1
|
Winkle M, Tayari MM, Kok K, Duns G, Grot N, Kazimierska M, Seitz A, de Jong D, Koerts J, Diepstra A, Dzikiewicz-Krawczyk A, Steidl C, Kluiver J, van den Berg A. The lncRNA KTN1-AS1 co-regulates a variety of Myc-target genes and enhances proliferation of Burkitt lymphoma cells. Hum Mol Genet 2022; 31:4193-4206. [PMID: 35866590 DOI: 10.1093/hmg/ddac159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in many normal and oncogenic pathways through a diverse repertoire of transcriptional and posttranscriptional regulatory mechanisms. LncRNAs that are under tight regulation of well-known oncogenic transcription factors such as c-Myc (Myc) are likely to be functionally involved in their disease-promoting mechanisms. Myc is a major driver of many subsets of B cell lymphoma and to date remains an undruggable target. We identified three Myc-induced and four Myc-repressed lncRNAs by use of multiple in vitro models of Myc-driven Burkitt lymphoma and detailed analysis of Myc binding profiles. We show that the top Myc-induced lncRNA KTN1-AS1 is strongly upregulated in different types of B cell lymphoma compared with their normal counterparts. We used CRISPR-mediated genome editing to confirm that the direct induction of KTN1-AS1 by Myc is dependent on the presence of a Myc E-box-binding motif. Knockdown of KTN1-AS1 revealed a strong negative effect on the growth of three BL cell lines. Global gene expression analysis upon KTN1-AS1 depletion shows a strong enrichment of key genes in the cholesterol biosynthesis pathway as well as co-regulation of many Myc-target genes, including a moderate negative effect on the levels of Myc itself. Our study suggests a critical role for KTN1-AS1 in supporting BL cell growth by mediating co-regulation of a variety of Myc-target genes and co-activating key genes involved in cholesterol biosynthesis. Therefore, KTN1-AS1 may represent a putative novel therapeutic target in lymphoma.
Collapse
Affiliation(s)
- Melanie Winkle
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.,Department of Translational Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mina M Tayari
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.,Department of Human Genetics, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Klaas Kok
- Department of Genetics, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Gerben Duns
- Department of Lymphoid Cancer Research, BC Cancer Center, Vancouver, BC, Canada
| | - Natalia Grot
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Marta Kazimierska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Annika Seitz
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Debora de Jong
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Jasper Koerts
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | | | - Christian Steidl
- Department of Lymphoid Cancer Research, BC Cancer Center, Vancouver, BC, Canada
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| |
Collapse
|
2
|
IGLV3-21R110 identifies an aggressive biological subtype of chronic lymphocytic leukemia with intermediate epigenetics. Blood 2020; 137:2935-2946. [PMID: 33211804 DOI: 10.1182/blood.2020008311] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023] Open
Abstract
B-cell receptor (BCR) signaling is crucial for chronic lymphocytic leukemia (CLL) biology. IGLV3-21-expressing B cells may acquire a single point mutation (R110) that triggers autonomous BCR signaling, conferring aggressive behavior. Epigenetic studies have defined 3 CLL subtypes based on methylation signatures reminiscent of naïve-like (n-CLL), intermediate (i-CLL), and memory-like (m-CLL) B cells with different biological features. i-CLL carries a borderline IGHV mutational load and significantly higher use of IGHV3-21/IGLV3-21. To determine the clinical and biological features of IGLV3-21R110 CLL and its relationship to these epigenetic subtypes, we characterized the immunoglobulin gene of 584 CLL cases using whole-genome/exome and RNA sequencing. IGLV3-21R110 was detected in 6.5% of cases: 30 (38%) of 79 i-CLLs, 5 (1.7%) of 291 m-CLLs, and 1 (0.5%) of 189 n-CLLs. All stereotype subset 2 cases carried IGLV3-21R110, whereas 62% of IGLV3-21R110 i-CLL cases had nonstereotyped BCR immunoglobulins. IGLV3-21R110 i-CLL had a significantly higher number of SF3B1 and ATM mutations and total number of driver alterations. However, the R110 mutation was the sole alteration in 1 i-CLL and was accompanied only by del(13q) in 3. Although IGHV mutational status varied, IGLV3-21R110 i-CLL transcriptomically resembled n-CLL/unmutated IGHV CLL with a specific signature including WNT5A/B overexpression. In contrast, i-CLL lacking IGLV3-21R110 mirrored m-CLL/mutated IGHV. Patients with IGLV3-21R110 i-CLL had a short time to first treatment and overall survival similar to those of n-CLL/unmutated IGHV patients, whereas patients with non-IGLV3-21R110 i-CLL had a good prognosis similar to that of patients with m-CLL/mutated IGHV. IGLV3-21R110 defines a CLL subgroup with specific biological features and an unfavorable prognosis independent of IGHV mutational status and epigenetic subtype.
Collapse
|
3
|
Massive and parallel expression profiling using microarrayed single-cell sequencing. Nat Commun 2016; 7:13182. [PMID: 27739429 PMCID: PMC5067491 DOI: 10.1038/ncomms13182] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 09/11/2016] [Indexed: 01/06/2023] Open
Abstract
Single-cell transcriptome analysis overcomes problems inherently associated with averaging gene expression measurements in bulk analysis. However, single-cell analysis is currently challenging in terms of cost, throughput and robustness. Here, we present a method enabling massive microarray-based barcoding of expression patterns in single cells, termed MASC-seq. This technology enables both imaging and high-throughput single-cell analysis, characterizing thousands of single-cell transcriptomes per day at a low cost (0.13 USD/cell), which is two orders of magnitude less than commercially available systems. Our novel approach provides data in a rapid and simple way. Therefore, MASC-seq has the potential to accelerate the study of subtle clonal dynamics and help provide critical insights into disease development and other biological processes. Currently available single-cell transcriptomic analyses are expensive and low throughput. Here, Vickovic et al. describe a new method called MASC-seq that is based on microarray barcoding of expression pattern and of low cost with high robustness.
Collapse
|
4
|
Li T, Xu XH, Tang ZH, Wang YF, Leung CH, Ma DL, Chen XP, Wang YT, Chen Y, Lu JJ. Platycodin D induces apoptosis and triggers ERK- and JNK-mediated autophagy in human hepatocellular carcinoma BEL-7402 cells. Acta Pharmacol Sin 2015; 36:1503-13. [PMID: 26592509 DOI: 10.1038/aps.2015.99] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/16/2015] [Indexed: 12/26/2022] Open
Abstract
AIM Platycodin D, the main saponin isolated from Chinese herb Platycodonis Radix, exhibits anticancer activities against various cancer cell lines. Here we evaluated its anticancer action against human hepatocellular carcinoma cells in vitro and in vivo, and elucidated the relationship between platycodin D-induced apoptosis and autophagy. METHODS The viability of human hepatocellular carcinoma BEL-7402 cells was evaluated with MTT assay, and the apoptosis was examined using Annexin V/PI and Hoechst 33342 staining assays. Monodansylcadaverine (MDC) staining was used to label autophagic vacuoles. The proteins were detected using Western blot analysis. For studying its anticancer action in vivo, platycodin D (5 and 10 mg· kg(-1)·d(-1)) was intraperitoneally injected to BEL-7402-bearing mice for 21 days. RESULTS Platycodin D (5-40 μmol/L) inhibited the cell proliferation in vitro with IC50 values of 37.70±3.99, 24.30±2.30 and 19.70±2.36 μmol/L at 24, 48 and 72 h, respectively. Platycodin D (5-20 μmol/L) dose-dependently increased BEL-7402 cell apoptosis, increased the Bax/Bcl-2 ratio and the levels of cleaved PARP and cleaved caspase-3, and decreased the level of Bcl-2. Furthermore, platycodin D (5-20 μmol/L) induced autophagy in BEL-7402 cells, as evidenced by formation of cytoplasmic vacuoles, increased amounts of LC3-II, and increased numbers of MDC-positive cells. Pretreatment with the autophagy inhibitor chloroquine (5 μmol/L) or BAF (50 nmol/L) significantly enhanced platycodin D-induced proliferation inhibition and apoptosis. Moreover, platycodin D (20 μmol/L) activated the ERK and JNK pathways in BEL-7402 cells, and simultaneous blockage of the two pathways effectively suppressed platycodin D-induced autophagy and enhanced platycodin D-induced apoptosis. In BEL-7402-bearing mice, platycodin D (10 mg·kg(-1)•d(-1)) significantly reduced relative tumor volume with decreased body weight. CONCLUSION Platycodin D not only inhibits the proliferation of BEL-7402 cells but also suppresses BEL-7402 xenograft tumor growth. Platycodin D-induced cell proliferation inhibition and apoptosis are amplified by co-treatment with autophagy inhibitors.
Collapse
|
5
|
Excessive antigen reactivity may underlie the clinical aggressiveness of chronic lymphocytic leukemia stereotyped subset #8. Blood 2015; 125:3580-7. [PMID: 25900981 DOI: 10.1182/blood-2014-09-603217] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/11/2015] [Indexed: 12/19/2022] Open
Abstract
Subset #8 is a distinctive subset of patients with chronic lymphocytic leukemia (CLL) defined by the expression of stereotyped IGHV4-39/IGKV1(D)-39 B-cell receptors. Subset #8 patients experience aggressive disease and exhibit the highest risk for Richter transformation among all CLL. In order to obtain biological insight into this behavior, we profiled the antigen reactivity and signaling capacity of subset #8 vs other clinically aggressive stereotyped subsets, namely subsets #1 and #2. Twenty-seven monoclonal antibodies (mAbs) from subsets #1, #2, and #8 CLL clones were prepared as recombinant human immunoglobulin G1 and used as primary antibodies in enzyme-linked immunosorbent assays against representatives of the major classes of established antigenic targets for CLL. Subset #8 CLL mAbs exhibited broad polyreactivity as they bound to all antigens tested, in clear contrast with the mAbs from the other subsets. Antigen challenge of primary CLL cells indicated that the promiscuous antigen-binding activity of subset #8 mAbs could lead to significant cell activation, again in contrast to the less responsive CLL cells from subsets #1 and #2. These features constitute a distinctive profile for CLL subset #8, supporting the existence of distinct mechanisms of aggressiveness in different immunogenetic subsets of CLL.
Collapse
|
6
|
Chin ST, Ignatius J, Suraiya S, Tye GJ, Sarmiento ME, Acosta A, Norazmi MN, Lim TS. Comparative study of IgA VH 3 gene usage in healthy TST(-) and TST(+) population exposed to tuberculosis: deep sequencing analysis. Immunology 2015; 144:302-11. [PMID: 25158076 DOI: 10.1111/imm.12372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/07/2014] [Accepted: 08/21/2014] [Indexed: 11/28/2022] Open
Abstract
The acquired immune response against tuberculosis is commonly associated with T-cell responses with little known about the role of B cells or antibodies. There have been suggestions that B cells and humoral immunity can modulate the immune response to Mycobacterium tuberculosis. However, the mechanisms involving B-cell responses in M. tuberculosis are not fully understood, in particular the antibody gene preferences. We hypothesized that a preferential use of V genes can be seen associated with resistance to infection mainly in the IgA isotype, which is of prominent importance for infection by pathogens via the mucosal route. We studied healthy individuals with long-term exposure to tuberculosis, infected (TST(+) ) and uninfected TST(-) ) with M. tuberculosis. From a total of 22 V genes analysed, the TST(-) population preferred the VH 3-23 and Vκ1 genes. The VH 3-23 genes were subsequently subjected to 454 amplicon sequencing. The TST(-) population showed a higher frequency of the D3-10 segment compared with the D3-22 segment for the TST(+) population. The J segment usage pattern was similar for both populations with J4 segment being used the most. A preferential pairing of J4 segments to D3-3 was seen for the TST(-) population. The antibodyome difference between both populations suggests a preference for antibodies with VH 3-23, D3-3, JH 4 gene usage by the TST(-) population that could be associated with resistance to infection with M. tuberculosis.
Collapse
Affiliation(s)
- Siang Tean Chin
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Immunoglobulin transcript sequence and somatic hypermutation computation from unselected RNA-seq reads in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2015; 112:4322-7. [PMID: 25787252 DOI: 10.1073/pnas.1503587112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulins (Ig) are produced by B lymphocytes as secreted antibodies or as part of the B-cell receptor. There is tremendous diversity of potential Ig transcripts (>1 × 10(12)) as a result of hundreds of germ-line gene segments, random nucleotide incorporation during joining of gene segments into a complete transcript, and the process of somatic hypermutation at individual nucleotides. This recombination and mutation process takes place in the maturing B cell and is responsible for the diversity of potential epitope recognition. Cancers arising from mature B cells are characterized by clonal production of Ig heavy (IGH@) and light chain transcripts, although whether the sequence has undergone somatic hypermutation is dependent on the maturation stage at which the neoplastic clone arose. Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults and arises from a mature B cell with either mutated or unmutated IGH@ transcripts, the latter having worse prognosis and the assessment of which is routinely performed in the clinic. Currently, IGHV mutation status is assessed by Sanger sequencing and comparing the transcript to known germ-line genes. In this paper, we demonstrate that complete IGH@ V-D-J sequences can be computed from unselected RNA-seq reads with results equal or superior to the clinical procedure: in the only discordant case, the clinical transcript was out-of-frame. Therefore, a single RNA-seq assay can simultaneously yield gene expression profile, SNP and mutation information, as well as IGHV mutation status, and may one day be performed as a general test to capture multidimensional clinically relevant data in CLL.
Collapse
|
8
|
Weiler S, Ademokun JA, Norton JD. ID helix-loop-helix proteins as determinants of cell survival in B-cell chronic lymphocytic leukemia cells in vitro. Mol Cancer 2015; 14:30. [PMID: 25644253 PMCID: PMC4320821 DOI: 10.1186/s12943-014-0286-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/30/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Members of the inhibitor of DNA-binding (ID) family of helix-loop-helix proteins have been causally implicated in the pathogenesis of several types of B-cell lineage malignancy, either on the basis of mutation or by altered expression. B-cell chronic lymphocytic leukemia encompasses a heterogeneous group of disorders and is the commonest leukaemia type in the Western world. In this study, we have investigated the pathobiological functions of the ID2 and ID3 proteins in this disease with an emphasis on their role in regulating leukemic cell death/survival. METHODS Bioinformatics analysis of microarray gene expression data was used to investigate expression of ID2/ID3 in leukemic versus normal B cells, their association with clinical course of disease and molecular sub-type and to reconstruct a gene regulatory network using the 'maximum information coefficient' (MIC) for target gene inference. In vitro cultured primary leukemia cells, either in isolation or co-cultured with accessory vascular endothelial cells, were used to investigate ID2/ID3 protein expression by western blotting and to assess the cytotoxic response of different drugs (fludarabine, chlorambucil, ethacrynic acid) by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. ID2/ID3 protein levels in primary leukemia cells and in MEC1 cells were manipulated by transduction with siRNA reagents. RESULTS Datamining showed that the expression profiles of ID2 and ID3 are associated with distinct pathobiological features of disease and implicated both genes in regulating cell death/survival by targeting multiple non-overlapping sets of apoptosis effecter genes. Consistent with microarray data, the overall pattern of ID2/ID3 protein expression in relation to cell death/survival responses of primary leukemia cells was suggestive of a pro-survival function for both ID proteins. This was confirmed by siRNA knock-down experiments in MEC1 cells and in primary leukemia cells, but with variability in the dependence of leukemic cells from different patients on ID protein expression for cell survival. Vascular endothelial cells rescued leukemia cells from spontaneous and cytotoxic drug-induced cell death at least in part, via an ID protein-coupled redox-dependent mechanism. CONCLUSIONS Our study provides evidence for a pro-survival function of the ID2/ID3 proteins in chronic lymphocytic leukemia cells and also highlights these proteins as potential determinants of the pathobiology of this disorder.
Collapse
Affiliation(s)
- Sarah Weiler
- School of Biological Sciences, University of Essex, Colchester, Essex, CO4 3SQ, UK.
| | - Jolaolu A Ademokun
- Department of Haematology, Ipswich Hospital NHS Trust, Heath Road, Ipswich, Suffolk, IP4 5PD, UK.
| | - John D Norton
- School of Biological Sciences, University of Essex, Colchester, Essex, CO4 3SQ, UK.
| |
Collapse
|
9
|
Mittal AK, Chaturvedi NK, Rai KJ, Gilling-Cutucache CE, Nordgren TM, Moragues M, Lu R, Opavsky R, Bociek GR, Weisenburger DD, Iqbal J, Joshi SS. Chronic lymphocytic leukemia cells in a lymph node microenvironment depict molecular signature associated with an aggressive disease. Mol Med 2014; 20:290-301. [PMID: 24800836 DOI: 10.2119/molmed.2012.00303] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 04/24/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells survive longer in vivo than in vitro, suggesting that the tissue microenvironment provides prosurvival signals to tumor cells. Primary and secondary lymphoid tissues are involved in the pathogenesis of CLL, and the role of these tissue microenvironments has not been explored completely. To elucidate host-tumor interactions, we performed gene expression profiling (GEP) of purified CLL cells from peripheral blood (PB; n = 20), bone marrow (BM; n = 18), and lymph node (LN; n = 15) and validated key pathway genes by real-time polymerase chain reaction, immunohistochemistry and/or TCL1 trans-genic mice. Gene signatures representing several pathways critical for survival and activation of B cells were altered in CLL cells from different tissue compartments. Molecules associated with the B-cell receptor (BCR), B cell-activating factor/a proliferation-inducing ligand (BAFF/APRIL), nuclear factor (NF)-κB pathway and immune suppression signature were enriched in LN-CLL, suggesting LNs as the primary site for tumor growth. Immune suppression genes may help LN-CLL cells to modulate antigen-presenting and T-cell behavior to suppress antitumor activity. PB CLL cells overexpressed chemokine receptors, and their cognate ligands were enriched in LN and BM, suggesting that a chemokine gradient instructs B cells to migrate toward LN or BM. Of several chemokine ligands, the expression of CCL3 was associated with poor prognostic factors. The BM gene signature was enriched with antiapoptotic, cytoskeleton and adhesion molecules. Interestingly, PB cells from lymphadenopathy patients shared GEP with LN cells. In Eμ-TCL1 transgenic mice (the mouse model of the disease), a high percentage of leukemic cells from the lymphoid compartment express key BCR and NF-κB molecules. Together, our findings demonstrate that the lymphoid microenvironment promotes survival, proliferation and progression of CLL cells via chronic activation of BCR, BAFF/APRIL and NF-κB activation while suppressing the immune response.
Collapse
Affiliation(s)
- Amit K Mittal
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Nagendra K Chaturvedi
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Karan J Rai
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Christine E Gilling-Cutucache
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Tara M Nordgren
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Margaret Moragues
- Section of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Runqing Lu
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Rene Opavsky
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Greg R Bociek
- Section of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Dennis D Weisenburger
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shantaram S Joshi
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
10
|
Del Giudice I, Chiaretti S, Santangelo S, Tavolaro S, Peragine N, Marinelli M, Ilari C, Raponi S, Messina M, Nanni M, Mauro FR, Piciocchi A, Bontempi K, Rossi D, Gaidano G, Guarini A, Foà R. Stereotyped subset #1 chronic lymphocytic leukemia: a direct link between B-cell receptor structure, function, and patients' prognosis. Am J Hematol 2014; 89:74-82. [PMID: 24030933 DOI: 10.1002/ajh.23591] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 09/04/2013] [Indexed: 01/10/2023]
Abstract
Chronic lymphocytic leukemia (CLL) with stereotyped B-cell receptor (BCR) belonging to subset #1 (IGHV1-5-7/ IGKV1-39) display a poor outcome. To characterize their genetic and genomic features and BCR function, we selected 20 subset #1 CLL from a series of 579 cases. Subset #1 CLL, all showing unmutated IGHV, were associated with the presence of del(11q) (50%) in comparison with unmutated CLL, unmutated stereotyped CLL other than subset #1 and with cases using the same IGHV genes but a heterogeneous VH CDR3 (non-subset #1 CLL). There were no distinctive features regarding CD38, ZAP-70, and TP53 disruption. NOTCH1, SF3B1, and BIRC3 were mutated in 15%, 0%, and 5% of cases, respectively, while BIRC3 was deleted in 22% of cases. Microarray unsupervised analysis on 80 unmutated/mutated/stereotyped/non-stereotyped CLL showed a tight clustering of subset #1 cases. Their genomic signature exhibited several differentially expressed transcripts involved in BCR signal transduction, apoptosis regulation, cell proliferation, and oxidative processes, regardless of del(11q). Accordingly, BCR ligation with anti-IgM revealed a significant higher proliferation of subset #1 versus unmutated non-subset #1 CLL, both at baseline and after 24–48 hr stimulation. Subset #1 CLL represent a paradigmatic example of the direct link between BCR structure, function, and patients prognosis.
Collapse
Affiliation(s)
- Ilaria Del Giudice
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Sabina Chiaretti
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Simona Santangelo
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Simona Tavolaro
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Nadia Peragine
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Marilisa Marinelli
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Caterina Ilari
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Sara Raponi
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Monica Messina
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Mauro Nanni
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Francesca Romana Mauro
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | | | | | - Davide Rossi
- Division of Hematology; Department of Translational Medicine; Amedeo Avogadro University of Eastern Piedmont; Novara Italy
| | - Gianluca Gaidano
- Division of Hematology; Department of Translational Medicine; Amedeo Avogadro University of Eastern Piedmont; Novara Italy
| | - Anna Guarini
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| | - Robin Foà
- Hematology, Department of Cellular Biotechnologies and Hematology; “Sapienza” University; Rome Italy
| |
Collapse
|
11
|
Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2. Leukemia 2013; 27:2196-9. [PMID: 23558524 DOI: 10.1038/leu.2013.98] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 03/29/2013] [Indexed: 01/20/2023]
Abstract
Recent studies have revealed recurrent mutations of the NOTCH1, SF3B1 and BIRC3 genes in chronic lymphocytic leukemia (CLL), especially among aggressive, chemorefractory cases. Nevertheless, it is currently unknown whether their presence may differ in subsets of patients carrying stereotyped B-cell receptors and also exhibiting distinct prognoses. Here, we analyzed the mutation status of NOTCH1, SF3B1 and BIRC3 in three subsets with particularly poor prognosis, that is, subset #1, #2 and #8, aiming to explore links between genetic aberrations and immune signaling. A remarkably higher frequency of SF3B1 mutations was revealed in subset #2 (44%) versus subset #1 and #8 (4.6% and 0%, respectively; P<0.001). In contrast, the frequency of NOTCH1 mutations in subset #2 was only 8%, lower than the frequency observed in either subset #1 or #8 (19% and 14%, respectively; P=0.04 for subset #1 versus #2). No associations were found for BIRC3 mutations that overall were rare. The apparent non-random association of certain mutations with stereotyped CLL subsets alludes to subset-biased acquisition of genomic aberrations, perhaps consistent with particular antigen/antibody interactions. These novel findings assist in unraveling specific mechanisms underlying clinical aggressiveness in poor-prognostic stereotyped subsets, with far-reaching implications for understanding their clonal evolution and implementing biologically oriented therapy.
Collapse
|
12
|
Agathangelidis A, Ntoufa S, Stamatopoulos K. B cell receptor and antigens in CLL. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 792:1-24. [PMID: 24014290 DOI: 10.1007/978-1-4614-8051-8_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nowadays, chronic lymphocytic leukemia (CLL) is considered as a prototypic antigen-driven lymphoma, with antigenic stimuli from the microenvironment promoting tumor outgrowth. Antigen recognition is a function of both the clonotypic B cell receptor immunoglobulin (BcR IG) and various other immune sensors, e.g., the Toll-like receptors. The critical role of BcR IG-mediated signaling in CLL development and evolution is underscored by the following: the disease-biased IG gene repertoire; the subdivision of CLL based on the somatic hypermutation load of the BcR IG into two broad categories with vastly different prognosis and eventual outcome; the existence of subsets of cases with distinct, quasi-identical (stereotyped) BcR IGs; and the clinical efficacy of novel therapeutics inhibiting BcR signaling. Here, we trace the immunogenetic evidence for antigen selection in CLL and also consider the types of implicated antigens as well as the immune signaling pathways relevant for CLL ontogeny and clonal progression.
Collapse
|
13
|
Kanduri M, Marincevic M, Halldórsdóttir AM, Mansouri L, Junevik K, Ntoufa S, Kultima HG, Isaksson A, Juliusson G, Andersson PO, Ehrencrona H, Stamatopoulos K, Rosenquist R. Distinct transcriptional control in major immunogenetic subsets of chronic lymphocytic leukemia exhibiting subset-biased global DNA methylation profiles. Epigenetics 2012; 7:1435-42. [PMID: 23154584 DOI: 10.4161/epi.22901] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) can be divided into prognostic subgroups based on the IGHV gene mutational status, and is further characterized by multiple subsets of cases with quasi-identical or stereotyped B cell receptors that also share clinical and biological features. We recently reported differential DNA methylation profiles in IGHV-mutated and IGHV-unmutated CLL subgroups. For the first time, we here explore the global methylation profiles of stereotyped subsets with different prognosis, by applying high-resolution methylation arrays on CLL samples from three major stereotyped subsets: the poor-prognostic subsets #1 (n = 15) and #2 (n = 9) and the favorable-prognostic subset #4 (n = 15). Overall, the three subsets exhibited significantly different methylation profiles, which only partially overlapped with those observed in our previous study according to IGHV gene mutational status. Specifically, gene ontology analysis of the differentially methylated genes revealed a clear enrichment of genes involved in immune response, such as B cell activation (e.g., CD80, CD86 and IL10), with higher methylation levels in subset #1 than subsets #2 and #4. Accordingly, higher expression of the co-stimulatory molecules CD80 and CD86 was demonstrated in subset #4 vs. subset #1, pointing to a key role for these molecules in the crosstalk of CLL subset #4 cells with the microenvironment. In summary, investigation of three prototypic, stereotyped CLL subsets revealed distinct DNA methylation profiles for each subset, which suggests subset-biased patterns of transcriptional control and highlights a key role for epigenetics during leukemogenesis.
Collapse
Affiliation(s)
- Meena Kanduri
- Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
High prevalence of adverse prognostic genetic aberrations and unmutated IGHV genes in small lymphocytic lymphoma as compared to chronic lymphocytic leukemia. J Hematop 2011. [DOI: 10.1007/s12308-011-0108-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
15
|
Gunnarsson R, Rosenquist R. New insights into the pathobiology of chronic lymphocytic leukemia. J Hematop 2011. [DOI: 10.1007/s12308-011-0091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
16
|
Dal-Bo M, Del Giudice I, Bomben R, Capello D, Bertoni F, Forconi F, Laurenti L, Rossi D, Zucchetto A, Pozzato G, Marasca R, Efremov DG, Guarini A, Del Poeta G, Foà R, Gaidano G, Gattei V. B-cell receptor, clinical course and prognosis in chronic lymphocytic leukaemia: the growing saga of the IGHV3 subgroup gene usage. Br J Haematol 2011; 153:3-14. [PMID: 21303354 DOI: 10.1111/j.1365-2141.2010.08440.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The immunoglobulin heavy chain variable gene (IGHV) mutational status has been recognized as an important predictor of prognosis in chronic lymphocytic leukaemia (CLL) since 1999. More recently, other features of the B-cell receptor, such as stereotypy, have been identified as capable of refining the prognostic potential of IGHV status in the clinical assessment of CLL patients. In this context, different genes belonging to the IGHV3 subgroup, the most frequently used subgroup in CLL, have been shown to denote disease subsets that either display a bad prognosis (i.e. IGHV3-21, IGHV3-23) or are associated with particularly good clinical outcomes, including a highly stable/indolent clinical course, even prone to spontaneous regression (i.e. IGHV3-72, IGHV3-30). The present review focuses on the molecular and biological features of CLL-expressing specific genes belonging to the IGHV3 subgroup that are known to mark disease subsets with completely different clinical courses, and may be possibly related to CLL pathogenesis via antigen and/or superantigen involvement.
Collapse
Affiliation(s)
- Michele Dal-Bo
- Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rossi D, Gaidano G. Biological and clinical significance of stereotyped B-cell receptors in chronic lymphocytic leukemia. Haematologica 2010; 95:1992-5. [PMID: 21123439 PMCID: PMC2995555 DOI: 10.3324/haematol.2010.033241] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Davide Rossi
- Division of Hematology, Department of Clinical and Experimental Medicine and IRCAD, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy, E-mail:
| | - Gianluca Gaidano
- Division of Hematology, Department of Clinical and Experimental Medicine and IRCAD, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy, E-mail:
| |
Collapse
|
18
|
Rosén A, Murray F, Evaldsson C, Rosenquist R. Antigens in chronic lymphocytic leukemia--implications for cell origin and leukemogenesis. Semin Cancer Biol 2010; 20:400-9. [PMID: 20863893 DOI: 10.1016/j.semcancer.2010.09.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 09/14/2010] [Indexed: 11/29/2022]
Abstract
Several types of B cell tumors, particularly MALT lymphomas, are known to have an antigen-driven component in tumor development. Over the past two decades substantial data have accumulated regarding the restricted immunoglobulin (IG) gene repertoire in chronic lymphocytic leukemia (CLL) and its potential implications for antigenic drive in the disease development and progression. Herein we discuss how evidence first illustrated a link between certain B cell receptor (BCR) specificities and disease outcome and the subsequent large-scale IG analyses which revealed the extent of "stereotyped" BCRs in CLL. More recent studies on CLL antibody reactivity have gradually provided clues as to which antigens may be involved in the tumor development. Significantly, CLL monoclonal antibodies have been shown to resemble natural antibodies recognizing molecular motifs both on apoptotic cells (e.g. modified cytoskeletal proteins and oxidation-specific epitopes), as well as exogenous bacteria, indicating that CLL clones possibly arise from B cells which have dual function as scavengers of apoptotic debris, while also having the ability to bind conserved bacterial cell structures. Such revelations have led us to re-evaluate both the phenotypic and functional characteristics of the tumor B cells and the pathway by which CLL arises and develops.
Collapse
Affiliation(s)
- Anders Rosén
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | | | | | | |
Collapse
|
19
|
Marincevic M, Mansouri M, Kanduri M, Isaksson A, Göransson H, Smedby KE, Jurlander J, Juliusson G, Davi F, Stamatopoulos K, Rosenquist R. Distinct gene expression profiles in subsets of chronic lymphocytic leukemia expressing stereotyped IGHV4-34 B-cell receptors. Haematologica 2010; 95:2072-9. [PMID: 20801898 DOI: 10.3324/haematol.2010.028639] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Numerous subsets of patients with chronic lymphocytic leukemia display similar immunoglobulin gene usage with almost identical complementarity determining region 3 sequences. Among IGHV4-34 cases, two such subsets with "stereotyped" B-cell receptors were recently identified, i.e. subset #4 (IGHV4-34/IGKV2-30) and subset #16 (IGHV4-34/IGKV3-20). Subset #4 patients appear to share biological and clinical features, e.g. young age at diagnosis and indolent disease, whereas little is known about subset #16 at a clinical level. DESIGN AND METHODS We investigated the global gene expression pattern in sorted chronic lymphocytic leukemia cells from 25 subset/non-subset IGHV4-34 patients using Affymetrix gene expression arrays. RESULTS Although generally few differences were found when comparing subset to non-subset 4/16 IGHV4-34 cases, distinct gene expression profiles were revealed for subset #4 versus subset #16. The differentially expressed genes, predominantly with lower expression in subset #4 patients, are involved in important cell regulatory pathways including cell-cycle control, proliferation and immune response, which may partly explain the low-proliferative disease observed in subset #4 patients. CONCLUSIONS Our novel data demonstrate distinct gene expression profiles among patients with stereotyped IGHV4-34 B-cell receptors, providing further evidence for biological differences in the pathogenesis of these subsets and underscoring the functional relevance of subset assignment based on B-cell receptor sequence features.
Collapse
|
20
|
Differential genome-wide array-based methylation profiles in prognostic subsets of chronic lymphocytic leukemia. Blood 2009; 115:296-305. [PMID: 19897574 DOI: 10.1182/blood-2009-07-232868] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Global hypomethylation and regional hypermethylation are well-known epigenetic features of cancer; however, in chronic lymphocytic leukemia (CLL), studies on genome-wide epigenetic modifications are limited. Here, we analyzed the global methylation profiles in CLL, by applying high-resolution methylation microarrays (27,578 CpG sites) to 23 CLL samples, belonging to the immunoglobulin heavy-chain variable (IGHV) mutated (favorable) and IGHV unmutated/IGHV3-21 (poor-prognostic) subsets. Overall, results demonstrated significant differences in methylation patterns between these subgroups. Specifically, in IGHV unmutated CLL, we identified methylation of 7 known or candidate tumor suppressor genes (eg, VHL, ABI3, and IGSF4) as well as 8 unmethylated genes involved in cell proliferation and tumor progression (eg, ADORA3 and PRF1 enhancing the nuclear factor-kappaB and mitogen-activated protein kinase pathways, respectively). In contrast, these latter genes were silenced by methylation in IGHV mutated patients. The array data were validated for selected genes using methylation-specific polymerase chain reaction, quantitative reverse transcriptase-polymerase chain reaction, and bisulfite sequencing. Finally, the significance of DNA methylation in regulating gene promoters was shown by reinducing 4 methylated tumor suppressor genes (eg, VHL and ABI3) in IGHV unmutated samples using the methyl-inhibitor 5-aza-2'-deoxycytidine. Taken together, our data for the first time reveal differences in global methylation profiles between prognostic subsets of CLL, which may unfold epigenetic silencing mechanisms involved in CLL pathogenesis.
Collapse
|
21
|
Abstract
The rearrangement of the immunoglobulin genes (IG) provides a large diversity of B-cell receptors conformations and allows the immune system to respond differently to foreign antigens. In chronic lymphocytic leukemia (CLL), there are a restricted number of stereotyped B-cell receptors rearranged by the tumor B-cells between CLL patients. These subsets with stereotyped receptors appear to have clinical implications, for example cases that rearrange the IGHV3-21 gene display poor clinical prognosis. The number of subsets with stereotyped receptors has been reported at a frequency of over 20% of CLL cases; however, the specificities of these receptors are still not clearly defined. Reactivity to epitopes from bacterial antigen, cytoskeleton components such as vimentin, and antigens on viable and apoptotic T-cell have been proposed. The role of antigen in CLL development is currently being more clearly defined with identification of stereotyped receptors, and their antigen specificity and the continued role antigen stimulation plays in CLL disease will be an important question in the future.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibody Specificity
- Gene Rearrangement/genetics
- Genes, Immunoglobulin
- Genes, Neoplasm
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Models, Biological
- Molecular Sequence Data
- Mutation
- Proto-Oncogene Proteins c-bcr/genetics
- Selection, Genetic
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Gerard Tobin
- Department of Genetics and Pathology, Uppsala University, Sweden.
| |
Collapse
|
22
|
Ghia EM, Jain S, Widhopf GF, Rassenti LZ, Keating MJ, Wierda WG, Gribben JG, Brown JR, Rai KR, Byrd JC, Kay NE, Greaves AW, Kipps TJ. Use of IGHV3-21 in chronic lymphocytic leukemia is associated with high-risk disease and reflects antigen-driven, post-germinal center leukemogenic selection. Blood 2008; 111:5101-8. [PMID: 18326815 PMCID: PMC2384137 DOI: 10.1182/blood-2007-12-130229] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 03/03/2008] [Indexed: 12/21/2022] Open
Abstract
We examined the chronic lymphocytic leukemia (CLL) cells of 2457 patients evaluated by the CLL Research Consortium (CRC) and found that 63 (2.6%) expressed immunoglobulin (Ig) encoded by the Ig heavy-chain-variable-region gene (IGHV), IGHV3-21. We identified the amino acid sequence DANGMDV (motif-1) or DPSFYSSSWTLFDY (motif-2) in the Ig heavy-chain (IgH) third complementarity-determining region (HCDR3) of IgH, respectively, used by 25 or 3 cases. The IgH with HCDR3 motif-1 or motif-2, respectively, was paired with Ig light chains (IgL) encoded by IGLV3-21 or IGKV3-20, suggesting that these Ig had been selected for binding to conventional antigen(s). Cases that had HCDR3 motif-1 had a median time from diagnosis to initial therapy comparable with that of cases without a defined HCDR3 motif, as did cases that used mutated IGHV3-21 (n = 27) versus unmutated IGHV3-21 (n = 30). Of 7 examined cases that used Ig encoded by IGHV3-21/IGLV3-21, we found that 5 had a functionally rearranged IGKV allele that apparently had incurred antigendriven somatic mutations and subsequent rearrangement with KDE. This study reveals that CLL cells expressing IGHV3-21/IGLV3-21 most likely were derived from B cells that had experienced somatic mutation and germinal-center maturation in an apparent antigen-driven immune response before undergoing Ig-receptor editing and after germinal-center leukemogenic selection.
Collapse
Affiliation(s)
- Emanuela M Ghia
- Chronic Lymphocytic Leukemia Research Consortium, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang M, Tan LP, Dijkstra MK, van Lom K, Robertus JL, Harms G, Blokzijl T, Kooistra K, van t'Veer MB, Rosati S, Visser L, Jongen-Lavrencic M, Kluin PM, van den Berg A. miRNA analysis in B-cell chronic lymphocytic leukaemia: proliferation centres characterized by low miR-150 and highBIC/miR-155 expression. J Pathol 2008; 215:13-20. [DOI: 10.1002/path.2333] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Zhou Y, Zhang L, Romaguera J, Delasalle K, Han X, Du X, Kwak L, Yi Q, Wang M. Immunotherapy in mantle cell lymphoma: anti-CD20-based therapy and beyond. Am J Hematol 2008; 83:144-9. [PMID: 17722077 DOI: 10.1002/ajh.21036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mantle cell lymphoma (MCL), an aggressive non-Hodgkin's lymphoma characterized by t(11; 14)(q13; q32) chromosomal translocation and overexpression of cyclin D1, has the worst prognosis among all lymphomas. Recent advances in biology, genetics, and immunology have supported the development of immunotherapy in MCL. Rituximab monotherapy in MCL has limited activity. It is more effective when used in combination with chemotherapy such as R-CHOP, R-hyperCVAD/MTX-Ara-C, or R-FCM as front-line or salvage therapy for mantle cell lymphoma. Maintenance with Rituximab was shown to prolong response duration. Although most results have suggested that combining autologous stem cell transplantation with Rituximab may lead to durable remission, the sample size was not sufficient to declare survival benefit. Anti-CD20 radioimmunoconjugates (RICs) (90)Yttrium-ibritumomab tiuxetan and (131)Iodine-tositumomab have been used in mantle cell lymphoma even when patients are relatively resistant to Rituximab-based therapy. Allogeneic stem cell transplantation is a treatment modality in advanced or relapsed MCL, particularly using reduced-intensity conditioning. MCL may have high response rates and sustained remissions after donor lymphocyte infusion. Dendritic cells (DCs) fused with MCL cells for immunostimulation have preliminarily shown anti-lymphoma effects as well. Idiotype vaccination in MCL patients following Rituximab-containing chemotherapy induced tumor-specific T-cell immunity in the absence of B cells. Other immunotherapy, such as the combination of thalidomide with Rituximab, has shown substantial antitumor activity. A Phase I/II study is ongoing to determine the maximum tolerated dose (MTD) and the efficacy of lenalidomide in combination with Rituximab for relapsed/refractory MCL. This review summarizes the latest and exciting advances in MCL.
Collapse
Affiliation(s)
- Yuhong Zhou
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Essakali S, Carney D, Westerman D, Gambell P, Seymour JF, Dobrovic A. Negative selection of chronic lymphocytic leukaemia cells using a bifunctional rosette-based antibody cocktail. BMC Biotechnol 2008; 8:6. [PMID: 18230129 PMCID: PMC2254389 DOI: 10.1186/1472-6750-8-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 01/29/2008] [Indexed: 11/28/2022] Open
Abstract
Background High purity of tumour samples is a necessity for accurate genetic and expression analysis and is usually achieved by positive selection in chronic lymphocytic leukaemia (CLL). Results We adapted a bifunctional rosette-based antibody cocktail for negative selection of B-cells for isolating CLL cells from peripheral blood (PB). PB samples from CLL patients were split into aliquots. One aliquot of each sample was enriched by density gradient centrifugation (DGC), while the other aliquot of each sample was incubated with an antibody cocktail for B-cell enrichment prior to DGC (RS+DGC). The purity of CLL cells after DGC averaged 74.1% (range: 15.9 – 97.4%). Using RS+DGC, the purity averaged 93.8% (range: 80.4 – 99.4%) with 23 of 29 (79%) samples showing CLL purities above 90%. RNA extracted from enriched CLL cells was of appropriately high quality for microarray analysis. Conclusion This study confirms the use of a bifunctional rosette-based antibody cocktail as an effective method for the purification of CLL cells from peripheral blood.
Collapse
Affiliation(s)
- Salim Essakali
- Department of Pathology, Peter MacCallum Cancer Centre, St Andrews Place, Melbourne, Victoria 3002, Australia.
| | | | | | | | | | | |
Collapse
|
26
|
Bomben R, Dal Bo M, Capello D, Benedetti D, Marconi D, Zucchetto A, Forconi F, Maffei R, Ghia EM, Laurenti L, Bulian P, Del Principe MI, Palermo G, Thorsélius M, Degan M, Campanini R, Guarini A, Del Poeta G, Rosenquist R, Efremov DG, Marasca R, Foà R, Gaidano G, Gattei V. Comprehensive characterization of IGHV3-21-expressing B-cell chronic lymphocytic leukemia: an Italian multicenter study. Blood 2007; 109:2989-98. [PMID: 17148579 DOI: 10.1182/blood-2006-10-051110] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IGHV3-21-using chronic lymphocytic leukemia (CLL) is a distinct entity with restricted immunoglobulin gene features and poor prognosis and is more frequently encountered in Northern than Southern Europe. To further investigate this subset and its geographic distribution in the context of a country (Italy) with both continental and Mediterranean areas, 37 IGHV3-21 CLLs were collected out of 1076 cases enrolled by different institutions from Northern or Central Southern Italy. Of the 37 cases, 18 were identified as homologous (hom)HCDR3-IGHV3-21 CLLs and were found almost exclusively (16 of 18) in Northern Italy; in contrast, 19 nonhomHCDR3-IGHV3-21 cases were evenly distributed throughout Italy. Clinically, poor survivals were documented for IGHV3-21 CLLs as well as for subgroups of mutated and homHCDR3-IGHV3-21 CLLs. Negative prognosticators CD38, ZAP-70, CD49d, and CD79b were expressed at higher levels in homHCDR3 than nonhomHCDR3-IGHV3-21 cases. Differential gene expression profiling (GEP) of 13 IGHV3-21 versus 52 non-IGHV3-21 CLLs identified, among 122 best-correlated genes, TGFB2 and VIPR1 as down- and up-regulated in IGHV3-21 CLL cases, respectively. Moreover, GEP of 7 homHCDR3 versus 6 nonhomHCDR3-IGHV3-21 CLLs yielded 20 differentially expressed genes, with WNT-16 being that expressed at the highest levels in homHCDR3-IGHV3-21 CLLs. Altogether, IGHV3-21 CLLs, including those with homHCDR3, had a peculiar global phenotype in part explaining their worse clinical outcome.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Case-Control Studies
- DNA Primers/genetics
- Female
- Gene Expression Profiling
- Gene Frequency
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Genes, Immunoglobulin Heavy Chain
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Italy/epidemiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Male
- Middle Aged
- Molecular Sequence Data
- Mutation
- Prognosis
- Sequence Homology, Amino Acid
- Survival Rate
Collapse
Affiliation(s)
- Riccardo Bomben
- Clinical and Experimental Hematology Research Unit, Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano PN, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ricca I, Rocci A, Drandi D, Francese R, Compagno M, Lobetti Bodoni C, De Marco F, Astolfi M, Monitillo L, Vallet S, Calvi R, Ficara F, Omedè P, Rosato R, Gallamini A, Marinone C, Bergui L, Boccadoro M, Tarella C, Ladetto M. Telomere length identifies two different prognostic subgroups among VH-unmutated B-cell chronic lymphocytic leukemia patients. Leukemia 2007; 21:697-705. [PMID: 17301820 DOI: 10.1038/sj.leu.2404544] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Some evidences suggest that telomere restriction fragment length (TRF-L) is an effective indicator of histopathogenesis in B-cell tumors. As histopathogenesis is relevant for B-cell chronic lymphocytic leukemia (B-CLL) prognosis, TRF-L was assessed by Southern blot in 201 patients and compared to variable immunoglobulin heave chain gene mutational status (VH-MS) and to other known prognostic features. Overall survival (OS), time to first treatment (TTFT) and progression-free survival (PFS) were evaluated. Our results indicate the following: (1) TRF-L is heterogeneous among B-CLL patients (median 6014 bp, range 1465-16 762); (2) TRF-L correlates to VH-MS (r(2)=0.1994, P<0.0001) with VH-mutated patients showing long and VH-unmutated short telomeres; however, 41% of VH-unmutated and 5% of VH-mutated patients did not show this correlation and were thus defined as 'discordant'; (3) TRF-L effectively predicts outcome in terms of TTFT, PFS and OS; (4) VH-unmutated discordant patients have a better clinical outcome than VH-unmutated concordant patients (OS P<0.01, PFS P<0.05) and similar to that of VH-mutated patients (OS, PFS P=NS). Compared to VH-unmutated concordant patients, VH-unmutated discordant patients showed no peculiarity in their immunoglobulin rearrangement nor in their flow cytometry or fluorescence in situ hybridization profile. In conclusion, TRF-L can be helpful to refine prognostication of B-CLL patients, particularly those with a VH-unmutated immunoglobulin sequence.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Allelic Imbalance
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/immunology
- Burkitt Lymphoma/mortality
- Disease-Free Survival
- Humans
- Immunoglobulin Variable Region
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Middle Aged
- Neoplasm Staging
- Prognosis
- Survival Analysis
- Telomere/ultrastructure
Collapse
Affiliation(s)
- I Ricca
- Divisione di Ematologia, Dipartimento di Medicina ed Oncologia Sperimentale--Università di Torino, Azienda Ospedaliera S. Giovanni Battista, Torino, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kainz B, Shehata M, Bilban M, Kienle D, Heintel D, Krömer-Holzinger E, Le T, Kröber A, Heller G, Schwarzinger I, Demirtas D, Chott A, Döhner H, Zöchbauer-Müller S, Fonatsch C, Zielinski C, Stilgenbauer S, Gaiger A, Wagner O, Jäger U. Overexpression of the paternally expressed gene10 (PEG10) from the imprinted locus on chromosome 7q21 in high-risk B-cell chronic lymphocytic leukemia. Int J Cancer 2007; 121:1984-1993. [PMID: 17621626 DOI: 10.1002/ijc.22929] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report high expression of the maternally imprinted gene PEG10 in high-risk B-CLL defined by high LPL mRNA expression. Differential expression was initially identified by microarray analysis and confirmed by real time PCR in 42 B-CLL patients. mRNA expression ranged from 0.3- to 375.4-fold compared to normal peripheral blood mononuclear cells (PBMNC). Expression levels in CD19+ B-CLL cells were 100-fold higher than in B-cells from healthy donors. PEG10 expression levels in B-CLL patient samples remained stable over time even after chemotherapy. High PEG10 expression correlated with high LPL expression (p=0.001) and a positive Coombs' test (p=0.04). Interestingly, similar expression patterns were observed for the neighbouring imprinted gene sarcoglycan-epsilon (SGCE). Monoallelic expression and maintained imprinting of PEG10 were found by allele- or methylation-specific PCR. The intensity of intracellular staining of PEG10 protein corresponded to mRNA levels as confirmed by immunofluorescence staining. Short term knock-down of PEG10 in B-CLL cells and HepG2 cells was not associated with changes in cell survival but resulted in a significant change in the expression of 80 genes. However, long term inhibition of PEG10 led to induction of apoptosis in B-CLL cells. Our data indicate (i) a prognostic value of PEG10 in B-CLL patients; (ii) specific deregulation of the imprinted locus at 7q21 in high-risk B-CLL; (iii) a potential functional and biological role of PEG10 protein expression. Altogether, PEG10 represents a novel marker in B-CLL.
Collapse
MESH Headings
- Alleles
- Apoptosis Regulatory Proteins
- Biomarkers, Tumor
- Cell Line, Tumor
- Chromosomes, Human, Pair 7/genetics
- DNA Methylation
- DNA-Binding Proteins
- Down-Regulation
- Gene Expression Regulation, Neoplastic
- Genomic Imprinting/genetics
- Health
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Nuclear Proteins/genetics
- Polysaccharides/metabolism
- Proteins/genetics
- Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- RNA-Binding Proteins
- Risk Factors
- Survival Rate
- Ubiquitin-Protein Ligases/genetics
Collapse
Affiliation(s)
- Birgit Kainz
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Medhat Shehata
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- K. Landsteiner Institute for Cytokine and Tumor Microenvironment, Vienna, Austria
| | - Martin Bilban
- Department of Clinical Chemistry and Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Dirk Kienle
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Daniel Heintel
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Trang Le
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Alexander Kröber
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Gerwin Heller
- Division of Oncology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ilse Schwarzinger
- Department of Clinical Chemistry and Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Dita Demirtas
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- K. Landsteiner Institute for Cytokine and Tumor Microenvironment, Vienna, Austria
| | - Andreas Chott
- Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Hartmut Döhner
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Sabine Zöchbauer-Müller
- Division of Oncology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Christa Fonatsch
- Department of Human Genetics, Medical University of Vienna, Vienna, Austria
| | - Christoph Zielinski
- Division of Oncology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- Center of Excellence in Clinical and Experimental Oncology (CLEXO), Vienna, Austria
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
- German CLL Study Group
| | - Alexander Gaiger
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Oswald Wagner
- Department of Clinical Chemistry and Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Center of Excellence in Clinical and Experimental Oncology (CLEXO), Vienna, Austria
| | - Ulrich Jäger
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- Center of Excellence in Clinical and Experimental Oncology (CLEXO), Vienna, Austria
- German CLL Study Group
| |
Collapse
|
29
|
Fisher RI, Bernstein SH, Kahl BS, Djulbegovic B, Robertson MJ, de Vos S, Epner E, Krishnan A, Leonard JP, Lonial S, Stadtmauer EA, O'Connor OA, Shi H, Boral AL, Goy A. Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol 2006; 24:4867-74. [PMID: 17001068 DOI: 10.1200/jco.2006.07.9665] [Citation(s) in RCA: 569] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PURPOSE Evaluate response rate, duration of response (DOR), time-to-progression (TTP), overall survival (OS), and safety of bortezomib treatment in patients with relapsed or refractory mantle cell lymphoma (MCL). PATIENTS AND METHODS Bortezomib 1.3 mg/m(2) was administered on days 1, 4, 8, and 11 of a 21-day cycle, for up to 17 cycles. Response and progression were determined using International Workshop Response Criteria, both using data from independent radiology review and by the investigators. Primary efficacy analyses were based on data from independent radiology review. RESULTS In total, 155 patients were treated. Median number of prior therapies was one (range, one to three). Response rate in 141 assessable patients was 33% including 8% complete response (CR)/unconfirmed CR. Median DOR was 9.2 months. Median TTP was 6.2 months. Results by investigator assessments were similar. Median OS has not been reached after a median follow-up of 13.4 months. The safety profile of bortezomib was similar to previous experience in relapsed multiple myeloma. The most common adverse events grade 3 or higher were peripheral neuropathy (13%), fatigue (12%), and thrombocytopenia (11%). Death from causes that were considered to be treatment related was reported for 3% of patients. CONCLUSION These results confirm the activity of bortezomib in relapsed or refractory MCL, with predictable and manageable toxicities. Bortezomib provides significant clinical activity in terms of durable and complete responses, and may therefore represent a new treatment option for this population with usually very poor outcome. Studies of bortezomib-based combinations in MCL are ongoing.
Collapse
Affiliation(s)
- Richard I Fisher
- University of Rochester, James P. Wilmot Cancer Center, Rochester, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Palma M, Kokhaei P, Lundin J, Choudhury A, Mellstedt H, Osterborg A. The biology and treatment of chronic lymphocytic leukemia. Ann Oncol 2006; 17 Suppl 10:x144-54. [PMID: 17018715 DOI: 10.1093/annonc/mdl252] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- M Palma
- Department of Hematology, Cancer Centre Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
31
|
Matthews C, Catherwood MA, Morris TCM, Kettle PJ, Drake MB, Gilmore WS, Alexander HD. Serum TK levels in CLL identify Binet stage A patients within biologically defined prognostic subgroups most likely to undergo disease progression. Eur J Haematol 2006; 77:309-17. [PMID: 16856923 DOI: 10.1111/j.1600-0609.2006.00707.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Serum thymidine kinase (TK) levels have been shown to be correlated with survival in many malignancies, including chronic lymphocytic leukaemia (CLL). This study was designed to investigate associations between TK levels and other prognostic markers, in newly and previously diagnosed Binet stage A patients. Furthermore, the use of serum TK measurement to identify subcategories of disease within those defined by IgV(H) mutational status, gene usage and chromosomal aberrations was investigated. METHODS Ninety-one CLL patients were enrolled. Serum TK levels were measured using a radioenzyme assay. IgV(H) mutational status and V(H) gene usage were determined using BIOMED-2 primers and protocol. Recurring chromosomal abnormalities were detected by interphase fluorescent in situ hybridisation (FISH). Flow cytometry and reverse transcriptase polymerase chain reaction (RT-PCR) determined CD38 and Zap-70 expression, respectively. RESULTS Significantly higher serum TK levels were found in IgV(H) unmutated, compared with IgV(H) mutated, patients (P < 0.001). Elevated TK levels were also found in patients with CD38 and Zap-70 positivity (P = 0.004, P < 0.001, respectively), short lymphocyte doubling time (LDT) (P = 0.044) and poor or intermediate prognosis chromosomal aberrations (P < 0.001). CONCLUSION A TK level of >8.5 U/L best identified patients with progressive disease. Elevated TK levels could identify patients categorised, at diagnosis, into good prognosis subgroups by the various biological markers (mutated IgV(H), good prognosis chromosomal aberrations, Zap-70(-) and CD38(-)) who subsequently showed disease progression. Additionally, patients with V(H)3-21 gene usage showed high TK levels, irrespective of mutational status, and serum TK measurement retained predictive power as disease progressed in all subcategories studied.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/genetics
- Adult
- Aged
- Aged, 80 and over
- Chromosome Aberrations
- Disease Progression
- Female
- Flow Cytometry
- Humans
- Immunoglobulin Variable Region/genetics
- In Situ Hybridization, Fluorescence
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Mutation
- Prognosis
- Reverse Transcriptase Polymerase Chain Reaction
- Thymidine Kinase/blood
Collapse
|
32
|
Tobin G, Rosén A, Rosenquist R. What is the current evidence for antigen involvement in the development of chronic lymphocytic leukemia? Hematol Oncol 2006; 24:7-13. [PMID: 16315334 DOI: 10.1002/hon.760] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
For many years it has been evident that B-cell chronic lymphocytic leukemia (CLL) displays preferential usage of individual immunoglobulin (Ig) variable heavy chain (V(H)) genes. The V(H)1-69 gene was the first to be reported overrepresented in a large number of CLL patients, where the V(H)1-69(+) CLL rearrangements showed characteristic molecular features, such as unmutated V(H) genes, usage of specific diversity/joining gene segments, and a longer than average complementarity determining region (CDR) 3 with certain common amino acid motifs. Also, biased usage of the V(H)3-07 and V(H)4-34 genes with specific rearrangement characteristics was reported in CLL. These findings led to the speculation that antigens could be involved during CLL development by triggering proliferation of B-cells with specific B-cell receptors (BCRs) leading to an increased risk of transforming events. Recently, we characterized a subset of CLL utilizing the V(H)3-21 gene that also displayed peculiar Ig features, e.g. very short and homologous CDR3s, predominant lambda expression and preferential V(lambda)2-14 gene usage. This V(H)3-21(+) subgroup also had poor prognosis despite the fact that two-thirds of cases carried mutated V(H) genes. Moreover, we and others have thereafter described further CLL subsets with very similar heavy and light chain gene rearrangement features. These latter findings of subsets expressing restricted BCRs have emphasized the hypothesis that antigens could play a role during the pathogenesis of CLL. Interestingly, recombinant antibodies produced from these restricted subsets showed similar cytoplasmatic reactivity within each group, thus suggesting recognition of a limited number of autoantigens. Further characterization of antigens is now necessary in order to understand their nature and exact role in CLL development.
Collapse
MESH Headings
- Amino Acid Sequence
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Genes, Immunoglobulin
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Molecular Sequence Data
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Gerard Tobin
- Department of Genetics and Pathology, Uppsala University, Sweden.
| | | | | |
Collapse
|
33
|
Bilban M, Heintel D, Scharl T, Woelfel T, Auer MM, Porpaczy E, Kainz B, Kröber A, Carey VJ, Shehata M, Zielinski C, Pickl W, Stilgenbauer S, Gaiger A, Wagner O, Jäger U. Deregulated expression of fat and muscle genes in B-cell chronic lymphocytic leukemia with high lipoprotein lipase expression. Leukemia 2006; 20:1080-8. [PMID: 16617321 DOI: 10.1038/sj.leu.2404220] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lipoprotein lipase (LPL) is a prognostic marker in B-cell chronic lymphocytic leukemia (B-CLL) related to immunoglobulin V(H) gene (IgV(H))mutational status. We determined gene expression profiles using Affymetrix U133A GeneChips in two groups of B-CLLs selected for either high ('LPL+', n=10) or low ('LPL-', n=10) LPL mRNA expression. Selected genes were verified by real-time PCR in an extended patient cohort (n=42). A total of 111 genes discriminated LPL+ from LPL- B-CLLs. Of these, the top three genes associated with time to first treatment were Septin10, DMD and Gravin (P</=0.01). The relationship of LPL+ and LPL- B-CLL gene expression signatures to 52 tissues was statistically analyzed. The LPL+ B-CLL expression signature, represented by 64 genes was significantly related to fat, muscle and PB dendritic cells (P<0.001). Exploration of microarray data to define functional alterations related to the biology of LPL+ CLL identified two functional modules, fatty acid degradation and MTA3 signaling, as being altered with higher statistical significance. Our data show that LPL+ B-CLL cells have not only acquired gene expression changes in fat and muscle-associated genes but also in functional pathways related to fatty acid degradation and signaling which may ultimately influence CLL biology and clinical outcome.
Collapse
MESH Headings
- Cohort Studies
- Cytoskeletal Proteins/genetics
- Dystrophin/genetics
- Fatty Acids/genetics
- Fatty Acids/metabolism
- GTP Phosphohydrolases/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Leukemic
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Lipoprotein Lipase/biosynthesis
- Lipoprotein Lipase/genetics
- Mutation
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Septins
Collapse
Affiliation(s)
- M Bilban
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kienle D, Benner A, Kröber A, Winkler D, Mertens D, Bühler A, Seiler T, Jäger U, Lichter P, Döhner H, Stilgenbauer S. Distinct gene expression patterns in chronic lymphocytic leukemia defined by usage of specific VH genes. Blood 2005; 107:2090-3. [PMID: 16322480 DOI: 10.1182/blood-2005-04-1483] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The mutation status and usage of specific VH genes such as V3-21 and V1-69 are potentially independent pathogenic and prognostic factors in chronic lymphocytic leukemia (CLL). To investigate the role of antigenic stimulation, we analyzed the expression of genes involved in B-cell receptor (BCR) signaling/activation, cell cycle, and apoptosis control in CLL using these specific VH genes compared to VH mutated (VH-MUT) and VH unmutated (VH-UM) CLL not using these VH genes. V3-21 cases showed characteristic expression differences compared to VH-MUT (up: ZAP70 [or ZAP-70]; down: CCND2, P27) and VH-UM (down: PI3K, CCND2, P27, CDK4, BAX) involving several BCR-related genes. Similarly, there was a marked difference between VH unmutated cases using the V1-69 gene and VH-UM (up: FOS; down: BLNK, SYK, CDK4, TP53). Therefore, usage of specific VH genes appears to have a strong influence on the gene expression pattern pointing to antigen recognition and ongoing BCR stimulation as a pathogenic factor in these CLL subgroups.
Collapse
MESH Headings
- Apoptosis/genetics
- Cell Cycle/genetics
- Cohort Studies
- Gene Expression Regulation, Leukemic/genetics
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocyte Activation/genetics
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Dirk Kienle
- Department of Internal Medicine III, University of Ulm, Robert-Koch-Strasse 8, 89081 Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|