.); and Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.).
| |
Collapse
|
21
|
Janse van Rensburg WJ, Badenhorst PN, Roodt JP. The Cape Chacma baboon is not suitable for evaluating human targeted anti-GPVI agents. Platelets 2014; 26:552-7. [DOI: 10.3109/09537104.2014.952224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Stegner D, Haining EJ, Nieswandt B. Targeting glycoprotein VI and the immunoreceptor tyrosine-based activation motif signaling pathway. Arterioscler Thromb Vasc Biol 2014; 34:1615-20. [PMID: 24925975 DOI: 10.1161/atvbaha.114.303408] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Coronary artery thrombosis and ischemic stroke are often initiated by the disruption of an atherosclerotic plaque and consequent intravascular platelet activation. Thus, antiplatelet drugs are central in the treatment and prevention of the initial, and subsequent, vascular events. However, novel pharmacological targets for platelet inhibition remain an important goal of cardiovascular research because of the negative effect of existing antiplatelet drugs on primary hemostasis. One promising target is the platelet collagen receptor glycoprotein VI. Blockade or antibody-mediated depletion of this receptor in circulating platelets is beneficial in experimental models of thrombosis and thrombo-inflammatory diseases, such as stroke, without impairing hemostasis. In this review, we summarize the importance of glycoprotein VI and (hem)immunoreceptor tyrosine-based activation motif signaling in hemostasis, thrombosis, and thrombo-inflammatory processes and discuss the targeting strategies currently under development for inhibiting glycoprotein VI and its signaling.
Collapse
Affiliation(s)
- David Stegner
- From the Department of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Elizabeth J Haining
- From the Department of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- From the Department of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
23
|
Jiang P, Jandrot-Perrus M. New advances in treating thrombotic diseases: GPVI as a platelet drug target. Drug Discov Today 2014; 19:1471-5. [PMID: 24931218 DOI: 10.1016/j.drudis.2014.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/09/2014] [Indexed: 12/21/2022]
Abstract
The recent introduction of highly effective antiplatelet drugs has contributed to the significant improvement in the treatment of acute coronary syndromes. However, limitations remain. Recurrence of ischaemic vascular events results in poor prognosis. Drugs of high antithrombotic efficacy are associated with an increased risk of bleeding, which is important in patients at risk of stroke. An attractive target for the development of new antithrombotics is platelet glycoprotein VI (GPVI) because its blockade seems to combine ideally efficiency and safety. In this review, we summarise current knowledge on the physiological role of GPVI in haemostasis and thrombosis. We also discuss evidence regarding the effectiveness and safety of strategies to inhibit GPVI.
Collapse
Affiliation(s)
- Peng Jiang
- INSERM, UMR_S1148 LVTS, 46 rue Henri Huchard, Paris 75018, France; University Paris Diderot - Paris 7, UMR_S1148, 46 rue Henri Huchard, Paris 75018, France
| | - Martine Jandrot-Perrus
- INSERM, UMR_S1148 LVTS, 46 rue Henri Huchard, Paris 75018, France; University Paris Diderot - Paris 7, UMR_S1148, 46 rue Henri Huchard, Paris 75018, France; AP-HP, Hôpital Bichat, 46 rue Henri Huchard, Paris 75018, France.
| |
Collapse
|
24
|
Abstract
While platelet activation is essential to maintain blood vessel patency and minimize loss of blood upon injury, untimely or excessive activity can lead to unwanted platelet activation and aggregation. Resultant thrombosis has the potential to block blood vessels, causing myocardial infarction or stroke. To tackle this major cause of mortality, clinical therapies that target platelet responsiveness (antiplatelet therapy) can successfully reduce cardiovascular events, especially in people at higher risk; however, all current antiplatelet therapies carry an increased probability of bleeding. This review will evaluate new and emerging targets for antithrombotics, focusing particularly on platelet glycoprotein VI, as blockade or depletion of this platelet-specific receptor conveys benefits in experimental models of thrombosis and thromboinflammation without causing major bleeding complications.
Collapse
Affiliation(s)
- Robert K Andrews
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Jane F Arthur
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Elizabeth E Gardiner
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Ungerer M, Münch G. Novel antiplatelet drugs in clinical development. Thromb Haemost 2013; 110:868-75. [PMID: 24108565 DOI: 10.1160/th13-02-0084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 09/04/2013] [Indexed: 01/13/2023]
Abstract
The clinical value of antiplatelet compounds strongly depends on the benefit-risk balance between their anti-thrombotic effects and the bleeding risk they incur. This ratio is especially important in the treatment of cerebro-vascular disease. Several novel compounds in clinical development hold promise to improve this benefit-risk ratio.
Collapse
Affiliation(s)
- M Ungerer
- M. Ungerer, Advancecor GmbH, Fraunhofer Str. 17, 82152 Martinsried, Germany, E-mail:
| | | |
Collapse
|
26
|
Goebel S, Li Z, Vogelmann J, Holthoff HP, Degen H, Hermann DM, Gawaz M, Ungerer M, Münch G. The GPVI-Fc fusion protein Revacept improves cerebral infarct volume and functional outcome in stroke. PLoS One 2013; 8:e66960. [PMID: 23935828 PMCID: PMC3720811 DOI: 10.1371/journal.pone.0066960] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/13/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES We examined the effect of Revacept, an Fc fusion protein which is specifically linked to the extracellular domain of glycoprotein VI (GPVI), on thrombus formation after vessel wall injury and on experimental stroke in mice. BACKGROUND Several antiplatelet drugs for the treatment of myocardial infarction or ischemic stroke with potent anti-ischemic effects have been developed, but all incur a significant risk of bleeding. METHODS Platelet adhesion and thrombus formation after endothelial injury was monitored in the carotid artery by intra-vital fluorescence microscopy. The morphological and clinical consequences of stroke were investigated in a mouse model with a one hour-occlusion of the middle cerebral artery. RESULTS Thrombus formation was significantly decreased after endothelial injury by 1 mg/kg Revacept i.v., compared to Fc only. 1 mg/kg Revacept i.v. applied in mice with ischemic stroke immediately before reperfusion significantly improved functional outcome, cerebral infarct size and edema compared to Fc only. Also treatment with 10 mg/kg rtPA was effective, and functional outcome was similar in both treatment groups. The combination of Revacept with rtPA leads to increased reperfusion compared to treatment with either agent alone. In contrast to rtPA, however, there were no signs of increased intracranial bleeding with Revacept. Both rtPA and Revacept improved survival after stroke compared to placebo treatment. Revacept and vWF bind to collagen and Revacept competitively prevented the binding of vWF to collagen. CONCLUSIONS Revacept reduces arterial thrombus formation, reduces cerebral infarct size and edema after ischemic stroke, improves functional and prognostic outcome without intracranial bleeding. Revacept not only prevents GPVI-mediated, but probably also vWF-mediated platelet adhesion and aggregate formation. Therefore Revacept might be a potent and safe tool to treat ischemic complications of stroke.
Collapse
Affiliation(s)
- Silvia Goebel
- AdvanceCOR GmbH (formerly Procorde GmbH), Martinsried, Germany
| | - Zhongmin Li
- AdvanceCOR GmbH (formerly Procorde GmbH), Martinsried, Germany
| | | | | | - Heidrun Degen
- AdvanceCOR GmbH (formerly Procorde GmbH), Martinsried, Germany
| | - Dirk M. Hermann
- Department of Neurology, Universitätsklinikum Essen (D.M. H.), Essen, Germany
| | - Meinrad Gawaz
- Department of Internal Medicine III, Universität Tübingen (M.G.), Tübingen, Germany
- * E-mail: (MG); (GM)
| | - Martin Ungerer
- AdvanceCOR GmbH (formerly Procorde GmbH), Martinsried, Germany
| | - Götz Münch
- AdvanceCOR GmbH (formerly Procorde GmbH), Martinsried, Germany
- * E-mail: (MG); (GM)
| |
Collapse
|
27
|
Cosemans JMEM, Angelillo-Scherrer A, Mattheij NJA, Heemskerk JWM. The effects of arterial flow on platelet activation, thrombus growth, and stabilization. Cardiovasc Res 2013; 99:342-52. [PMID: 23667186 DOI: 10.1093/cvr/cvt110] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Injury of an arterial vessel wall acutely triggers a multifaceted process of thrombus formation, which is dictated by the high-shear flow conditions in the artery. In this overview, we describe how the classical concept of arterial thrombus formation and vascular occlusion, driven by platelet activation and fibrin formation, can be extended and fine-tuned. This has become possible because of recent insight into the mechanisms of: (i) platelet-vessel wall and platelet-platelet communication, (ii) autocrine platelet activation, and (iii) platelet-coagulation interactions, in relation to blood flow dynamics. We list over 40 studies with genetically modified mice showing a role of platelet and plasma proteins in the control of thrombus stability after vascular injury. These include multiple platelet adhesive receptors and other junctional molecules, components of the ADP receptor signalling cascade to integrin activation, proteins controlling platelet shape, and autocrine activation processes, as well as multiple plasma proteins binding to platelets and proteins of the intrinsic coagulation cascade. Regulatory roles herein of the endothelium and other blood cells are recapitulated as well. Patient studies support the contribution of platelet- and coagulation activation in the regulation of thrombus stability. Analysis of the factors determining flow-dependent thrombus stabilization and embolus formation in mice will help to understand the regulation of this process in human arterial disease.
Collapse
Affiliation(s)
- Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht , Maastricht University, PO Box 616, Maastricht 6200 MD, The Netherlands
| | | | | | | |
Collapse
|
28
|
Mischnik M, Boyanova D, Hubertus K, Geiger J, Philippi N, Dittrich M, Wangorsch G, Timmer J, Dandekar T. A Boolean view separates platelet activatory and inhibitory signalling as verified by phosphorylation monitoring including threshold behaviour and integrin modulation. MOLECULAR BIOSYSTEMS 2013; 9:1326-39. [DOI: 10.1039/c3mb25597b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Zahid M, Mangin P, Loyau S, Hechler B, Billiald P, Gachet C, Jandrot-Perrus M. The future of glycoprotein VI as an antithrombotic target. J Thromb Haemost 2012; 10:2418-27. [PMID: 23020554 DOI: 10.1111/jth.12009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The treatment of acute coronary syndromes has been considerably improved in recent years with the introduction of highly efficient antiplatelet drugs. However, there are still significant limitations: the recurrence of adverse vascular events remains a problem, and the improvement in efficacy is counterbalanced by an increased risk of bleeding, which is of particular importance in patients at risk of stroke. One of the most attractive targets for the development of new molecules with potential antithrombotic activity is platelet glycoprotein (GP)VI, because its blockade appears to ideally combine efficacy and safety. This review summarizes current knowledge on GPVI regarding its structure, its function, and its role in physiologic hemostasis and thrombosis. Strategies for inhibiting GPVI are presented, and evidence of the antithrombotic efficacy and safety of GPVI antagonists is provided.
Collapse
Affiliation(s)
- M Zahid
- Inserm, UMRS_698, Paris, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Dütting S, Bender M, Nieswandt B. Platelet GPVI: a target for antithrombotic therapy?! Trends Pharmacol Sci 2012; 33:583-90. [DOI: 10.1016/j.tips.2012.07.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/13/2012] [Accepted: 07/18/2012] [Indexed: 11/25/2022]
|
31
|
Passacquale G, Ferro A. Current concepts of platelet activation: possibilities for therapeutic modulation of heterotypic vs. homotypic aggregation. Br J Clin Pharmacol 2012; 72:604-18. [PMID: 21223359 DOI: 10.1111/j.1365-2125.2011.03906.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Thrombogenic and inflammatory activity are two distinct aspects of platelet biology, which are sustained by the ability of activated platelets to interact with each other (homotypic aggregation) and to adhere to circulating leucocytes (heterotypic aggregation). These two events are regulated by distinct biomolecular mechanisms that are selectively activated in different pathophysiological settings. They can occur simultaneously, for example, as part of a pro-thrombotic/pro-inflammatory response induced by vascular damage, or independently, as in certain clinical conditions in which abnormal heterotypic aggregation has been observed in the absence of intravascular thrombosis. Current antiplatelet drugs have been developed to target specific molecular signalling pathways mainly implicated in thrombus formation, and their ever increasing clinical use has resulted in clear benefits in the treatment and prevention of arterial thrombotic events. However, the efficacy of currently available antiplatelet drugs remains suboptimal, most likely because their therapeutic action is limited to only few of the signalling pathways involved in platelet homotypic aggregation. In this context, modulation of heterotypic aggregation, which is believed to contribute importantly to acute thrombotic events, as well to the pathophysiology of atherosclerosis itself, may offer benefits over and above the classical antiplatelet approach. This review will focus on the distinct biomolecular pathways that, following platelet activation, underlie homotypic and heterotypic aggregation, aiming potentially to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Gabriella Passacquale
- Department of Clinical Pharmacology, Cardiovascular Division, King's College London, London, UK
| | | |
Collapse
|
32
|
Deckmyn H, De Meyer SF, Broos K, Vanhoorelbeke K. Inhibitors of the interactions between collagen and its receptors on platelets. Handb Exp Pharmacol 2012:311-337. [PMID: 22918737 DOI: 10.1007/978-3-642-29423-5_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
At sites of vascular injury, collagen-mediated platelet adhesion and activation have long been known as one of the first events in platelet-dependent thrombus formation. Studying patients with bleeding disorders that are caused by defective platelet adhesion to collagen resulted in the identification of several platelet collagen receptors, with glycoprotein VI and integrin α2β1 being the most important ones. Subsequent development of specific collagen receptor knockout mice and various inhibitors of platelet binding to collagen have further proven the role of these receptors in haemostasis and thrombosis. The search for clinically applicable inhibitors for use as antithrombotic drug has led to the identification of inhibitory antibodies, soluble receptor fragments, peptides, collagen-mimetics and proteins from snake venoms or haematophagous animals. In experimental settings, these inhibitors have a good antithrombotic effect, with little prolongation of bleeding times, suggesting a larger therapeutic window than currently available antiplatelet drugs. However, at present, none of the collagen receptor blockers are in clinical development yet.
Collapse
Affiliation(s)
- Hans Deckmyn
- Laboratory for Thrombosis Research, KU Leuven campus Kortrijk, Kortrijk, Belgium.
| | | | | | | |
Collapse
|
33
|
|
34
|
Ungerer M, Rosport K, Bültmann A, Piechatzek R, Uhland K, Schlieper P, Gawaz M, Münch G. Novel Antiplatelet Drug Revacept (Dimeric Glycoprotein VI-Fc) Specifically and Efficiently Inhibited Collagen-Induced Platelet Aggregation Without Affecting General Hemostasis in Humans. Circulation 2011; 123:1891-9. [PMID: 21502572 DOI: 10.1161/circulationaha.110.980623] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Blocking of glycoprotein VI–dependent pathways by interfering in vascular collagen sites is commonly seen as an attractive target for an antiplatelet therapy of acute atherosclerotic diseases such as myocardial infarction or stroke. Revacept (soluble dimeric glycoprotein VI-Fc fusion protein) has been shown to reduce platelet adhesion by blocking vascular collagen in plaques or erosion and to be safe in preclinical studies. A dose-escalating clinical phase I study was performed to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of Revacept in humans.
Methods and Results—
In a first-in-humans study, 30 healthy men received a single intravenous administration of 10, 20, 40, 80, or 160 mg Revacept. The serum concentration–time courses of each dosage of Revacept showed a narrow variation and a concentration and time dependence. Revacept did not significantly affect the bleeding time. Collagen-induced platelet aggregation was dose-dependently inhibited up to 48 hours at lower doses and for 7 days after higher dose levels. In contrast, ADP- or thrombin receptor activating peptide–dependent platelet aggregation remained unaltered. There were no relevant drug-related adverse events or drug-related changes in laboratory parameters (biochemistry, hematology, and coagulation parameters). There were no drug-related changes in blood pressure, pulse rate, or ECG parameters (including 24-hour Holter monitoring). No anti-Revacept antibodies were detected.
Conclusion—
This phase I study demonstrated that Revacept is a safe and well-tolerated new antiplatelet compound with a clear dose-dependent pharmacokinetic profile with specific, dose-related inhibition of platelet aggregation despite completely unaltered general hemostasis.
Clinical Trial Registration—
URL:
www.clinicaltrials.gov
. Unique identifier: NCT 01042964. URL: eudract.ema.europa.eu. Identifier: 2005–004656-12.
Collapse
Affiliation(s)
- Martin Ungerer
- From the Corimmun GmbH (formerly Procorde GmbH), Martinsried (M.U., K.R., A.B., K.U., G.M.); ABX-CRO GmbH (formerly Medifacts GmbH), Görlitz (R.P.); Medicore GmbH, Greifenberg (P.S.); and Medizinische Klinik Innere Medizin III, Universität Tübingen, Tübingen, Germany (M.G.)
| | - Kai Rosport
- From the Corimmun GmbH (formerly Procorde GmbH), Martinsried (M.U., K.R., A.B., K.U., G.M.); ABX-CRO GmbH (formerly Medifacts GmbH), Görlitz (R.P.); Medicore GmbH, Greifenberg (P.S.); and Medizinische Klinik Innere Medizin III, Universität Tübingen, Tübingen, Germany (M.G.)
| | - Andreas Bültmann
- From the Corimmun GmbH (formerly Procorde GmbH), Martinsried (M.U., K.R., A.B., K.U., G.M.); ABX-CRO GmbH (formerly Medifacts GmbH), Görlitz (R.P.); Medicore GmbH, Greifenberg (P.S.); and Medizinische Klinik Innere Medizin III, Universität Tübingen, Tübingen, Germany (M.G.)
| | - Richard Piechatzek
- From the Corimmun GmbH (formerly Procorde GmbH), Martinsried (M.U., K.R., A.B., K.U., G.M.); ABX-CRO GmbH (formerly Medifacts GmbH), Görlitz (R.P.); Medicore GmbH, Greifenberg (P.S.); and Medizinische Klinik Innere Medizin III, Universität Tübingen, Tübingen, Germany (M.G.)
| | - Kerstin Uhland
- From the Corimmun GmbH (formerly Procorde GmbH), Martinsried (M.U., K.R., A.B., K.U., G.M.); ABX-CRO GmbH (formerly Medifacts GmbH), Görlitz (R.P.); Medicore GmbH, Greifenberg (P.S.); and Medizinische Klinik Innere Medizin III, Universität Tübingen, Tübingen, Germany (M.G.)
| | - Peter Schlieper
- From the Corimmun GmbH (formerly Procorde GmbH), Martinsried (M.U., K.R., A.B., K.U., G.M.); ABX-CRO GmbH (formerly Medifacts GmbH), Görlitz (R.P.); Medicore GmbH, Greifenberg (P.S.); and Medizinische Klinik Innere Medizin III, Universität Tübingen, Tübingen, Germany (M.G.)
| | - Meinrad Gawaz
- From the Corimmun GmbH (formerly Procorde GmbH), Martinsried (M.U., K.R., A.B., K.U., G.M.); ABX-CRO GmbH (formerly Medifacts GmbH), Görlitz (R.P.); Medicore GmbH, Greifenberg (P.S.); and Medizinische Klinik Innere Medizin III, Universität Tübingen, Tübingen, Germany (M.G.)
| | - Götz Münch
- From the Corimmun GmbH (formerly Procorde GmbH), Martinsried (M.U., K.R., A.B., K.U., G.M.); ABX-CRO GmbH (formerly Medifacts GmbH), Görlitz (R.P.); Medicore GmbH, Greifenberg (P.S.); and Medizinische Klinik Innere Medizin III, Universität Tübingen, Tübingen, Germany (M.G.)
| |
Collapse
|
35
|
Abstract
This study evaluated shedding of the platelet collagen receptor, glycoprotein VI (GPVI) in human plasma. Collagen or other ligands induce metalloproteinase-mediated GPVI ectodomain shedding, generating approximately 55-kDa soluble GPVI (sGPVI) and approximately 10-kDa platelet-associated fragments. In the absence of GPVI ligands, coagulation of platelet-rich plasma from healthy persons induced GPVI shedding, independent of added tissue factor, but inhibitable by metalloproteinase inhibitor, GM6001. Factor Xa (FXa) common to intrinsic and tissue factor-mediated coagulation pathways was critical for sGPVI release because (1) shedding was strongly blocked by the FXa-selective inhibitor rivaroxaban but not FIIa (thrombin) inhibitors dabigatran or hirudin; (2) Russell viper venom that directly activates FX generated sGPVI, with complete inhibition by enoxaparin (inhibits FXa and FIIa) but not hirudin; (3) impaired GPVI shedding during coagulation of washed platelets resuspended in FX-depleted plasma was restored by adding purified FX; and (4) purified FXa induced GM6001-inhibitable GPVI shedding from washed platelets. In 29 patients with disseminated intravascular coagulation, mean plasma sGPVI was 53.9 ng/mL (95% confidence interval, 39.9-72.8 ng/mL) compared with 12.5 ng/mL (95% confidence interval, 9.0-17.3 ng/mL) in thrombocytopenic controls (n = 36, P < .0001), and 14.6 ng/mL (95% confidence interval, 7.9-27.1 ng/mL) in healthy subjects (n = 25, P = .002). In conclusion, coagulation-induced GPVI shedding via FXa down-regulates GPVI under procoagulant conditions. FXa inhibitors have an unexpected role in preventing GPVI down-regulation.
Collapse
|
36
|
Differentially regulated GPVI ectodomain shedding by multiple platelet-expressed proteinases. Blood 2010; 116:3347-55. [PMID: 20644114 DOI: 10.1182/blood-2010-06-289108] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein VI (GPVI) mediates platelet activation on exposed subendothelial collagens at sites of vascular injury and thereby contributes to normal hemostasis, but also to the occlusion of diseased vessels in the setting of myocardial infarction or stroke. GPVI is an attractive target for antithrombotic therapy, particularly because previous studies have shown that anti-GPVI antibodies induce irreversible down-regulation of the receptor in circulating platelets by internalization and/or ectodomain shedding. Metalloproteinases of the a disintegrin and metalloproteinase (ADAM) family have been proposed to mediate this ectodomain shedding, but direct evidence for this is lacking. Here, we studied GPVI shedding in vitro and in vivo in newly generated mice with a megakaryocyte-specific ADAM10 deficiency and in Adam17(ex/ex) mice, which lack functional ADAM17. We demonstrate that GPVI cleavage in vitro can occur independently through either ADAM10 or ADAM17 in response to distinct stimuli. In contrast, antibody (JAQ1)-induced GPVI shedding in vivo occurred in mice lacking both ADAM10/ADAM17 in their platelets, suggesting the existence of a third GPVI cleaving platelet enzyme. This was supported by in vitro studies on ADAM10/ADAM17 double-deficient platelets. These results reveal that ectodomain shedding of GPVI can be mediated through multiple differentially regulated platelet-expressed proteinases with obvious therapeutic implications.
Collapse
|
37
|
Abstract
Coronary artery disease, stroke, and peripheral vascular disease are known as "atherothrombotic" manifestations of atherosclerosis. These devastating conditions remain the major contributor of mortality and disability in a modern Western world, with estimated direct and indirect cost for 403.1 billion dollars in the United States alone. The application of current evidence-based therapy including the administration of low-dose aspirin and standard of care with clopidogrel proved to exhibit absolute mortality reduction in the randomized clinical trials International Study for Infarct Survival and Clopidogrel and Metoprolol in Myocardial Infarction Trial among patients after acute vascular events. However, these established antiplatelet medications have certain shortcomings including lack of efficacy in some patients, significant response variability, and potential "resistance." Therefore, intelligent development of novel oral antiplatelet agents is difficult to underestimate. In this review, we will focus on the developmental efforts with regard to the experimental agents such as adenosine diphosphate receptor blockers (prasugrel, ticagrelor, and cangrelor) and platelet glycoprotein VI adhesion antagonist [ProCorde GmbH 15 (PR-15)].
Collapse
|
38
|
Elvers M, Stegner D, Hagedorn I, Kleinschnitz C, Braun A, Kuijpers MEJ, Boesl M, Chen Q, Heemskerk JWM, Stoll G, Frohman MA, Nieswandt B. Impaired alpha(IIb)beta(3) integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1. Sci Signal 2010; 3:ra1. [PMID: 20051593 DOI: 10.1126/scisignal.2000551] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Platelet aggregation is essential for hemostasis but can also cause myocardial infarction and stroke. A key but poorly understood step in platelet activation is the shift of the principal adhesive receptor, alpha(IIb)beta(3) integrin, from a low- to high-affinity state for its ligands, a process that enables adhesion and aggregation. In response to stimulation of heterotrimeric guanosine triphosphate-binding protein or immunoreceptor tyrosine-based activation motif-coupled receptors, phospholipases cleave membrane phospholipids to generate lipid and soluble second messengers. An essential role in platelet activation has been established for phospholipase C (PLC) but not for PLD and its product phosphatidic acid. Here, we report that platelets from Pld1(-/-) mice displayed impaired alpha(IIb)beta(3) integrin activation in response to major agonists and defective glycoprotein Ib-dependent aggregate formation under high shear conditions. These defects resulted in protection from thrombosis and ischemic brain infarction without affecting tail bleeding times. These results indicate that PLD1 may be a critical regulator of platelet activity in the setting of ischemic cardiovascular and cerebrovascular events.
Collapse
Affiliation(s)
- Margitta Elvers
- University Clinic Würzburg and Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Al-Tamimi M, Mu FT, Moroi M, Gardiner EE, Berndt MC, Andrews RK. Measuring soluble platelet glycoprotein VI in human plasma by ELISA. Platelets 2009; 20:143-9. [PMID: 19437330 DOI: 10.1080/09537100802710286] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Recent experimental evidence demonstrates that the platelet-specific collagen receptor, glycoprotein (GP)VI is essentially all uncleaved on normal circulating platelets, but is shed from the platelet surface in a metalloproteinase-dependent manner in response to GPVI ligands (including collagen), anti-GPVI antibodies or activation at the platelet Fc receptor, FcgammaRIIa. This raises the question of whether shed ectodomain fragment in plasma could be a useful biomarker of thrombotic risk and/or autoimmune thrombocytopenia. In this study, we developed a sandwich enzyme-linked immunosorbent assay (ELISA) for measuring soluble GPVI in human plasma, using rabbit anti-GPVI polyclonal antibody in the solid-phase, murine anti-GPVI monoclonal antibody (1A12) in the fluid-phase and horseradish peroxidase (HRP)-coupled anti-mouse antibody and enhanced chemiluminescence (ECL) for detection. The ELISA was optimized for sensitivity, reproducibility, inter- and intra-assay precision, addition and recovery and detected GPVI in plasma with a lower detection limit of approximately 1 ng/mL. Effects of different anti-coagulants (trisodium citrate, acid-citrate-dextrose or EDTA) were negligible. In ten healthy donors, soluble plasma GPVI levels were 18.9 +/- 4.1 ng/mL. Treating normal platelet-rich plasma with a GPVI ligand (collagen-related peptide, CRP), calmodulin inhibitor W7 (that induces GPVI shedding without platelet activation) or N-ethylmaleimide (that directly activates platelet sheddases), under conditions previously shown to induce GPVI shedding, also increased plasma GPVI levels by up to approximately 7-fold, compared to previously reported autoimmune (anti-GPVI) patient plasma where soluble GPVI was approximately 10-fold higher than normal. Characterization of this sensitive ELISA should facilitate analysis of functional/diagnostic role(s) for soluble GPVI in human plasma associated with thrombotic/immune dysfunction.
Collapse
Affiliation(s)
- Mohammad Al-Tamimi
- Department of Immunology, Monash University, Alfred Medical Research & Education Precinct, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- A B Herr
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA.
| |
Collapse
|
42
|
Abstract
Damage to the integrity of the vessel wall leads to exposure of the subendothelial extracellular matrix (ECM), triggering platelet activation and aggregation. This process is essential for primary hemostasis but it may also lead to arterial thrombosis. Although the mechanisms underlying platelet activation on the ECM are well explored, it is less clear which receptors mediate cellular activation in a growing thrombus. Here we studied the role of the recently identified C-type lectin-like receptor 2 (CLEC-2) in this process. We show that anti-CLEC-2 antibody treatment of mice leads to complete and highly specific loss of CLEC-2 in circulating platelets for several days. CLEC-2-deficient platelets displayed normal adhesion under flow, but subsequent aggregate formation was severely defective in vitro and in vivo. As a consequence, CLEC-2 deficiency was associated with increased bleeding times and profound protection from occlusive arterial thrombus formation. These results reveal an essential function of CLEC-2 in hemostasis and thrombosis.
Collapse
|
43
|
Al-Tamimi M, Mu FT, Arthur JF, Shen Y, Moroi M, Berndt MC, Andrews RK, Gardiner EE. Anti-glycoprotein VI monoclonal antibodies directly aggregate platelets independently of FcγRIIa and induce GPVI ectodomain shedding. Platelets 2009; 20:75-82. [DOI: 10.1080/09537100802645029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Muzard J, Bouabdelli M, Zahid M, Ollivier V, Lacapère JJ, Jandrot-Perrus M, Billiald P. Design and humanization of a murine scFv that blocks human platelet glycoprotein VI in vitro. FEBS J 2009; 276:4207-22. [PMID: 19558491 DOI: 10.1111/j.1742-4658.2009.07129.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Platelet adhesion and aggregation at the site of vascular injury is essential for hemostasis, but can also lead to arterial occlusion in thrombotic disorders. Glycoprotein (GP) VI is the major platelet membrane receptor that interacts directly with collagen, the most thrombogenic compound in the blood vessels. GPVI could therefore be a major therapeutic target. Fab fragments of the anti-GPVI murine monoclonal IgG 9O12 have previously been shown to completely block collagen-induced platelet aggregation, to inhibit the procoagulant activity of collagen-stimulated platelets, and to prevent thrombus formation under arterial flow conditions without significantly prolonging the bleeding time. Here, we engineered recombinant scFvs that preserve the functional properties of 9O12, and could constitute building blocks for designing new compounds with potentially therapeutic antithrombotic properties. First, the 9O12 variable domains were cloned, sequenced, and expressed as a recombinant murine scFv, which was fully characterized. This scFv preserved all the characteristics that make 9O12 Fab potentially useful for therapeutic applications, including its high affinity for GPVI, ability to inhibit platelet adhesion, and aggregation with collagen under arterial flow conditions. A humanized version of this scFv was also designed after complementarity-determining region grafting and structural refinements using homology-based modeling. The final product was produced in recombinant bacteria. It retained GPVI-binding specificity and high affinity, which are the main parameters usually impaired by humanization procedures. This is a simple, efficient and straightforward method that could also be used for humanizing other antibodies.
Collapse
Affiliation(s)
- Julien Muzard
- Muséum national d'Histoire naturelle, CNRS FRE 3206, Paris, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood 2009; 113:2056-63. [DOI: 10.1182/blood-2008-07-171611] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Platelet activation and aggregation at sites of vascular injury are essential for primary hemostasis, but are also major pathomechanisms underlying myocardial infarction and stroke. Changes in [Ca2+]i are a central step in platelet activation. In nonexcitable cells, receptor-mediated depletion of intracellular Ca2+ stores triggers Ca2+ entry through store-operated calcium (SOC) channels. STIM1 has been identified as an endoplasmic reticulum (ER)–resident Ca2+ sensor that regulates store-operated calcium entry (SOCE) in immune cells and platelets, but the identity of the platelet SOC channel has remained elusive. Orai1 (CRACM1) is the recently discovered SOC (CRAC) channel in T cells and mast cells but its role in mammalian physiology is unknown. Here we report that Orai1 is strongly expressed in human and mouse platelets. To test its role in blood clotting, we generated Orai1-deficient mice and found that their platelets display severely defective SOCE, agonist-induced Ca2+ responses, and impaired activation and thrombus formation under flow in vitro. As a direct consequence, Orai1 deficiency in mice results in resistance to pulmonary thromboembolism, arterial thrombosis, and ischemic brain infarction, but only mild bleeding time prolongation. These results establish Orai1 as the long-sought platelet SOC channel and a crucial mediator of ischemic cardiovascular and cerebrovascular events.
Collapse
|
46
|
Rac1 is essential for phospholipase C-gamma2 activation in platelets. Pflugers Arch 2008; 457:1173-85. [PMID: 18704487 DOI: 10.1007/s00424-008-0573-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 07/17/2008] [Accepted: 08/01/2008] [Indexed: 10/21/2022]
Abstract
Platelet activation at sites of vascular injury is triggered through different signaling pathways leading to activation of phospholipase (PL) Cbeta or PLCgamma2. Active PLCs trigger Ca(2+) mobilization and entry, which is a prerequisite for adhesion, secretion, and thrombus formation. PLCbeta isoenzymes are activated downstream of G protein-coupled receptors (GPCRs), whereas PLCgamma2 is activated downstream of immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptors, such as the major platelet collagen receptor glycoprotein (GP) VI or CLEC-2. The mechanisms underlying PLC regulation are not fully understood. An involvement of small GTPases of the Rho family (Rho, Rac, Cdc42) in PLC activation has been proposed but this has not been investigated in platelets. We here show that murine platelets lacking Rac1 display severely impaired GPVI- or CLEC-2-dependent activation and aggregation. This defect was associated with impaired production of inositol 1,4,5-trisphosphate (IP(3)) and intracellular calcium mobilization suggesting inappropriate activation of PLCgamma2 despite normal tyrosine phosphorylation of the enzyme. Rac1 ( -/- ) platelets displayed defective thrombus formation on collagen under flow conditions which could be fully restored by co-infusion of ADP and the TxA(2) analog U46619, indicating that impaired GPVI-, but not G-protein signaling, was responsible for the observed defect. In line with this, Rac1 ( -/- ) mice were protected in two collagen-dependent arterial thrombosis models. Together, these results demonstrate that Rac1 is essential for ITAM-dependent PLCgamma2 activation in platelets and that this is critical for thrombus formation in vivo.
Collapse
|
47
|
Gardiner EE, Al-Tamimi M, Mu FT, Karunakaran D, Thom JY, Moroi M, Andrews RK, Berndt MC, Baker RI. Compromised ITAM-based platelet receptor function in a patient with immune thrombocytopenic purpura. J Thromb Haemost 2008; 6:1175-82. [PMID: 18485087 DOI: 10.1111/j.1538-7836.2008.03016.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Receptors on platelets that contain immunoreceptor tyrosine-based activation motifs (ITAMs) include collagen receptor glycoprotein (GP) VI, and FcgammaRIIa, a low affinity receptor for immunoglobulin (Ig) G. OBJECTIVES We examined the function of GPVI and FcgammaRIIa in a patient diagnosed with immune thrombocytopenic purpura (ITP) who had unexplained pathological bruising despite normalization of the platelet count with treatment. METHODS AND RESULTS Patient platelets aggregated normally in response to ADP, arachadonic acid and epinephrine, but not to GPVI agonists, collagen or collagen-related peptide, or to FcgammaRII-activating monoclonal antibody (mAb) 8.26, suggesting ITAM receptor dysfunction. Plasma contained an anti-GPVI antibody by MAIPA and aggregated normal platelets. Aggregating activity was partially (approximately 60%) blocked by FcgammaRIIa-blocking antibody, IV.3, and completely blocked by soluble GPVI ectodomain. Full-length GPVI on the patient platelet surface was reduced to approximately 10% of normal levels, and a approximately 10-kDa GPVI cytoplasmic tail remnant and cleaved FcgammaRIIa were detectable by western blot, indicating platelet receptor proteolysis. Plasma from the patient contained approximately 150 ng mL(-1) soluble GPVI by ELISA (normal plasma, approximately 15 ng mL(-1)) and IgG purified from patient plasma caused FcgammaRIIa-mediated, EDTA-sensitive cleavage of both GPVI and FcgammaRIIa on normal platelets. CONCLUSIONS In ITP patients, platelet autoantibodies can curtail platelet receptor function. Platelet ITAM receptor dysfunction may contribute to the increased bleeding phenotype observed in some patients with ITP.
Collapse
Affiliation(s)
- E E Gardiner
- Department of Immunology, Monash University, Alfred Medical Research & Education Precinct, Melbourne, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Schönberger T, Siegel-Axel D, Bußl R, Richter S, Judenhofer MS, Haubner R, Reischl G, Klingel K, Münch G, Seizer P, Pichler BJ, Gawaz M. The immunoadhesin glycoprotein VI-Fc regulates arterial remodelling after mechanical injury in ApoE−/− mice. Cardiovasc Res 2008; 80:131-7. [DOI: 10.1093/cvr/cvn169] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
49
|
|
50
|
|