1
|
Subramanian GN, Yeo AJ, Gatei MH, Coman DJ, Lavin MF. Metabolic Stress and Mitochondrial Dysfunction in Ataxia-Telangiectasia. Antioxidants (Basel) 2022; 11:653. [PMID: 35453338 PMCID: PMC9032508 DOI: 10.3390/antiox11040653] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
The ataxia-telangiectasia mutated (ATM) protein kinase is, as the name implies, mutated in the human genetic disorder ataxia-telangiectasia (A-T). This protein has its "finger in many pies", being responsible for the phosphorylation of many thousands of proteins in different signaling pathways in its role in protecting the cell against a variety of different forms of stress that threaten to perturb cellular homeostasis. The classical role of ATM is the protection against DNA damage, but it is evident that it also plays a key role in maintaining cell homeostasis in the face of oxidative and other forms of non-DNA damaging stress. The presence of ATM is not only in the nucleus to cope with damage to DNA, but also in association with other organelles in the cytoplasm, which suggests a greater protective role. This review attempts to address this greater role of ATM in protecting the cell against both external and endogenous damage.
Collapse
Affiliation(s)
| | - Abrey Jie Yeo
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, QLD 4029, Australia
| | - Magtouf Hnaidi Gatei
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, QLD 4029, Australia
| | - David John Coman
- Queensland Children's Hospital, Brisbane, QLD 4101, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - Martin Francis Lavin
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, QLD 4029, Australia
| |
Collapse
|
2
|
Chuang HY, Tyan YS, Hwang JJ, Shih KC, Lin WC. A combination of sorafenib and radiotherapy reduces NF-κB activity and growth of hepatocellular carcinoma in an orthotopic mouse model. Oncol Lett 2021; 21:337. [PMID: 33692869 PMCID: PMC7933744 DOI: 10.3892/ol.2021.12598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/12/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is difficult to diagnose at an early stage, and its prognosis is generally poor. Sorafenib is the primary treatment for unresectable advanced HCC and targets multiple receptor tyrosine kinases. However, sorafenib only extends the average survival time by 3 months. This observation indicates that sorafenib may need to be combined with other treatments to further improve outcomes. We previously showed that combination of sorafenib with radiotherapy (RT) enhances tumor inhibition in subcutaneous HCC mouse models compared with monotherapy. The present study demonstrated that combining sorafenib and RT could suppress tumor growth in an orthotopic HCC model by regulating apoptosis and NF-κB-related pathways. Moreover, decreased numbers of visible liver tumors and a smaller percentage of spleen metastases were found in the combination group. A transient drop in body weight was initially observed after RT, but progressive recovery of body weight occurred. The current study showed that the combination of sorafenib and RT could be a safe strategy for HCC treatment.
Collapse
Affiliation(s)
- Hui-Yen Chuang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan, R.O.C
| | - Yeu-Sheng Tyan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung 402, Taiwan, R.O.C
| | - Jeng-Jong Hwang
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung 402, Taiwan, R.O.C.,Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Kuang-Chung Shih
- Division of Endocrinology and Metabolism, Department of Medicine, Cheng-Hsin General Hospital, Taipei 112, Taiwan, R.O.C.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Wei-Chan Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan, R.O.C.,Department of Radiology, Cathay General Hospital, New Taipei 106, Taiwan, R.O.C.,School of Medicine, Fu-Jen Catholic University, New Taipei 106, Taiwan, R.O.C
| |
Collapse
|
3
|
Contadini C, Monteonofrio L, Virdia I, Prodosmo A, Valente D, Chessa L, Musio A, Fava LL, Rinaldo C, Di Rocco G, Soddu S. p53 mitotic centrosome localization preserves centrosome integrity and works as sensor for the mitotic surveillance pathway. Cell Death Dis 2019; 10:850. [PMID: 31699974 PMCID: PMC6838180 DOI: 10.1038/s41419-019-2076-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 12/22/2022]
Abstract
Centrosomal p53 has been described for three decades but its role is still unclear. We previously reported that, in proliferating human cells, p53 transiently moves to centrosomes at each mitosis. Such p53 mitotic centrosome localization (p53-MCL) occurs independently from DNA damage but requires ATM-mediated p53Ser15 phosphorylation (p53Ser15P) on discrete cytoplasmic p53 foci that, through MT dynamics, move to centrosomes during the mitotic spindle formation. Here, we show that inhibition of p53-MCL, obtained by p53 depletion or selective impairment of p53 centrosomal localization, induces centrosome fragmentation in human nontransformed cells. In contrast, tumor cells or mouse cells tolerate p53 depletion, as expected, and p53-MCL inhibition. Such tumor- and species-specific behavior of centrosomal p53 resembles that of the recently identified sensor of centrosome-loss, whose activation triggers the mitotic surveillance pathway in human nontransformed cells but not in tumor cells or mouse cells. The mitotic surveillance pathway prevents the growth of human cells with increased chance of making mitotic errors and accumulating numeral chromosome defects. Thus, we evaluated whether p53-MCL could work as a centrosome-loss sensor and contribute to the activation of the mitotic surveillance pathway. We provide evidence that centrosome-loss triggered by PLK4 inhibition makes p53 orphan of its mitotic dock and promotes accumulation of discrete p53Ser15P foci. These p53 foci are required for the recruitment of 53BP1, a key effector of the mitotic surveillance pathway. Consistently, cells from patients with constitutive impairment of p53-MCL, such as ATM- and PCNT-mutant carriers, accumulate numeral chromosome defects. These findings indicate that, in nontransformed human cells, centrosomal p53 contributes to safeguard genome integrity by working as sensor for the mitotic surveillance pathway.
Collapse
Affiliation(s)
- Claudia Contadini
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Laura Monteonofrio
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.,Laboratory of Cardiovascular Science, NIA/NIH Baltimore, Baltimore, MD, 21224, USA
| | - Ilaria Virdia
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Prodosmo
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.,GMP Biopharmaceutical Facility, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Davide Valente
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Luciana Chessa
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Antonio Musio
- Institute of Genetics and Biomedical Research, National Research Council (CNR), Pisa, Italy
| | - Luca L Fava
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Povo, Italy
| | - Cinzia Rinaldo
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University, Rome, Italy
| | - Giuliana Di Rocco
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
4
|
Caspase-8: A Novel Target to Overcome Resistance to Chemotherapy in Glioblastoma. Int J Mol Sci 2018; 19:ijms19123798. [PMID: 30501030 PMCID: PMC6320982 DOI: 10.3390/ijms19123798] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 01/02/2023] Open
Abstract
Caspase-8 was originally identified as a central player of programmed cell death triggered by death receptor stimulation. In that context, its activity is tightly regulated through several mechanisms, with the best established being the expression of FLICE-like inhibitory protein (FLIP) family proteins and the Src-dependent phosphorylation of Caspase-8 on Tyr380. Loss of apoptotic signaling is a hallmark of cancer and indeed Caspase-8 expression is often lost in tumors. This event may account not only for cancer progression but also for cancer resistance to radiotherapy and chemotherapy. Intriguingly, other tumors, such as glioblastoma, preferentially retain Caspase-8 expression, and high levels of Caspase-8 expression may correlate with a worse prognosis, suggesting that in this context this protease loses its apoptotic activity and gains additional functions. Using different cellular systems, it has been clearly shown that in cancer Caspase-8 can exhibit non-canonical functions, including promotion of cell adhesion, migration, and DNA repair. Intriguingly, in glioblastoma models, Caspase-8 can promote NF-κB-dependent expression of several cytokines, angiogenesis, and in vitro and in vivo tumorigenesis. Overall, these observations suggest that some cancer cells may hijack Caspase-8 function which in turn promote cancer progression and resistance to therapy. Here we aim to highlight the multiple functions of Caspase-8 and to discuss whether the molecular mechanisms that modulate the balance between those functions may be targeted to dismantle the aberrant activity of Caspase-8 and to restore its canonical apoptotic functionality.
Collapse
|
5
|
Cuceu C, Hempel WM, Sabatier L, Bosq J, Carde P, M'kacher R. Chromosomal Instability in Hodgkin Lymphoma: An In-Depth Review and Perspectives. Cancers (Basel) 2018; 10:cancers10040091. [PMID: 29587466 PMCID: PMC5923346 DOI: 10.3390/cancers10040091] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2018] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 12/22/2022] Open
Abstract
The study of Hodgkin lymphoma (HL), with its unique microenvironment and long-term follow-up, has provided exceptional insights into several areas of tumor biology. Findings in HL have not only improved our understanding of human carcinogenesis, but have also pioneered its translation into the clinics. HL is a successful paradigm of modern treatment strategies. Nonetheless, approximately 15–20% of patients with advanced stage HL still die following relapse or progressive disease and a similar proportion of patients are over-treated, leading to treatment-related late sequelae, including solid tumors and organ dysfunction. The malignant cells in HL are characterized by a highly altered genomic landscape with a wide spectrum of genomic alterations, including somatic mutations, copy number alterations, complex chromosomal rearrangements, and aneuploidy. Here, we review the chromosomal instability mechanisms in HL, starting with the cellular origin of neoplastic cells and the mechanisms supporting HL pathogenesis, focusing particularly on the role of the microenvironment, including the influence of viruses and macrophages on the induction of chromosomal instability in HL. We discuss the emerging possibilities to exploit these aberrations as prognostic biomarkers and guides for personalized patient management.
Collapse
Affiliation(s)
- Corina Cuceu
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, 91534 Paris-Saclay, France.
| | - William M Hempel
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, 91534 Paris-Saclay, France.
| | - Laure Sabatier
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, 91534 Paris-Saclay, France.
| | - Jacques Bosq
- Departement of Anapathology, Gustave Roussy Cancer Campus, 94805 Villejuif, France.
| | - Patrice Carde
- Department of Hematology Gustave Roussy Cancer Campus, 94800 Villejuif, France.
| | - Radhia M'kacher
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, 91534 Paris-Saclay, France.
- Cell Environment, DNA damages R&D, Oncology section, 75020 Paris, France.
| |
Collapse
|
6
|
Zaki-Dizaji M, Akrami SM, Abolhassani H, Rezaei N, Aghamohammadi A. Ataxia telangiectasia syndrome: moonlighting ATM. Expert Rev Clin Immunol 2017; 13:1155-1172. [PMID: 29034753 DOI: 10.1080/1744666x.2017.1392856] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Ataxia-telangiectasia (A-T) a multisystem disorder primarily characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility and radiation sensitivity. Identification of the gene defective in this syndrome, ataxia-telangiectasia mutated gene (ATM), and further characterization of the disorder together with a greater insight into the function of the ATM protein have expanded our knowledge about the molecular pathogenesis of this disease. Area covered: In this review, we have attempted to summarize the different roles of ATM signaling that have provided new insights into the diverse clinical phenotypes exhibited by A-T patients. Expert commentary: ATM, in addition to DNA repair response, is involved in many cytoplasmic roles that explain diverse phenotypes of A-T patients. It seems accumulation of DNA damage, persistent DNA damage response signaling, and chronic oxidative stress are the main players in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Majid Zaki-Dizaji
- a Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran
| | - Seyed Mohammad Akrami
- a Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Hassan Abolhassani
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran.,c Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm , Sweden.,d Primary Immunodeficiency Diseases Network (PIDNet ), Universal Scientific Education and Research Network (USERN) , Stockholm , Sweden
| | - Nima Rezaei
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran.,e Department of Immunology and Biology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,f Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Asghar Aghamohammadi
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran
| |
Collapse
|
7
|
Pan F, Mao H, Bu F, Tong X, Li J, Zhang S, Liu X, Wang L, Wu L, Chen R, Wei H, Li B, Li C, Yang Y, Steer CJ, Zhao J, Guo Y. Sp1-mediated transcriptional activation of miR-205 promotes radioresistance in esophageal squamous cell carcinoma. Oncotarget 2017; 8:5735-5752. [PMID: 27974696 PMCID: PMC5351585 DOI: 10.18632/oncotarget.13902] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2016] [Accepted: 11/24/2016] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy for esophageal squamous cell carcinoma (ESCC) patients is limited by resistance to ionizing radiation (IR). However, the roles and mechanisms of microRNAs in radioresistance are obscure. Here, we investigated that microRNA-205 (miR-205) was upregulated in radioresistant (RR) ESCC cells compared with the parental cells. Overexpression of miR-205 promoted colony survival post-IR, whereas depletion of miR-205 sensitized ESCC cells to IR in vitro and in vivo. Further, we demonstrated that miR-205 promoted radioresistance by enhancing DNA repair, inhibiting apoptosis and activating epithelial-mesenchymal transition (EMT). Mechanistically, miR-205, upregulated post-IR, was demonstrated to be activated by Sp1 in parallel with its host gene, miR-205HG, both of which showed a perfect correlation. We also identified and validated phosphatase and tensin homolog (PTEN), as a target of miR-205 that promoted radioresistance via PI3K/AKT pathway. Lastly, increased miR-205 expression was closely associated with decreased PTEN expression in ESCC tissues and miR-205 expression predicted poor prognosis in patients with ESCC. Taken together, these findings identify miR-205 as a critical determinant of radioresistance and a biomarker of prognosis. The Sp1-mediated transcriptional activation of miR-205 promotes radioresistance through PTEN via PI3K/AKT pathway in ESCC. Inhibition of miR-205 expression may be a new strategy for radiotherapy in ESCC.
Collapse
Affiliation(s)
- Fei Pan
- Key Laboratory of Cancer Center, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, P.R. China
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Hui Mao
- Key Laboratory of Cancer Center, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, P.R. China
| | - Fangfang Bu
- Key Laboratory of Cancer Center, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, P.R. China
- International Joint Cancer Institute, the Second Military Medical University, Shanghai, P.R. China
- Beijing Key Laboratory of Cell Engineering & Antibody, Beijing, P.R. China
| | - Xin Tong
- Key Laboratory of Cancer Center, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, P.R. China
- International Joint Cancer Institute, the Second Military Medical University, Shanghai, P.R. China
- Beijing Key Laboratory of Cell Engineering & Antibody, Beijing, P.R. China
| | - Jingjing Li
- Key Laboratory of Cancer Center, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, P.R. China
| | - Sujie Zhang
- The 150th Hospital of Chinese PLA, Luoyang, P.R. China
| | - Xing Liu
- The 150th Hospital of Chinese PLA, Luoyang, P.R. China
| | - Lingxiong Wang
- Key Laboratory of Cancer Center, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, P.R. China
| | - Liangliang Wu
- Key Laboratory of Cancer Center, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, P.R. China
| | - Rui Chen
- International Joint Cancer Institute, the Second Military Medical University, Shanghai, P.R. China
| | - Huafeng Wei
- Key Laboratory of Cancer Center, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, P.R. China
- Beijing Key Laboratory of Cell Engineering & Antibody, Beijing, P.R. China
| | - Bohua Li
- International Joint Cancer Institute, the Second Military Medical University, Shanghai, P.R. China
| | - Cheng Li
- Key Laboratory of Cancer Center, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, P.R. China
| | - Yunsheng Yang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Clifford J. Steer
- Departments of Medicine and Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jian Zhao
- Key Laboratory of Cancer Center, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, P.R. China
- International Joint Cancer Institute, the Second Military Medical University, Shanghai, P.R. China
- Beijing Key Laboratory of Cell Engineering & Antibody, Beijing, P.R. China
| | - Yajun Guo
- State Key Laboratory of Antibody Medicine and Targeting Therapy, Shanghai, P.R. China
| |
Collapse
|
8
|
ATM kinase sustains HER2 tumorigenicity in breast cancer. Nat Commun 2015; 6:6886. [PMID: 25881002 DOI: 10.1038/ncomms7886] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2014] [Accepted: 03/09/2015] [Indexed: 12/15/2022] Open
Abstract
ATM kinase preserves genomic stability by acting as a tumour suppressor. However, its identification as a component of several signalling networks suggests a dualism for ATM in cancer. Here we report that ATM expression and activity promotes HER2-dependent tumorigenicity in vitro and in vivo. We reveal a correlation between ATM activation and the reduced time to recurrence in patients diagnosed with invasive HER2-positive breast cancer. Furthermore, we identify ATM as a novel modulator of HER2 protein stability that acts by promoting a complex of HER2 with the chaperone HSP90, therefore preventing HER2 ubiquitination and degradation. As a consequence, ATM sustains AKT activation downstream of HER2 and may modulate the response to therapeutic approaches, suggesting that the status of ATM activity may be informative for the treatment and prognosis of HER2-positive tumours. Our findings provide evidence for ATM's tumorigenic potential revising the canonical role of ATM as a pure tumour suppressor.
Collapse
|
9
|
Stagni V, Oropallo V, Fianco G, Antonelli M, Cinà I, Barilà D. Tug of war between survival and death: exploring ATM function in cancer. Int J Mol Sci 2014; 15:5388-409. [PMID: 24681585 PMCID: PMC4013570 DOI: 10.3390/ijms15045388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2014] [Revised: 03/07/2014] [Accepted: 03/20/2014] [Indexed: 12/19/2022] Open
Abstract
Ataxia-telangiectasia mutated (ATM) kinase is a one of the main guardian of genome stability and plays a central role in the DNA damage response (DDR). The deregulation of these pathways is strongly linked to cancer initiation and progression as well as to the development of therapeutic approaches. These observations, along with reports that identify ATM loss of function as an event that may promote tumor initiation and progression, point to ATM as a bona fide tumor suppressor. The identification of ATM as a positive modulator of several signalling networks that sustain tumorigenesis, including oxidative stress, hypoxia, receptor tyrosine kinase and AKT serine-threonine kinase activation, raise the question of whether ATM function in cancer may be more complex. This review aims to give a complete overview on the work of several labs that links ATM to the control of the balance between cell survival, proliferation and death in cancer.
Collapse
Affiliation(s)
- Venturina Stagni
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179 Rome, Italy.
| | - Veronica Oropallo
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179 Rome, Italy.
| | - Giulia Fianco
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179 Rome, Italy.
| | - Martina Antonelli
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179 Rome, Italy.
| | - Irene Cinà
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179 Rome, Italy.
| | - Daniela Barilà
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179 Rome, Italy.
| |
Collapse
|
10
|
Abstract
Successful translation of findings derived from preclinical studies into effective therapies is critical in biomedical research. Lack of robustness and reproducibility of the preclinical data, due to insufficient number of repeats, inadequate cell-based and mouse models contribute to the poor success rate. Antibodies are widely used in preclinical research, notably to determine the expression of potential therapeutic targets in tissues of interest, including tumors, but also to identify disease and/or treatment response biomarkers. We sought to determine whether the current antibody characterization standards in preclinical research are sufficient to ensure reliability of the data found in peer-reviewed publications. To address this issue, we used detection of the protein c-FLIP, a major factor of resistance to apoptosis, as a proof of concept. Accurate detection of endogenous c-FLIP levels in the preclinical settings is imperative since it is considered as a potential theranostic biomarker. Several sources of c-FLIP antibodies validated by their manufacturer and recommended for western blotting were therefore rigorously tested. We found a wide divergence in immune recognition properties. While these antibodies have been used in many publications, our results show that several of them failed to detect endogenous c-FLIP protein by Western blotting. Our results suggest that antibody validation standards are inadequate, and that systematic use of genetic knockdowns and/or knockouts to establish proof of specificity is critical, even for antibodies previously used in the scientific literature. Because antibodies are fundamental tools in both preclinical and clinical research, ensuring their specificity is crucial.
Collapse
|
11
|
Liu L, Yim H, Choi JH, Kim ST, Jin Y, Lee SK. ATM kinase promotes both caspase-8 and caspase-9 activation during TNF-α-induced apoptosis of HeLa cells. FEBS Lett 2014; 588:929-35. [PMID: 24530529 DOI: 10.1016/j.febslet.2014.01.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2013] [Revised: 12/31/2013] [Accepted: 01/04/2014] [Indexed: 11/24/2022]
Abstract
In this study, we show that atraxia telangiectasia mutated kinase (ATM) activity is generally upregulated by different apoptotic stimuli, i.e. TNF-α, TRAIL, paclitaxel, or UV. Apoptotic progression is markedly attenuated by siATM-RNA through down regulation of caspase-8 and caspase-9 in parallel with decreases in FLIP-S (short form of cellular FLICE inhibitory protein) protein levels and Bid cleavage. In addition, ATM activity is upregulated through t-Cdc6 while caspase-8 and caspase-9 activities increase. Taken together, we suggest that ATM regulates caspase-8 activation by influencing levels of FLIP-S, ATM kinase activity is upregulated by t-Cdc6, and increased ATM activity plays an essential role in the amplification of apoptosis in TNF-α-stimulated HeLa cells.
Collapse
Affiliation(s)
- Linhua Liu
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, 9 South Lvshun Road Western Section, Dalian, 116044 Liaoning, China; Division of Pharmaceutical Biosciences, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.
| | - Hyungshin Yim
- Division of Pharmaceutical Biosciences, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea; Department of Pharmacy, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangrok-gu, Ansan, Kyeonggi-do 426-791, South Korea
| | - Jae Hyuk Choi
- Division of Pharmaceutical Biosciences, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Seung-Tak Kim
- Division of Pharmaceutical Biosciences, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Yinghua Jin
- Department of Life Science, Jilin University, Jiefang Road, Changchun, China
| | - Seung Ki Lee
- Division of Pharmaceutical Biosciences, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| |
Collapse
|
12
|
Abstract
Cellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein (c-FLIP) is a major resistance factor and critical anti-apoptotic regulator that inhibits tumor necrosis factor-alpha (TNF-alpha), Fas-L, and TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis as well as chemotherapy-triggered apoptosis in malignant cells. c-FLIP is expressed as long (c-FLIP(L)), short (c-FLIP(S)), and c-FLIP(R) splice variants in human cells. c-FLIP binds to FADD and/or caspase-8 or -10 in a ligand-dependent and-independent fashion, which in turn prevents death-inducing signaling complex (DISC) formation and subsequent activation of the caspase cascade. Moreover, c-FLIP(L) and c-FLIP(S) are known to have multifunctional roles in various signaling pathways, as well as activating and/or upregulating several cytoprotective signaling molecules. Upregulation of c-FLIP has been found in various tumor types, and its downregulation has been shown to restore apoptosis triggered by cytokines and various chemotherapeutic agents. Hence, c-FLIP is an important target for cancer therapy. For example, small interfering RNAs (siRNAs) that specifically knockdown the expression of c-FLIP(L) in diverse human cancer cell lines augmented TRAIL-induced DISC recruitment and increased the efficacy of chemotherapeutic agents, thereby enhancing effector caspase stimulation and apoptosis. Moreover, small molecules causing degradation of c-FLIP as well as decreasing mRNA and protein levels of c-FLIP(L) and c-FLIP(S) splice variants have been found, and efforts are underway to develop other c-FLIP-targeted cancer therapies. This review focuses on (1) the functional role of c-FLIP splice variants in preventing apoptosis and inducing cytokine and drug resistance; (2) the molecular mechanisms that regulate c-FLIP expression; and (3) strategies to inhibit c-FLIP expression and function.
Collapse
|
13
|
Song X, Kim SY, Zhou Z, Lagasse E, Kwon YT, Lee YJ. Hyperthermia enhances mapatumumab-induced apoptotic death through ubiquitin-mediated degradation of cellular FLIP(long) in human colon cancer cells. Cell Death Dis 2013; 4:e577. [PMID: 23559011 PMCID: PMC3641327 DOI: 10.1038/cddis.2013.104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023]
Abstract
Colorectal cancer is the third leading cause of cancer-related mortality in the world; the main cause of death of colorectal cancer is hepatic metastases, which can be treated with hyperthermia using isolated hepatic perfusion (IHP). In this study, we report that mild hyperthermia potently reduced cellular FLIP(long), (c-FLIP(L)), a major regulator of the death receptor (DR) pathway of apoptosis, thereby enhancing humanized anti-DR4 antibody mapatumumab (Mapa)-mediated mitochondria-independent apoptosis. We observed that overexpression of c-FLIP(L) in CX-1 cells abrogated the synergistic effect of Mapa and hyperthermia, whereas silencing of c-FLIP in CX-1 cells enhanced Mapa-induced apoptosis. Hyperthermia altered c-FLIP(L) protein stability without concomitant reductions in FLIP mRNA. Ubiquitination of c-FLIP(L) was increased by hyperthermia, and proteasome inhibitor MG132 prevented heat-induced downregulation of c-FLIP(L). These results suggest the involvement of the ubiquitin-proteasome system in this process. We also found lysine residue 195 (K195) to be essential for c-FLIP(L) ubiquitination and proteolysis, as mutant c-FLIP(L) lysine 195 arginine (arginine replacing lysine) was left virtually un-ubiquitinated and was refractory to hyperthermia-triggered degradation, and thus partially blocked the synergistic effect of Mapa and hyperthermia. Our observations reveal that hyperthermia transiently reduced c-FLIP(L) by proteolysis linked to K195 ubiquitination, which contributed to the synergistic effect between Mapa and hyperthermia. This study supports the application of hyperthermia combined with other regimens to treat colorectal hepatic metastases.
Collapse
Affiliation(s)
- X Song
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
14
|
ATM kinase activity modulates ITCH E3-ubiquitin ligase activity. Oncogene 2013; 33:1113-23. [PMID: 23435430 PMCID: PMC3938399 DOI: 10.1038/onc.2013.52] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 12/27/2022]
Abstract
Ataxia Telangiectasia Mutated (ATM) kinase, a central regulator of the DNA damage response regulates the activity of several E3-ubiquitin ligases and the ubiquitination-proteasome system is a consistent target of ATM. ITCH is an E3-ubiquitin ligase that modulates the ubiquitination of several targets, therefore participating to the regulation of several cellular responses, among which the DNA damage response, TNFα, Notch and Hedgehog signalling and T cell development. Here we uncover ATM as a novel positive modulator of ITCH E3-ubiquitin ligase activity. A single residue on ITCH protein, S161, which is part of an ATM SQ consensus motif, is required for ATM-dependent activation of ITCH. ATM activity enhances ITCH enzymatic activity, which in turn drives the ubiquitination and degradation of c-FLIP-L and c-Jun, previously identified as ITCH substrates. Importantly, Atm deficient mice show resistance to hepatocyte cell death, similarly to Itch deficient animals, providing in vivo genetic evidence for this circuit. Our data identify ITCH as a novel component of the ATM-dependent signaling pathway and suggest that the impairment of the correct functionality of ITCH caused by Atm deficiency may contribute to the complex clinical features linked to Ataxia Telangiectasia.
Collapse
|
15
|
Abstract
INTRODUCTION Evasion of apoptosis (programmed cell death) is one of the characteristic hallmarks of human cancers and may be caused by aberrant expression of antiapoptotic proteins. Among those is c-FLICE-like inhibitory protein (c-FLIP), a protein that not only blocks apoptosis signaling but also regulates additional cell death pathways. AREAS COVERED Because c-FLIP is regulated both at the transcriptional and posttranscriptional level by various mechanisms and is a short-lived protein with a rapid turnover, the regulation of c-FLIP expression represents a versatile tool to modulate cell death signaling pathways. Because c-FLIP is aberrantly expressed in various cancers, it represents a promising target for therapeutic intervention. EXPERT OPINION Therefore, insights into the molecular events that regulate c-FLIP expression and activity in human cancers will provide the basis for the development of new strategies to target c-FLIP expression in human cancers.
Collapse
Affiliation(s)
- Simone Fulda
- Goethe-University Frankfurt, Institute for Experimental Cancer Research in Pediatrics, Komturstr. 3a, 60528 Frankfurt, Germany.
| |
Collapse
|
16
|
Korwek Z, Sewastianik T, Bielak-Zmijewska A, Mosieniak G, Alster O, Moreno-Villanueva M, Burkle A, Sikora E. Inhibition of ATM blocks the etoposide-induced DNA damage response and apoptosis of resting human T cells. DNA Repair (Amst) 2012; 11:864-73. [PMID: 23058634 DOI: 10.1016/j.dnarep.2012.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2012] [Revised: 07/27/2012] [Accepted: 08/21/2012] [Indexed: 12/22/2022]
Abstract
It is believed that normal cells with an unaffected DNA damage response (DDR) and DNA damage repair machinery, could be less prone to DNA damaging treatment than cancer cells. However, the anticancer drug, etoposide, which is a topoisomerase II inhibitor, can generate DNA double strand breaks affecting not only replication but also transcription and therefore can induce DNA damage in non-replicating cells. Indeed, we showed that etoposide could influence transcription and was able to activate DDR in resting human T cells by inducing phosphorylation of ATM and its substrates, H2AX and p53. This led to activation of PUMA, caspases and to apoptotic cell death. Lymphoblastoid leukemic Jurkat cells, as cycling cells, were more sensitive to etoposide considering the level of DNA damage, DDR and apoptosis. Next, we used ATM inhibitor, KU 55933, which has been shown previously to be a radio/chemo-sensitizing agent. Pretreatment of resting T cells with KU 55933 blocked phosphorylation of ATM, H2AX and p53, which, in turn, prevented PUMA expression, caspase activation and apoptosis. On the other hand, KU 55933 incremented apoptosis of Jurkat cells. However, etoposide-induced DNA damage in resting T cells was not influenced by KU 55933 as revealed by the FADU assay. Altogether our results show that KU 55933 blocks DDR and apoptosis induced by etoposide in normal resting T cells, but increased cytotoxic effect on proliferating leukemic Jurkat cells. We discuss the possible beneficial and adverse effects of drugs affecting the DDR in cancer cells that are currently in preclinical anticancer trials.
Collapse
Affiliation(s)
- Z Korwek
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhao L, Bode AM, Cao Y, Dong Z. Regulatory mechanisms and clinical perspectives of miRNA in tumor radiosensitivity. Carcinogenesis 2012; 33:2220-7. [PMID: 22798379 PMCID: PMC3483015 DOI: 10.1093/carcin/bgs235] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023] Open
Abstract
MicroRNA (miRNA) influences carcinogenesis at multiple stages and it can effectively control tumor radiosensitivity by affecting DNA damage repair, cell cycle checkpoint, apoptosis, radio-related signal transduction pathways and tumor microenvironment. MiRNA also efficiently modulates tumor radiosensitivity at multiple levels by blocking the two essential non-homologous end-joining repair and homologous recombination repair pathways in the DNA damage response. It interferes with four radio-related pathways in ionizing radiation, including the PI3-K/Akt, NF-κB, MAPK and TGFβ signaling pathways. Moreover, the regulatory effect of miRNA in radiosensitivity can be enhanced when interacting with various key molecules, including H2AX, BRCA1, ATM, DNA-PK, RAD51, Chk1, Cdc25A, p53, PLK1, HIF-1 and VEGF, which are involved in these processes. Therefore, thoroughly understanding the mechanism of miRNA in tumor radiosensitivity could assist in finding novel targets to improve the radiotherapeutic effects and provide new clinical perspectives and insights for developing effective cancer treatments.
Collapse
Affiliation(s)
- Luqing Zhao
- Cancer Research Institute, Xiangya School of Medicine, Central South University Changsha 410078, China
| | | | | | | |
Collapse
|
18
|
Marzano V, Santini S, Rossi C, Zucchelli M, D'Alessandro A, Marchetti C, Mingardi M, Stagni V, Barilà D, Urbani A. Proteomic profiling of ATM kinase proficient and deficient cell lines upon blockage of proteasome activity. J Proteomics 2012; 75:4632-46. [PMID: 22641158 PMCID: PMC3426930 DOI: 10.1016/j.jprot.2012.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2011] [Revised: 04/27/2012] [Accepted: 05/16/2012] [Indexed: 11/24/2022]
Abstract
Ataxia Telangiectasia Mutated (ATM) protein kinase is a key effector in the modulation of the functionality of some important stress responses, including DNA damage and oxidative stress response, and its deficiency is the hallmark of Ataxia Telangiectasia (A-T), a rare genetic disorder. ATM modulates the activity of hundreds of target proteins, essential for the correct balance between proliferation and cell death. The aim of this study is to evaluate the phenotypic adaptation at the protein level both in basal condition and in presence of proteasome blockage in order to identify the molecules whose level and stability are modulated through ATM expression. We pursued a comparative analysis of ATM deficient and proficient lymphoblastoid cells by label-free shotgun proteomic experiments comparing the panel of proteins differentially expressed. Through a non-supervised comparative bioinformatic analysis these data provided an insight on the functional role of ATM deficiency in cellular carbohydrate metabolism's regulation. This hypothesis has been demonstrated by targeted metabolic fingerprint analysis SRM (Selected Reaction Monitoring) on specific thermodynamic checkpoints of glycolysis. This article is part of a Special Issue entitled: Translational Proteomics.
Collapse
Affiliation(s)
- Valeria Marzano
- Proteomic and Metabonomic Laboratory, Fondazione Santa Lucia, 00143 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
A New Player in the Development of TRAIL Based Therapies for Hepatocarcinoma Treatment: ATM Kinase. Cancers (Basel) 2012; 4:354-78. [PMID: 24213315 PMCID: PMC3712690 DOI: 10.3390/cancers4020354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2012] [Revised: 03/15/2012] [Accepted: 03/26/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. HCCs are genetically and phenotypically heterogeneous tumors characterized by very poor prognosis, mainly due to the lack, at present, of effective therapeutic options, as these tumors are rarely suitable for radiotherapy and often resistant to chemotherapy protocols. In the last years, agonists targeting the Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL) death receptor, has been investigated as a valuable promise for cancer therapy, based on their selectivity for malignant cells and low toxicity for healthy cells. However, many cancer models display resistance to death receptor induced apoptosis, pointing to the requirement for the development of combined therapeutic approaches aimed to selectively sensitize cancer cells to TRAIL. Recently, we identified ATM kinase as a novel modulator of the ability of chemotherapeutic agents to enhance TRAIL sensitivity. Here, we review the biological determinants of HCC responsiveness to TRAIL and provide an exhaustive and updated analysis of the molecular mechanisms exploited for combined therapy in this context. The role of ATM kinase as potential novel predictive biomarker for combined therapeutic approaches based on TRAIL and chemotherapeutic drugs will be closely discussed.
Collapse
|
20
|
Farooqi AA, Waseem S, Ashraf MS, Iqbal MJ, Bhatti S. TRAIL and guardian angel of genome integrity: ATM boards TRAIL blazer. J Cancer Res Clin Oncol 2011; 137:1283-7. [PMID: 21706325 DOI: 10.1007/s00432-011-0996-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2011] [Accepted: 06/09/2011] [Indexed: 10/18/2022]
Abstract
Prostate cancer is a multifaceted progressive multistep disorder that arises because of accumulation of genetic and epigenetic abnormalities, which escort to the transformation of normal cells into malignant derivatives. Despite tremendous strides have been made in the understanding of prostate cancer biology, yet approaches towards cancer-targeted therapy still face confrontations in standardization. This review brings to attention, the regulators in complex genetic backgrounds to enlighten our understanding of transformation and metastasis in human systems. Recent evidence gives a clue that prostate cancer may be linked to deregulated DNA damage repair processes, as various combinations of targeted deletions in genes controlling cell-cycle checkpoints; apoptosis and DNA repair result in prostate cancer progression and aggressiveness. An insight of the orchestration between DNA damage-based molecular responses and TRAIL provides an understanding of the mechanisms that cause apoptosis and may provide rationale for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan.
| | | | | | | | | |
Collapse
|
21
|
Pediatric leukemia predisposition syndromes: clues to understanding leukemogenesis. Cancer Genet 2011; 204:227-44. [DOI: 10.1016/j.cancergen.2011.04.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/25/2011] [Accepted: 04/26/2011] [Indexed: 11/19/2022]
|
22
|
Stagni V, Mingardi M, Santini S, Giaccari D, Barilà D. ATM kinase activity modulates cFLIP protein levels: potential interplay between DNA damage signalling and TRAIL-induced apoptosis. Carcinogenesis 2010; 31:1956-63. [DOI: 10.1093/carcin/bgq193] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
|