1
|
Wu N, Liu R, Liang S, Gao H, Xu LP, Zhang XH, Liu J, Huang XJ. γδ T Cells May Aggravate Acute Graft-Versus-Host Disease Through CXCR4 Signaling After Allogeneic Hematopoietic Transplantation. Front Immunol 2021; 12:687961. [PMID: 34335589 PMCID: PMC8316995 DOI: 10.3389/fimmu.2021.687961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a pathology in which chemokines and their receptors play essential roles in directing the migration of alloreactive donor T cells into GVHD organs, thereby leading to further target tissue damage. Currently, acute GVHD (aGVHD) remains a major cause of high morbidity and mortality in patients who underwent allogeneic hematopoietic cell transplantation (alloHCT). The identification of immune cells that correlate with aGVHD is important and intriguing. To date, the involvement of innate-like γδ T cells in the pathogenesis of aGVHD is unclear. Herein, we found that primary human γδ T cells did not directly trigger allogeneic reactions. Instead, we revealed that γδ T cells facilitated the migration of CD4 T cells via the SDF-1-CXCR4 axis. These results indicate indirect regulation of γδ T cells in the development of aGVHD rather than a direct mechanism. Furthermore, we showed that the expression of CXCR4 was significantly elevated in γδ T cells and CD4 and CD8 T cells in recipients who experienced grades II-IV aGVHD after alloHCT. Consistently, CXCR4-expressing γδ T cells and CD4 T cells were induced in the target organs of mice suffering aGVHD. The depletion of γδ T cells in transplant grafts and treatment with AMD3100, an inhibitor of CXCR4 signaling, delayed the onset of aGVHD and prolonged survival in mice. Taken together, these findings suggest a role for γδ T cells in recruiting alloreactive CD4 T cells to target tissues through the expression of CXCR4. Our findings may help in understanding the mechanism of aGVHD and provide novel therapeutic targets.
Collapse
MESH Headings
- Adolescent
- Adult
- Animals
- Benzylamines/pharmacology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Chemokine CXCL12/metabolism
- Chemotaxis, Leukocyte
- Coculture Techniques
- Cyclams/pharmacology
- Disease Models, Animal
- Female
- Graft vs Host Disease/etiology
- Graft vs Host Disease/immunology
- Graft vs Host Disease/metabolism
- Graft vs Host Disease/prevention & control
- Hematopoietic Stem Cell Transplantation/adverse effects
- Humans
- Intraepithelial Lymphocytes/drug effects
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Male
- Mice, Inbred NOD
- Middle Aged
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/metabolism
- Signal Transduction
- Transplantation, Homologous
- Young Adult
- Mice
Collapse
Affiliation(s)
- Ning Wu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruoyang Liu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Shuang Liang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Haitao Gao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jiangying Liu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
2
|
Hu Y, Cui Q, Luo C, Luo Y, Shi J, Huang H. A promising sword of tomorrow: Human γδ T cell strategies reconcile allo-HSCT complications. Blood Rev 2015; 30:179-88. [PMID: 26654098 DOI: 10.1016/j.blre.2015.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/06/2015] [Accepted: 11/20/2015] [Indexed: 12/15/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is potentially a curative therapeutic option for hematological malignancies. In clinical practice, transplantation associated complications greatly affected the final therapeutical outcomes. Currently, primary disease relapse, graft-versus-host disease (GVHD) and infections remain the three leading causes of a high morbidity and mortality in allo-HSCT patients. Various strategies have been investigated in the past several decades including human γδ T cell-based therapeutical regimens. In different microenvironments, human γδ T cells assume features reminiscent of classical Th1, Th2, Th17, NKT and regulatory T cells, showing diverse biological functions. The cytotoxic γδ T cells could be utilized to target relapsed malignancies, and recently regulatory γδ T cells are defined as a novel implement for GVHD management. In addition, human γδ Τ cells facilitate control of post-transplantation infections and participate in tissue regeneration and wound healing processes. These features potentiate γδ T cells a versatile therapeutical agent to target transplantation associated complications. This review focuses on insights of applicable potentials of human γδ T cells reconciling complications associated with allo-HSCT. We believe an improved understanding of pertinent γδ T cell functions would be further exploited in the design of innovative immunotherapeutic approaches in allo-HSCT, to reduce mortality and morbidity, as well as improve quality of life for patients after transplantation.
Collapse
Affiliation(s)
- Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China.
| | - Qu Cui
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China.
| | - Chao Luo
- Department of Hematology, Jinhua Central Hospital, No. 351 Mingyue Road, Jinhua 312000, China.
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
3
|
Marcu-Malina V, van Dorp S, Kuball J. Re-targeting T-cells against cancer by gene-transfer of tumor-reactive receptors. Expert Opin Biol Ther 2010; 9:579-91. [PMID: 19368527 DOI: 10.1517/14712590902887018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Adoptive transfer of T-lymphocytes is a promising treatment for a variety of malignancies, but is often not feasible due to difficulties in generating T-cells reactive with the targeted antigen from patients. To facilitate rapid generation of cells for therapy, T-cells can be programmed with genes encoding for an antigen-specific T-cell receptor (TCR) or chimeric receptors. OBJECTIVE To discuss the molecular design and selected pitfalls of TCR gene modified T-cells and T-cells expressing chimeric receptors, so called T-bodies. METHODS A selected review of the recent literature. CONCLUSION Clinical trials report so far only limited efficacy of adoptively transferred genetically modified T-cells. However, the recent progress in engineering tumor-reactive T cells is providing a promising basis to further explore this treatment modality.
Collapse
Affiliation(s)
- Victoria Marcu-Malina
- Department of Hematology and VanCreveld Clinic, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
4
|
Rowe V, Banovic T, MacDonald KP, Kuns R, Don AL, Morris ES, Burman AC, Bofinger HM, Clouston AD, Hill GR. Host B cells produce IL-10 following TBI and attenuate acute GVHD after allogeneic bone marrow transplantation. Blood 2006; 108:2485-92. [PMID: 16788097 DOI: 10.1182/blood-2006-04-016063] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Host antigen-presenting cells (APCs) are known to be critical for the induction of graft-versus-host disease (GVHD) after allogeneic bone marrow transplantation (BMT), but the relative contribution of specific APC subsets remains unclear. We have studied the role of host B cells in GVHD by using B-cell-deficient microMT mice as BMT recipients in a model of CD4-dependent GVHD to major histocompatibility complex antigens. We demonstrate that acute GVHD is initially augmented in microMT recipients relative to wild-type recipients (mortality: 85% vs 44%, P < .01), and this is the result of an increase in donor T-cell proliferation, expansion, and inflammatory cytokine production early after BMT. Recipient B cells were depleted 28-fold at the time of BMT by total body irradiation (TBI) administered 24 hours earlier, and we demonstrate that TBI rapidly induces sustained interleukin-10 (IL-10) generation from B cells but not dendritic cells (DCs) or other cellular populations within the spleen. Finally, recipient mice in which B cells are unable to produce IL-10 due to homologous gene deletion develop more severe acute GVHD than recipient mice in which B cells are wild type. Thus, the induction of IL-10 in host B cells during conditioning attenuates experimental acute GVHD.
Collapse
Affiliation(s)
- Vanessa Rowe
- Bone Marrow Transplantation Laboratory, Queensland Institute of Medical Research, 300 Herston Rd, Herston, QLD 4006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|