1
|
Sharma L, Almaghlouth F, Mckernan H, Springett J, Tighe HC, Shovlin CL. Iron deficiency responses and integrated compensations in patients according to hereditary hemorrhagic telangiectasia ACVRL1, ENG and SMAD4 genotypes. Haematologica 2024; 109:958-962. [PMID: 37731378 PMCID: PMC10905072 DOI: 10.3324/haematol.2022.282038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Affiliation(s)
- Lakshya Sharma
- National Heart and Lung Institute, Imperial College London, UK; NIHR Imperial Biomedical Research Centre
| | | | - Heidi Mckernan
- Specialist Medicine, Imperial College Healthcare NHS Trust
| | | | - Hannah C Tighe
- Specialist Medicine, Imperial College Healthcare NHS Trust
| | - Claire L Shovlin
- National Heart and Lung Institute, Imperial College London, UK; NIHR Imperial Biomedical Research Centre, London, UK; Specialist Medicine, Imperial College Healthcare NHS Trust.
| |
Collapse
|
2
|
Tie Y, Tang F, Peng D, Zhang Y, Shi H. TGF-beta signal transduction: biology, function and therapy for diseases. MOLECULAR BIOMEDICINE 2022; 3:45. [PMID: 36534225 PMCID: PMC9761655 DOI: 10.1186/s43556-022-00109-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The transforming growth factor beta (TGF-β) is a crucial cytokine that get increasing concern in recent years to treat human diseases. This signal controls multiple cellular responses during embryonic development and tissue homeostasis through canonical and/or noncanonical signaling pathways. Dysregulated TGF-β signal plays an essential role in contributing to fibrosis via promoting the extracellular matrix deposition, and tumor progression via inducing the epithelial-to-mesenchymal transition, immunosuppression, and neovascularization at the advanced stage of cancer. Besides, the dysregulation of TGF-beta signal also involves in other human diseases including anemia, inflammatory disease, wound healing and cardiovascular disease et al. Therefore, this signal is proposed to be a promising therapeutic target in these diseases. Recently, multiple strategies targeting TGF-β signals including neutralizing antibodies, ligand traps, small-molecule receptor kinase inhibitors targeting ligand-receptor signaling pathways, antisense oligonucleotides to disrupt the production of TGF-β at the transcriptional level, and vaccine are under evaluation of safety and efficacy for the forementioned diseases in clinical trials. Here, in this review, we firstly summarized the biology and function of TGF-β in physiological and pathological conditions, elaborated TGF-β associated signal transduction. And then, we analyzed the current advances in preclinical studies and clinical strategies targeting TGF-β signal transduction to treat diseases.
Collapse
Affiliation(s)
- Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Fan Tang
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China ,grid.13291.380000 0001 0807 1581Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Dandan Peng
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Ye Zhang
- grid.506261.60000 0001 0706 7839Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Huashan Shi
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| |
Collapse
|
3
|
Nolan K, Verzosa G, Cleaver T, Tippimanchai D, DePledge LN, Wang XJ, Young C, Le A, Doebele R, Li H, Malkoski SP. Development of syngeneic murine cell lines for use in immunocompetent orthotopic lung cancer models. Cancer Cell Int 2020; 20:417. [PMID: 32874131 PMCID: PMC7455907 DOI: 10.1186/s12935-020-01503-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 08/18/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Immunocompetent animal models are required to study tumor-host interactions, immunotherapy, and immunotherapeutic combinations, however the currently available immunocompetent lung cancer models have substantial limitations. While orthotopic models potentially help fill this gap, the utility of these models has been limited by the very small number of murine lung cancer cell lines capable of forming orthotopic tumors in immunocompetent C57BL/6 hosts. METHODS Primary lung tumors with specific genetic alterations were created in C57BL/6 background mice. These tumors were then passaged through other animals to increase tumorigenicity and select for the ability to grow in a non-self animal. Once tumors demonstrated growth in a non-self host, cell lines were established. Successful cell lines were evaluated for the ability to produce orthotopic lung tumors in immunocompetent hosts. RESULTS We produced six murine lung cancer lines capable of orthotopic lung tumor formation in immunocompetent C57BL/6 animals. These lines demonstrate the expected genetic alterations based on their primary tumor genetics. CONCLUSIONS These novel cell lines will be useful for evaluating tumor-host interactions, the impact of specific oncogenic alterations on the tumor microenvironment, and immunotherapeutic approaches. This method of generating murine lines capable of orthotopic growth can likely be applied to other tumors and will broaden the applicability of pre-clinical testing of immunotherapeutic treatment regimens.
Collapse
Affiliation(s)
- Kyle Nolan
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, Room #9112, Mail stop C272, Aurora, CO 80045 USA
| | - Gregory Verzosa
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, Room #9112, Mail stop C272, Aurora, CO 80045 USA
| | - Tim Cleaver
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, Room #9112, Mail stop C272, Aurora, CO 80045 USA
| | - Darinee Tippimanchai
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, Room #9112, Mail stop C272, Aurora, CO 80045 USA
| | - Lisa N. DePledge
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO USA
| | - Christian Young
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO USA
| | - Anh Le
- Division of Medical Oncology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO USA
| | - Robert Doebele
- Division of Medical Oncology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO USA
| | - Howard Li
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, Room #9112, Mail stop C272, Aurora, CO 80045 USA
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA USA
| | - Stephen P. Malkoski
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, Room #9112, Mail stop C272, Aurora, CO 80045 USA
- Sound Critical Care, Sacred Heart Medical Center, Spokane, WA USA
| |
Collapse
|
4
|
Machiya A, Tsukamoto S, Ohte S, Kuratani M, Suda N, Katagiri T. Smad4-dependent transforming growth factor-β family signaling regulates the differentiation of dental epithelial cells in adult mouse incisors. Bone 2020; 137:115456. [PMID: 32473314 DOI: 10.1016/j.bone.2020.115456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 01/22/2023]
Abstract
Teeth consist of two major tissues, enamel and dentin, which are formed during development by epithelial and mesenchymal cells, respectively. Rodent incisors are useful experimental models for studying the molecular mechanisms of tooth formation because they are simultaneously growing in not only embryos but also adults. Members of the transforming growth factor-β (TGF-β) family regulate epithelial-mesenchymal interactions through an essential coactivator, Smad4. In the present study, we established Smad4 conditional knockout (cKO) mice and examined phenotypes in adult incisors. Smad4 cKO mice died with severe anemia within one month. Phosphorylated Smad1/5/9 and Smad2/3 were detected in epithelial cells in both control and Smad4 cKO mice. Disorganized and hypoplastic epithelial cells, such as ameloblasts, were observed in Smad4 cKO mice. Moreover, alkaline phosphatase expression and iron accumulation were reduced in dental epithelial cells in Smad4 cKO mice. These findings suggest that TGF-β family signaling through Smad4 is required for the differentiation and functions of dental epithelial cells in adult mouse incisors.
Collapse
Affiliation(s)
- Aiko Machiya
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan; Division of Orthodontics, Department of Human Development and Fostering, Meikai University School of Dentistry, Saitama, Japan; Division of Oral Rehabilitation of Sciences, Department of Restorative and Biomaterials Sciences, Meikai University School of Dentistry, Saitama, Japan
| | - Sho Tsukamoto
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Satoshi Ohte
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan; Microbial Chemistry Laboratory, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Mai Kuratani
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Naoto Suda
- Division of Orthodontics, Department of Human Development and Fostering, Meikai University School of Dentistry, Saitama, Japan
| | - Takenobu Katagiri
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan.
| |
Collapse
|
5
|
Kim YH, Choe SW, Chae MY, Hong S, Oh SP. SMAD4 Deficiency Leads to Development of Arteriovenous Malformations in Neonatal and Adult Mice. J Am Heart Assoc 2019; 7:e009514. [PMID: 30571376 PMCID: PMC6404197 DOI: 10.1161/jaha.118.009514] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Hereditary hemorrhagic telangiectasia (HHT) is a rare genetic vascular disorder caused by mutations in endoglin (ENG), activin receptor‐like kinase 1 (ACVRL1;ALK1), or SMAD4. Major clinical symptoms of HHT are arteriovenous malformations (AVMs) found in the brain, lungs, visceral organs, and mucosal surface. Animal models harboring mutations in Eng or Alk1 recapitulate all of these HHT clinical symptoms and have been useful resources for studying mechanisms and testing potential drugs. However, animal models representing SMAD4 mutations have been lacking. The goal of this study is to evaluate Smad4‐inducible knockout (iKO) mice as an animal model of HHT and compare the phenotypes with other established HHT animal models. Methods and Results Global Smad4 deletion was induced at neonatal and adult stages, and hemoglobin levels, gastrointestinal hemorrhage, and presence of aberrant arteriovenous connections were examined. Neonatal Smad4‐iKO mice exhibited signs of gastrointestinal bleeding and AVMs in the brain, intestine, nose, and retina. The radial expansion was decreased, and AVMs were detected on both distal and proximal retinal vasculature of Smad4‐iKOs. Aberrant smooth muscle actin staining was observed in the initial stage AVMs and their connecting veins, indicating abnormal arterial flow to veins. In adult mice, Smad4 deficiency caused gastrointestinal bleeding and AVMs along the gastrointestinal tract and wounded skin. HHT‐related phenotypes of Smad4‐iKOs appeared to be comparable with those found in Alk1‐iKO and Eng‐iKO mice. Conclusions These data further confirm that SMAD signaling is crucial for normal arteriovenous network formation, and Smad4‐iKO will be an alternative animal model of AVM research associated with HHT.
Collapse
Affiliation(s)
- Yong Hwan Kim
- 1 Department of Physiology and Functional Genomics College of Medicine University of Florida Gainesville FL.,2 Department of Neurobiology Barrow Neurological Institute Phoenix AZ
| | - Se-Woon Choe
- 3 Department of Medical IT Convergence Engineering Kumoh National Institute of Technology Gumi Korea
| | - Min-Young Chae
- 1 Department of Physiology and Functional Genomics College of Medicine University of Florida Gainesville FL
| | - Suntaek Hong
- 1 Department of Physiology and Functional Genomics College of Medicine University of Florida Gainesville FL.,4 Lee Gil Ya Cancer and Diabetes Institute Gachon University Incheon Korea
| | - S Paul Oh
- 1 Department of Physiology and Functional Genomics College of Medicine University of Florida Gainesville FL.,2 Department of Neurobiology Barrow Neurological Institute Phoenix AZ
| |
Collapse
|
6
|
Gallitz I, Lofruthe N, Traeger L, Bäumer N, Hoerr V, Faber C, Kuhlmann T, Müller-Tidow C, Steinbicker AU. Deficiency of the BMP Type I receptor ALK3 partly protects mice from anemia of inflammation. BMC PHYSIOLOGY 2018; 18:3. [PMID: 29482530 PMCID: PMC6389079 DOI: 10.1186/s12899-018-0037-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
Abstract
Background Inflammatory stimuli induce the hepatic iron regulatory hormone hepcidin, which contributes to anaemia of inflammation (AI). Hepcidin expression is regulated by the bone morphogenetic protein (BMP) and the interleukin-6 (IL-6) signalling pathways. Prior results indicate that the BMP type I receptor ALK3 is mainly involved in the acute inflammatory hepcidin induction four and 72 h after IL-6 administration. In this study, the role of ALK3 in a chronic model of inflammation was investigated. The intact, heat-killed bacterium Brucella abortus (BA) was used to analyse its effect on the development of inflammation and hypoferremia in mice with hepatocyte-specific Alk3-deficiency (Alk3fl/fl; Alb-Cre) compared to control (Alk3fl/fl) mice. Results An iron restricted diet prevented development of the iron overload phenotype in mice with hepatocyte-specific Alk3 deficiency. Regular diet leads to iron overload and increased haemoglobin levels in these mice, which protects from the development of AI per se. Fourteen days after BA injection Alk3fl/fl; Alb-Cre mice presented milder anaemia (Hb 16.7 g/dl to 11.6 g/dl) compared to Alk3fl/fl control mice (Hb 14.9 g/dl to 8.6 g/dl). BA injection led to an intact inflammatory response in all groups of mice. In Alk3fl/fl; Alb-Cre mice, SMAD1/5/8 phosphorylation was reduced after BA as well as after infection with Staphylococcus aureus. The reduction of the SMAD1/5/8 signalling pathway due to hepatocyte-specific Alk3 deficiency partly suppressed the induction of STAT3 signalling. Conclusion The results reveal in vivo, that 1) hepatocyte-specific Alk3 deficiency partly protects from AI, 2) the development of hypoferremia is partly dependent on ALK3, and 3) the ALK3/BMP/hepcidin axis may serve as a possible therapeutic target to attenuate AI. Electronic supplementary material The online version of this article (10.1186/s12899-018-0037-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Inka Gallitz
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer Campus 1, Building A1, 48149, Muenster, Germany
| | - Niklas Lofruthe
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer Campus 1, Building A1, 48149, Muenster, Germany
| | - Lisa Traeger
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer Campus 1, Building A1, 48149, Muenster, Germany
| | - Nicole Bäumer
- Department of Medicine A, Molecular Haematology and Oncology, University Hospital Muenster, 48149, Muenster, Germany
| | - Verena Hoerr
- Institute of Medical Microbiology, Jena University Hospital, 07747, Jena, Germany.,Department of Clinical Radiology, University Hospital Muenster, 48149, Muenster, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Muenster, 48149, Muenster, Germany
| | - Tanja Kuhlmann
- Institute for Neuropathology, University Hospital Muenster, 48149, Muenster, Germany
| | - Carsten Müller-Tidow
- Department of Medicine A, Molecular Haematology and Oncology, University Hospital Muenster, 48149, Muenster, Germany.,Present Address: Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Andrea U Steinbicker
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer Campus 1, Building A1, 48149, Muenster, Germany.
| |
Collapse
|
7
|
Abstract
Animal models of erythropoiesis have been, and will continue to be, important tools for understanding molecular mechanisms underlying the development of this cell lineage and the pathophysiology associated with various human erythropoietic diseases. In this regard, the mouse is probably the most valuable animal model available to investigators. The physiology and short gestational period of mice make them ideal for studying developmental processes and modeling human diseases. These attributes, coupled with cutting-edge genetic tools such as transgenesis, gene knockouts, conditional gene knockouts, and genome editing, provide a significant resource to the research community to test a plethora of hypotheses. This review summarizes the mouse models available for studying a wide variety of erythroid-related questions, as well as the properties inherent in each one.
Collapse
|
8
|
Wang Y, Jiang L, Mo X, Lan Y, Yang X, Liu X, Zhang J, Zhu L, Liu J, Wu X. Megakaryocytic Smad4 Regulates Platelet Function through Syk and ROCK2 Expression. Mol Pharmacol 2017; 92:285-296. [PMID: 28663280 DOI: 10.1124/mol.116.107417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 06/21/2017] [Indexed: 01/03/2023] Open
Abstract
Smad4, a key transcription factor in the transforming growth factor-β signaling pathway, is involved in a variety of cell physiologic and pathologic processes. Here, we characterized megakaryocyte/platelet-specific Smad4 deficiency in mice to elucidate its effect on platelet function. We found that megakaryocyte/platelet-specific loss of Smad4 caused mild thrombocytopenia and significantly extended first occlusion time and tail bleeding time in mice. Smad4-deficient platelets showed reduced agonist-induced platelet aggregation. Further studies showed that a severe defect was seen in integrin αIIbβ3-mediated bidirectional (inside-out and outside-in) signaling in Smad4-deficient platelets, as evidenced by reduced fibrinogen binding and α-granule secretion, suppressed platelet spreading and clot retraction. Microarray analysis showed that the expression levels of multiple genes were altered in Smad4-deficient platelets. Among these genes, spleen tyrosine kinase (Syk) and Rho-associated coiled-coil containing protein kinase 2 (ROCK2) were downregulated several times as confirmed by quantitative reverse-transcription polymerase chain reaction and immunoblotting. Further research showed that Smad4 directly regulates ROCK2 transcription but indirectly regulates Syk. Megakaryocyte/platelet-specific Smad4 deficiency caused decreased expression levels of Syk and ROCK2 in platelets. These results suggest potential links among Smad4 deficiency, attenuated Syk, and ROCK2 expression and defective platelet activation.
Collapse
Affiliation(s)
- Yanhua Wang
- Department of Laboratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China (Y.W.); Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai, People's Republic of China (L.J., X.M.); State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, People's Republic of China (Y.L., X.Y.); Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China (X.L., J.Z.); Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China (L.Z.); Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China (J.L.); and The Central Laboratory of The Eighth People's Hospital of Shanghai, Shanghai, People's Republic of China (X.W.)
| | - Lirong Jiang
- Department of Laboratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China (Y.W.); Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai, People's Republic of China (L.J., X.M.); State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, People's Republic of China (Y.L., X.Y.); Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China (X.L., J.Z.); Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China (L.Z.); Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China (J.L.); and The Central Laboratory of The Eighth People's Hospital of Shanghai, Shanghai, People's Republic of China (X.W.)
| | - Xi Mo
- Department of Laboratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China (Y.W.); Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai, People's Republic of China (L.J., X.M.); State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, People's Republic of China (Y.L., X.Y.); Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China (X.L., J.Z.); Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China (L.Z.); Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China (J.L.); and The Central Laboratory of The Eighth People's Hospital of Shanghai, Shanghai, People's Republic of China (X.W.)
| | - Yu Lan
- Department of Laboratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China (Y.W.); Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai, People's Republic of China (L.J., X.M.); State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, People's Republic of China (Y.L., X.Y.); Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China (X.L., J.Z.); Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China (L.Z.); Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China (J.L.); and The Central Laboratory of The Eighth People's Hospital of Shanghai, Shanghai, People's Republic of China (X.W.)
| | - Xiao Yang
- Department of Laboratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China (Y.W.); Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai, People's Republic of China (L.J., X.M.); State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, People's Republic of China (Y.L., X.Y.); Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China (X.L., J.Z.); Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China (L.Z.); Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China (J.L.); and The Central Laboratory of The Eighth People's Hospital of Shanghai, Shanghai, People's Republic of China (X.W.)
| | - Xinyi Liu
- Department of Laboratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China (Y.W.); Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai, People's Republic of China (L.J., X.M.); State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, People's Republic of China (Y.L., X.Y.); Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China (X.L., J.Z.); Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China (L.Z.); Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China (J.L.); and The Central Laboratory of The Eighth People's Hospital of Shanghai, Shanghai, People's Republic of China (X.W.)
| | - Jian Zhang
- Department of Laboratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China (Y.W.); Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai, People's Republic of China (L.J., X.M.); State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, People's Republic of China (Y.L., X.Y.); Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China (X.L., J.Z.); Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China (L.Z.); Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China (J.L.); and The Central Laboratory of The Eighth People's Hospital of Shanghai, Shanghai, People's Republic of China (X.W.)
| | - Li Zhu
- Department of Laboratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China (Y.W.); Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai, People's Republic of China (L.J., X.M.); State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, People's Republic of China (Y.L., X.Y.); Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China (X.L., J.Z.); Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China (L.Z.); Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China (J.L.); and The Central Laboratory of The Eighth People's Hospital of Shanghai, Shanghai, People's Republic of China (X.W.)
| | - Junling Liu
- Department of Laboratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China (Y.W.); Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai, People's Republic of China (L.J., X.M.); State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, People's Republic of China (Y.L., X.Y.); Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China (X.L., J.Z.); Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China (L.Z.); Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China (J.L.); and The Central Laboratory of The Eighth People's Hospital of Shanghai, Shanghai, People's Republic of China (X.W.)
| | - Xiaolin Wu
- Department of Laboratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China (Y.W.); Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai, People's Republic of China (L.J., X.M.); State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, People's Republic of China (Y.L., X.Y.); Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China (X.L., J.Z.); Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China (L.Z.); Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China (J.L.); and The Central Laboratory of The Eighth People's Hospital of Shanghai, Shanghai, People's Republic of China (X.W.)
| |
Collapse
|
9
|
Smad4 in osteoblasts exerts a differential impact on HSC fate depending on osteoblast maturation stage. Leukemia 2016; 30:2039-2046. [PMID: 27271228 DOI: 10.1038/leu.2016.133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 12/20/2022]
Abstract
Osteoblasts (OBs) are indispensable for the maintenance of hematopoietic stem cells (HSCs) in the bone marrow microenvironment. Here we investigated how Smad4 modulates HSC fate at distinct stages of OB development. For this, we conditionally knocked out Smad4 in cells expressing type I collagen (Col1a1) and osteocalcin (OC), respectively. Col1a1-expressing OBs were widely present in both the trabecular and cortical compartment, whereas OC-expressing OBs were predominantly located in the cortical compartment. HSCs from Col1a1 mutants displayed senescence-associated phenotypes. OC mutants did not exhibit HSC senescence-related phenotypes, but instead showed preferential HSC death. Of note, stromal cell-derived factor 1 expression was lower in Col1a1 mutants than control littermates, suggesting potential impairment of CXCR4-CXCL12-mediated HSC retention. Disruption of the CXCR4-CXCL12 axis by AMD3100 administration led to an increase in the senescence-associated β-galactosidase activity and low competitive potential. Collectively, our findings indicate that deletion of Smad4 in OBs differentially modulates HSC fate in a stage-dependent manner.
Collapse
|
10
|
Haeger SM, Thompson JJ, Kalra S, Cleaver TG, Merrick D, Wang XJ, Malkoski SP. Smad4 loss promotes lung cancer formation but increases sensitivity to DNA topoisomerase inhibitors. Oncogene 2015; 35:577-586. [PMID: 25893305 PMCID: PMC4615192 DOI: 10.1038/onc.2015.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/21/2015] [Accepted: 03/09/2015] [Indexed: 01/03/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a common malignancy with a poor prognosis. Despite progress targeting oncogenic drivers, there are no therapies targeting tumor suppressor loss. Smad4 is an established tumor suppressor in pancreatic and colon cancer, however, the consequences of Smad4 loss in lung cancer are largely unknown. We evaluated Smad4 expression in human NSCLC samples and examined Smad4 alterations in large NSCLC datasets and found that reduced Smad4 expression is common in human NSCLC and occurs through a variety of mechanisms including mutation, homozygous deletion, and heterozygous loss. We modeled Smad4 loss in lung cancer by deleting Smad4 in airway epithelial cells and found that Smad4 deletion both initiates and promotes lung tumor development. Interestingly, both Smad4−/− mouse tumors and human NSCLC samples with reduced Smad4 expression demonstrated increased DNA damage while Smad4 knockdown in lung cancer cells reduced DNA repair and increased apoptosis after DNA damage. In addition, Smad4 deficient NSCLC cells demonstrated increased sensitivity to both chemotherapeutics that inhibit DNA topoisomerase and drugs that block double strand DNA break repair by non-homologous end joining. In sum, these studies establish Smad4 as a lung tumor suppressor and suggest that the defective DNA repair phenotype of Smad4 deficient tumors can be exploited by specific therapeutic strategies.
Collapse
Affiliation(s)
- Sarah M Haeger
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Joshua J Thompson
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Sean Kalra
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Timothy G Cleaver
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Daniel Merrick
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Stephen P Malkoski
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO.,Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
11
|
Knight ZA, Schmidt SF, Birsoy K, Tan K, Friedman JM. A critical role for mTORC1 in erythropoiesis and anemia. eLife 2014; 3:e01913. [PMID: 25201874 PMCID: PMC4179304 DOI: 10.7554/elife.01913] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 09/04/2014] [Indexed: 12/31/2022] Open
Abstract
Red blood cells (RBC) must coordinate their rate of growth and proliferation with the availability of nutrients, such as iron, but the signaling mechanisms that link the nutritional state to RBC growth are incompletely understood. We performed a screen for cell types that have high levels of signaling through mTORC1, a protein kinase that couples nutrient availability to cell growth. This screen revealed that reticulocytes show high levels of phosphorylated ribosomal protein S6, a downstream target of mTORC1. We found that mTORC1 activity in RBCs is regulated by dietary iron and that genetic activation or inhibition of mTORC1 results in macrocytic or microcytic anemia, respectively. Finally, ATP competitive mTOR inhibitors reduced RBC proliferation and were lethal after treatment with phenylhydrazine, an inducer of hemolysis. These results identify the mTORC1 pathway as a critical regulator of RBC growth and proliferation and establish that perturbations in this pathway result in anemia. DOI:http://dx.doi.org/10.7554/eLife.01913.001 To multiply and grow, cells need to create more of the molecules—such as proteins—that make up their structure. This only happens if the cell has a good supply of the nutrients used to build the proteins. Red blood cells are particularly sensitive to the supply of nutrients, especially iron, which is a key component of the hemoglobin molecules that enable the cells to transport oxygen around the body. A lack of iron can lead to a shortage of red blood cells and a condition called anemia. People with mild forms of anemia may feel tired or weak, but more severe forms of anemia can cause heart problems and even death. A protein called mTOR forms part of a protein complex that helps alert the cells of many different organisms to the presence of nutrients. mTOR can add phosphate groups to ribosomes—the molecular machines that translate molecules of mRNA to build proteins. In 2012, researchers developed a technique called Phospho-Trap that can isolate these phosphorylated ribosomes from cells. Cells with an activated mTOR complex express more mTOR protein and in turn have more ribosomes that are modified. Examining the mRNA molecules associated with these ribosomes can reveal which proteins are produced in greater amounts in these cells. Previous experiments using Phospho-Trap found the proteins that make up hemoglobin in unexpectedly high amounts in the mouse brain. Now, Knight et al.—and other researchers involved in the 2012 work—have established that the hemoglobin was not coming from the brain cells but from immature red blood cells circulating within the brain. These immature blood cells were found to have a highly active mTOR complex that promotes the production of hemoglobin and new blood cells. Using genetic techniques in mice, Knight et al. found that the mTOR complex can cause anemia if it is underactive or overactive. Underactive mTOR complexes cause a type of anemia that produces small red blood cells and is usually triggered by a lack of iron. This made sense because mTOR is known to regulate both protein production and cell size. Boosting the activity of the mTOR complex leads to a type of anemia in which the cells are much larger than normal, and which is normally associated with inadequate amounts of folate and B12 vitamins. When Knight et al. gave mice a drug that inhibits the mTOR protein, the mice developed anemia that resolved when the treatment stopped. However, mice that were given the mTOR inhibitor at the same time as a drug that destroys red blood cells, all died within days. Clinical trials are currently testing mTOR inhibitors as a possible cancer treatment; however, a common side effect of chemotherapy is that it stops new red blood cells being produced. Knight et al. suggest that the red blood cells of patients in these clinical trials must be closely monitored before deciding whether to continue the treatment further. DOI:http://dx.doi.org/10.7554/eLife.01913.002
Collapse
Affiliation(s)
- Zachary A Knight
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Sarah F Schmidt
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Kivanc Birsoy
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Keith Tan
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
12
|
Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, Zhang Q, Ye J, Yan Z, Denduluri S, Idowu O, Li M, Shen C, Hu A, Haydon RC, Kang R, Mok J, Lee MJ, Luu HL, Shi LL. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis 2014; 1:87-105. [PMID: 25401122 PMCID: PMC4232216 DOI: 10.1016/j.gendis.2014.07.005] [Citation(s) in RCA: 691] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023] Open
Abstract
Bone Morphogenetic Proteins (BMPs) are a group of signaling molecules that belongs to the Transforming Growth Factor-β (TGF-β) superfamily of proteins. Initially discovered for their ability to induce bone formation, BMPs are now known to play crucial roles in all organ systems. BMPs are important in embryogenesis and development, and also in maintenance of adult tissue homeostasis. Mouse knockout models of various components of the BMP signaling pathway result in embryonic lethality or marked defects, highlighting the essential functions of BMPs. In this review, we first outline the basic aspects of BMP signaling and then focus on genetically manipulated mouse knockout models that have helped elucidate the role of BMPs in development. A significant portion of this review is devoted to the prominent human pathologies associated with dysregulated BMP signaling.
Collapse
Affiliation(s)
- Richard N. Wang
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jordan Green
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhongliang Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Youlin Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Min Qiao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Michael Peabody
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Qian Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Sahitya Denduluri
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Olumuyiwa Idowu
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Melissa Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Christine Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alan Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Richard Kang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - James Mok
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue L. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
13
|
Endothelial Smad4 restrains the transition to hematopoietic progenitors via suppression of ERK activation. Blood 2014; 123:2161-71. [PMID: 24553180 DOI: 10.1182/blood-2013-09-526053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mouse mid-gestational embryos, definitive hematopoietic stem progenitor cells are derived directly from a very small proportion of the arterial endothelium. However, the physiological mechanisms restraining excessive endothelial-hematopoietic transition remain elusive. We show here that genetic deletion of Smad4 from the endothelium stage (using Tie2-Cre), but not from embryonic hematopoietic cells (using Vav-Cre), leads to a strikingly augmented emergence of intra-arterial hematopoietic clusters and an enhanced in vitro generation of hematopoietic progenitors, with no increase in the proliferation and survival of hematopoietic cluster cells. This finding indicates a temporally restricted negative effect of Smad4 on the endothelial to hematopoietic progenitor transition. Furthermore, the absence of endothelial Smad4 causes an increased expression of subaortic bone morphogenetic protein 4 and an activation of aortic extracellular signal-regulated kinase, thereby resulting in the excessive generation of blood cells. Collectively, our data for the first time identify a physiological suppressor that functions specifically during the transition of endothelial cells to hematopoietic progenitors and further suggest that endothelial Smad4 is a crucial modulator of the subaortic microenvironment that controls the hematopoietic fate of the aortic endothelium.
Collapse
|
14
|
Abstract
The DEAH helicase RHAU (alias DHX36, G4R1) is the only helicase shown to have G-quadruplex (G4)-RNA resolvase activity and the major source of G4-DNA resolvase activity. Previous report showed RHAU mRNA expression to be elevated in human lymphoid and CD34(+) BM cells, suggesting a potential role in hematopoiesis. Here, we generated a conditional knockout of the RHAU gene in mice. Germ line deletion of RHAU led to embryonic lethality. We then targeted the RHAU gene specifically in the hematopoiesis system, using a Cre-inducible system in which an optimized variant of Cre recombinase was expressed under the control of the Vav1 promoter. RHAU deletion in hematopoietic system caused hemolytic anemia and differentiation defect at the proerythroblast stage. The partial differentiation block of proerythroblasts was because of a proliferation defect. Transcriptome analysis of RHAU knockout proerythroblasts showed that a statistically significant portion of the deregulated genes contain G4 motifs in their promoters. This suggests that RHAU may play a role in the regulation of gene expression that relies on its G4 resolvase activity.
Collapse
|
15
|
Hahn JN, Falck VG, Jirik FR. Smad4 deficiency in T cells leads to the Th17-associated development of premalignant gastroduodenal lesions in mice. J Clin Invest 2011; 121:4030-42. [PMID: 21881210 DOI: 10.1172/jci45114] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 07/06/2011] [Indexed: 12/11/2022] Open
Abstract
While there is evidence that specific T cell populations can promote the growth of established tumors, instances where T cell activity causes neoplasms to arise de novo are infrequent. Here, we employed two conditional mutagenesis systems to delete the TGF-β signaling pathway component Smad4 in T cells and observed the spontaneous development of massive polyps within the gastroduodenal regions of mice. The epithelial lesions contained increased levels of transcripts encoding IL-11, IL-6, TGF-β, IL-1β, and TNF-α, and lamina propria cells isolated from lesions contained abundant IL-17A+CD4+ T cells. Furthermore, we found that Smad4 deficiency attenuated TGF-β-mediated in vitro polarization of FoxP3+CD4+ T cells, but not IL-17A+CD4+ T cells, suggesting that the epithelial lesions may have arisen as a consequence of unchecked Th17 cell activity. Proinflammatory cytokine production likely accounted for the raised levels of IL-11, a cytokine known to promote gastric epithelial cell survival and hyperplasia. Consistent with IL-11 having a pathogenic role in this model, we found evidence of Stat3 activation in the gastric polyps. Thus, our data indicate that a chronic increase in gut Th17 cell activity can be associated with the development of premalignant lesions of the gastroduodenal region.
Collapse
Affiliation(s)
- Jennifer Nancy Hahn
- Department of Biochemistry and Molecular Biology, The McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
16
|
Pronounced thrombocytosis in transgenic mice expressing reduced levels of Mpl in platelets and terminally differentiated megakaryocytes. Blood 2009; 113:1768-77. [DOI: 10.1182/blood-2008-03-146084] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abstract
We generated mice expressing a full-length Mpl transgene under the control of a 2-kb Mpl promoter in an Mpl−/− background, effectively obtaining mice that express full-length Mpl in the absence of other Mpl isoforms. These mice developed thrombocytosis with platelet levels approximately 5-fold higher than wild-type controls and markedly increased megakaryocyte numbers. The reintroduction of one wild-type Mpl allele restored normal platelet counts. We excluded the deletion of Mpl-tr, a dominant-negative isoform, as the underlying molecular cause for thrombocytosis. Instead, we found that transgene expression driven by the 2-kb Mpl promoter fragment was decreased during late megakaryocyte maturation, resulting in strongly diminished Mpl protein expression in platelets. Because platelets exert a negative feedback on thrombopoiesis by binding and consuming Tpo in the circulation through Mpl, we propose that the severe reduction of Mpl protein in platelets in Mpl-transgenic Mpl−/− mice shifts the equilibrium of this feedback loop, resulting in markedly elevated levels of megakaryocytes and platelets at steady state. Although the mechanism causing decreased expression of Mpl protein in platelets from patients with myeloproliferative disorders differs from this transgenic model, our results suggest that lowering Mpl protein in platelets could contribute to raising the platelet count.
Collapse
|
17
|
Ito K, Lim ACB, Salto-Tellez M, Motoda L, Osato M, Chuang LSH, Lee CWL, Voon DCC, Koo JKW, Wang H, Fukamachi H, Ito Y. RUNX3 attenuates beta-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell 2008; 14:226-37. [PMID: 18772112 DOI: 10.1016/j.ccr.2008.08.004] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 06/25/2008] [Accepted: 08/05/2008] [Indexed: 12/29/2022]
Abstract
In intestinal epithelial cells, inactivation of APC, a key regulator of the Wnt pathway, activates beta-catenin to initiate tumorigenesis. However, other alterations may be involved in intestinal tumorigenesis. Here we found that RUNX3, a gastric tumor suppressor, forms a ternary complex with beta-catenin/TCF4 and attenuates Wnt signaling activity. A significant fraction of human sporadic colorectal adenomas and Runx3(+/-) mouse intestinal adenomas showed inactivation of RUNX3 without apparent beta-catenin accumulation, indicating that RUNX3 inactivation independently induces intestinal adenomas. In human colon cancers, RUNX3 is frequently inactivated with concomitant beta-catenin accumulation, suggesting that adenomas induced by inactivation of RUNX3 may progress to malignancy. Taken together, these data demonstrate that RUNX3 functions as a tumor suppressor by attenuating Wnt signaling.
Collapse
Affiliation(s)
- Kosei Ito
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|