1
|
Bertolini M, Mendive-Tapia L, Karmakar U, Vendrell M. Chemo-Click: Receptor-Controlled and Bioorthogonal Chemokine Ligation for Real-Time Imaging of Drug-Resistant Leukemic B Cells. J Am Chem Soc 2024. [PMID: 39441736 DOI: 10.1021/jacs.4c12035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Drug resistance in B cell leukemia is characterized by the coexpression of CXCR5 and CXCR3 chemokine receptors, making it a valuable biomarker for patient stratification. Herein, we report a novel platform of activatable chemokines to selectively image drug-resistant leukemic B cells for the first time. The C-terminal derivatization of the human chemokines CXCL13 and CXCL10 with bioorthogonal tetrazine-BODIPY and BCN groups retained binding and internalization via their cognate CXCR5 and CXCR3 receptors and enabled rapid fluorescence labeling of CXCR5+ CXCR3+ resistant B cells─but not drug-susceptible leukemic cells─via intracellular chemokine ligation. This modular chemical approach offers a versatile strategy for real-time immunophenotyping of cell populations with distinct chemokine profiles and will accelerate the design of new precision medicine tools to advance personalized therapies in blood tumors.
Collapse
Affiliation(s)
- Marco Bertolini
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh EH16 4UU, U.K
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, U.K
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh EH16 4UU, U.K
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, U.K
| | - Utsa Karmakar
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh EH16 4UU, U.K
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, U.K
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh EH16 4UU, U.K
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, U.K
| |
Collapse
|
2
|
Jestrabek H, Kohlhas V, Hallek M, Nguyen PH. Impact of leukemia-associated macrophages on the progression and therapy response of chronic lymphocytic leukemia. Leuk Res 2024; 143:107531. [PMID: 38851084 DOI: 10.1016/j.leukres.2024.107531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The treatment landscape of chronic lymphocytic leukemia (CLL) has advanced remarkably over the past decade. The advent and approval of the BTK inhibitor ibrutinib and BCL-2 inhibitor venetoclax, as well as monoclonal anti-CD20 antibodies rituximab and obinutuzumab, have resulted in deep remissions and substantially improved survival outcomes for patients. However, CLL remains a complex disease with many patients still experiencing relapse and unsatisfactory treatment responses. CLL cells are highly dependent on their pro-leukemic tumor microenvironment (TME), which comprises different cellular and soluble factors. A large body of evidence suggests that CLL-associated macrophages shaped by leukemic cells play a pivotal role in maintaining CLL cell survival. In this review, we summarize the pro-survival interactions between CLL cells and macrophages, as well as the impact of the current first-line treatment agents, including ibrutinib, venetoclax, and CD20 antibodies on leukemia-associated macrophages.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/drug effects
- Disease Progression
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Adenine/analogs & derivatives
- Sulfonamides/therapeutic use
- Piperidines/therapeutic use
- Macrophages/pathology
- Macrophages/immunology
Collapse
Affiliation(s)
- Hendrik Jestrabek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne 50931, Germany; Mildred Scheel School of Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne 50931, Germany
| | - Viktoria Kohlhas
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne 50931, Germany
| | - Michael Hallek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne 50931, Germany; Mildred Scheel School of Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne 50931, Germany
| | - Phuong-Hien Nguyen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne 50931, Germany.
| |
Collapse
|
3
|
Vom Stein AF, Hallek M, Nguyen PH. Role of the tumor microenvironment in CLL pathogenesis. Semin Hematol 2024; 61:142-154. [PMID: 38220499 DOI: 10.1053/j.seminhematol.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/02/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
Chronic lymphocytic leukemia (CLL) cells extensively interact with and depend on their surrounding tumor microenvironment (TME). The TME encompasses a heterogeneous array of cell types, soluble signals, and extracellular vesicles, which contribute significantly to CLL pathogenesis. CLL cells and the TME cooperatively generate a chronic inflammatory milieu, which reciprocally reprograms the TME and activates a signaling network within CLL cells, promoting their survival and proliferation. Additionally, the inflammatory milieu exerts chemotactic effects, attracting CLL cells and other immune cells to the lymphoid tissues. The intricate CLL-TME interactions also facilitate immune evasion and compromise leukemic cell surveillance. We also review recent advances that have shed light on additional aspects that are substantially influenced by the CLL-TME interplay.
Collapse
Affiliation(s)
- Alexander F Vom Stein
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Center for Molecular Medicine Cologne; CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Michael Hallek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Center for Molecular Medicine Cologne; CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Phuong-Hien Nguyen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Center for Molecular Medicine Cologne; CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany.
| |
Collapse
|
4
|
Rodrigues C, Laranjeira P, Pinho A, Silva I, Silva S, Coucelo M, Oliveira AC, Simões AT, Damásio I, Silva HM, Urbano M, Sarmento-Ribeiro AB, Geraldes C, Domingues MR, Almeida J, Criado I, Orfao A, Paiva A. CD20+ T cells in monoclonal B cell lymphocytosis and chronic lymphocytic leukemia: frequency, phenotype and association with disease progression. Front Oncol 2024; 14:1380648. [PMID: 38606091 PMCID: PMC11007165 DOI: 10.3389/fonc.2024.1380648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction In monoclonal B cell lymphocytosis (MBL) and chronic lymphocytic leukemia (CLL), the expansion of malignant B cells disrupts the normal homeostasis and interactions between B cells and T cells, leading to immune dysregulation. CD20+ T cells are a subpopulation of T cells that appear to be involved in autoimmune diseases and cancer. Methods Here, we quantified and phenotypically characterized CD20+ T cells from MBL subjects and CLL patients using flow cytometry and correlated our findings with the B-cell receptor mutational status and other features of the disease. Results and discussion CD20+ T cells were more represented within the CD8+ T cell compartment and they showed a predominant memory Tc1 phenotype. CD20+ T cells were less represented in MBL and CLL patients vs healthy controls, particularly among those with unmutated IGVH gene. The expansion of malignant B cells was accompanied by phenotypic and functional changes in CD20+ T cells, including an increase in follicular helper CD4+ CD20+ T cells and CD20+ Tc1 cells, in addition to the expansion of the TCR Vβ 5.1 in CD4+ CD20+ T cells in CLL.
Collapse
Affiliation(s)
- Cristiana Rodrigues
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Paula Laranjeira
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Aryane Pinho
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Isabel Silva
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sandra Silva
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Margarida Coucelo
- Unidade Funcional de Hematologia Molecular, Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Catarina Oliveira
- Unidade Funcional de Hematologia Molecular, Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Teresa Simões
- Unidade Funcional de Hematologia Molecular, Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Inês Damásio
- Hematology Department, Centro Hospitalar Tondela-Viseu, Viseu, Portugal
| | | | - Mafalda Urbano
- Hematology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Hematology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- University Clinics of Hematology and Oncology and Laboratory of Oncobiology and Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Catarina Geraldes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Hematology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- University Clinics of Hematology and Oncology and Laboratory of Oncobiology and Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - M. Rosário Domingues
- Mass Spectrometry Centre, Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Julia Almeida
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Salamanca, Spain
- Department of Medicine, University of Salamanca (Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Criado
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Salamanca, Spain
- Department of Medicine, University of Salamanca (Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Orfao
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Salamanca, Spain
- Department of Medicine, University of Salamanca (Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Artur Paiva
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Ciências Biomédicas Laboratoriais, Instituto Politécnico de Coimbra, Escola Superior de Tecnologia da Saúde de Coimbra (ESTESC)-Coimbra Health School, Coimbra, Portugal
| |
Collapse
|
5
|
Du J, Lin Z, Fu XH, Gu XR, Lu G, Hou J. Research progress of the chemokine/chemokine receptor axes in the oncobiology of multiple myeloma (MM). Cell Commun Signal 2024; 22:177. [PMID: 38475811 PMCID: PMC10935833 DOI: 10.1186/s12964-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The incidence of multiple myeloma (MM), a type of blood cancer affecting monoclonal plasma cells, is rising. Although new drugs and therapies have improved patient outcomes, MM remains incurable. Recent studies have highlighted the crucial role of the chemokine network in MM's pathological mechanism. Gaining a better understanding of this network and creating an overview of chemokines in MM could aid in identifying potential biomarkers and developing new therapeutic strategies and targets. PURPOSE To summarize the complicated role of chemokines in MM, discuss their potential as biomarkers, and introduce several treatments based on chemokines. METHODS Pubmed, Web of Science, ICTRP, and Clinical Trials were searched for articles and research related to chemokines. Publications published within the last 5 years are selected. RESULTS Malignant cells can utilize chemokines, including CCL2, CCL3, CCL5, CXCL7, CXCL8, CXCL12, and CXCL13 to evade apoptosis triggered by immune cells or medication, escape from bone marrow and escalate bone lesions. Other chemokines, including CXCL4, CCL19, and CXCL10, may aid in recruiting immune cells, increasing their cytotoxicity against cancer cells, and inducing apoptosis of malignant cells. CONCLUSION Utilizing anti-tumor chemokines or blocking pro-tumor chemokines may provide new therapeutic strategies for managing MM. Inspired by developed CXCR4 antagonists, including plerixafor, ulocuplumab, and motixafortide, more small molecular antagonists or antibodies for pro-tumor chemokine ligands and their receptors can be developed and used in clinical practice. Along with inhibiting pro-tumor chemokines, studies suggest combining chemokines with chimeric antigen receptor (CAR)-T therapy is promising and efficient.
Collapse
Affiliation(s)
- Jun Du
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zheng Lin
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xue-Hang Fu
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiao-Ran Gu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guang Lu
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, 257099, China.
| | - Jian Hou
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
6
|
Ahmed HA, Nafady A, Ahmed EH, Hassan EEN, Soliman WGM, Elbadry MI, Allam AA. CXC chemokine ligand 13 and galectin-9 plasma levels collaboratively provide prediction of disease activity and progression-free survival in chronic lymphocytic leukemia. Ann Hematol 2024; 103:781-792. [PMID: 37946029 PMCID: PMC10867040 DOI: 10.1007/s00277-023-05540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
The clinical outcome of lymphocytic leukemia (CLL) is quite heterogeneous. The purpose of this observational study was to investigate the clinical merit of measuring plasma galectin-9 and CXCL-13 concentrations as predictors of CLL activity, prognosis, and early indicators of therapeutic response. These biomarkers were compared with other prognostic indicators, progression-free survival (PFS), time to first treatment (TTT), and overall survival (OS) over a follow-up period (4 years). First, plasma galectin-9 and CXCL-13 concentrations were analyzed in CLL patients at the time of diagnosis as well as healthy controls. Compared to controls, CLL patients had significantly higher serum levels of CXCL-13 and galectin-9. Second, we observed that CLL patients with high soluble CXCL-13 and galectin-9 levels had advanced clinical stages, poor prognosis, 17p del, short PFS, short TTT, and therapy resistance. The levels of CXCL-13, β2-microglobulin, LDH, CD38%, and high grade of Rai-stage were all strongly correlated with the galectin-9 levels. Soluble CXCL-13 and galectin-9 had very good specificity and sensitivity in detecting CLL disease progression and high-risk patients with the superiority of galectin-9 over CXCL-13. Although the two biomarkers were equal in prediction of TTT and treatment response, the soluble CXCL13 was superior in prediction of OS. High CXCL-13 and galectin-9 plasma levels upon CLL diagnosis are associated with disease activity, progression, advanced clinical stages, short periods of PFS, short TTT, and unfavorable treatment response.
Collapse
Affiliation(s)
- Heba A Ahmed
- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | - Asmaa Nafady
- Department of Clinical and Chemical Pathology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Eman H Ahmed
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Emad Eldin Nabil Hassan
- Department of Clinical Oncology and Nuclear Medicine, Sohag University Hospital, Sohag, Egypt
| | | | - Mahmoud I Elbadry
- Division of Haematology, Department of Internal Medicine, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt.
| | - Ahmed Ahmed Allam
- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
7
|
Hamshaw I, Ellahouny Y, Malusickis A, Newman L, Ortiz-Jacobs D, Mueller A. The role of PKC and PKD in CXCL12 and CXCL13 directed malignant melanoma and acute monocytic leukemic cancer cell migration. Cell Signal 2024; 113:110966. [PMID: 37949381 DOI: 10.1016/j.cellsig.2023.110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/03/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Cancer metastasis is the leading cause of cancer related mortality. Chemokine receptors and proteins in their downstream signalling axis represent desirable therapeutic targets for the prevention of metastasis. Despite this, current therapeutics have experienced limited success in clinical trials due to a lack of insight into the downstream signalling pathway of specific chemokine receptor cascades in different tumours. In this study, we investigated the role of protein kinase C (PKC) and protein kinase D (PKD) in CXCL12 and CXCL13 stimulated SK-MEL-28 (malignant melanoma) and THP-1 (acute monocytic leukaemia) cell migration. While PKC and PKD had no active role in CXCL12 or CXCL13 stimulated THP-1 cell migration, PKC and PKD inhibition reduced CXCL12 stimulated migration and caused profound effects upon the cytoskeleton of SK-MEL-28 cells. Furthermore, only PKC and not PKD inhibition reduced CXCL13 stimulated migration in SK-MEL-28 cells however PKC inhibition failed to stimulate any changes to the actin cytoskeleton. These findings indicate that PKC inhibitors would be a useful therapeutic for the prevention of both CXCL12 and CXCL13 stimulated migration and PKD inhibitors for CXCL12 stimulated migration in malignant melanoma.
Collapse
Affiliation(s)
- Isabel Hamshaw
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Artur Malusickis
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | - Lia Newman
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Anja Mueller
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
8
|
Cerreto M, Foà R, Natoni A. The Role of the Microenvironment and Cell Adhesion Molecules in Chronic Lymphocytic Leukemia. Cancers (Basel) 2023; 15:5160. [PMID: 37958334 PMCID: PMC10647257 DOI: 10.3390/cancers15215160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy whose progression largely depends on the lymph node and bone marrow microenvironment. Indeed, CLL cells actively proliferate in specific regions of these anatomical compartments, known as proliferation centers, while being quiescent in the blood stream. Hence, CLL cell adhesion and migration into these protective niches are critical for CLL pathophysiology. CLL cells are lodged in their microenvironment through a series of molecular interactions that are mediated by cellular adhesion molecules and their counter receptors. The importance of these adhesion molecules in the clinic is demonstrated by the correlation between the expression levels of some of them, in particular CD49d, and the prognostic likelihood. Furthermore, novel therapeutic agents, such as ibrutinib, impair the functions of these adhesion molecules, leading to an egress of CLL cells from the lymph nodes and bone marrow into the circulation together with an inhibition of homing into these survival niches, thereby preventing disease progression. Several adhesion molecules have been shown to participate in CLL adhesion and migration. Their importance also stems from the observation that they are involved in promoting, directly or indirectly, survival signals that sustain CLL proliferation and limit the efficacy of standard and novel chemotherapeutic drugs, a process known as cell adhesion-mediated drug resistance. In this respect, many studies have elucidated the molecular mechanisms underlying cell adhesion-mediated drug resistance, which have highlighted different signaling pathways that may represent potential therapeutic targets. Here, we review the role of the microenvironment and the adhesion molecules that have been shown to be important in CLL and their impact on transendothelial migration and cell-mediated drug resistance. We also discuss how novel therapeutic compounds modulate the function of this important class of molecules.
Collapse
Affiliation(s)
| | | | - Alessandro Natoni
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00100 Rome, Italy; (M.C.); (R.F.)
| |
Collapse
|
9
|
Koehrer S, Burger JA. Chronic Lymphocytic Leukemia: Disease Biology. Acta Haematol 2023; 147:8-21. [PMID: 37717577 DOI: 10.1159/000533610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/13/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND B-cell receptor (BCR) signaling is crucial for normal B-cell development and adaptive immunity. In chronic lymphocytic leukemia (CLL), the malignant B cells display many features of normal mature B lymphocytes, including the expression of functional B-cell receptors (BCRs). Cross talk between CLL cells and the microenvironment in secondary lymphatic organs results in BCR signaling and BCR-driven proliferation of the CLL cells. This critical pathomechanism can be targeted by blocking BCR-related kinases (BTK, PI3K, spleen tyrosine kinase) using small-molecule inhibitors. Among these targets, Bruton tyrosine kinase (BTK) inhibitors have the highest therapeutic efficacy; they effectively block leukemia cell proliferation and generally induce durable remissions in CLL patients, even in patients with high-risk disease. By disrupting tissue homing receptor (i.e., chemokine receptor and adhesion molecule) signaling, these kinase inhibitors also mobilize CLL cells from the lymphatic tissues into the peripheral blood (PB), causing a transient redistribution lymphocytosis, thereby depriving CLL cells from nurturing factors within the tissue niches. SUMMARY The clinical success of the BTK inhibitors in CLL underscores the central importance of the BCR in CLL pathogenesis. Here, we review CLL pathogenesis with a focus on the role of the BCR and other microenvironment cues. KEY MESSAGES (i) CLL cells rely on signals from their microenvironment for proliferation and survival. (ii) These signals are mediated by the BCR as well as chemokine and integrin receptors and their respective ligands. (iii) Targeting the CLL/microenvironment interaction with small-molecule inhibitors provides a highly effective treatment strategy, even in high-risk patients.
Collapse
Affiliation(s)
- Stefan Koehrer
- Department of Laboratory Medicine, Klinik Donaustadt, Vienna, Austria
- Labdia Labordiagnostik, Clinical Genetics, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Jan A Burger
- Department of Leukemia, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
10
|
Verstraete N, Marku M, Domagala M, Arduin H, Bordenave J, Fournié JJ, Ysebaert L, Poupot M, Pancaldi V. An agent-based model of monocyte differentiation into tumour-associated macrophages in chronic lymphocytic leukemia. iScience 2023; 26:106897. [PMID: 37332613 PMCID: PMC10275988 DOI: 10.1016/j.isci.2023.106897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/07/2022] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Monocyte-derived macrophages help maintain tissue homeostasis and defend the organism against pathogens. In tumors, recent studies have uncovered complex macrophage populations, including tumor-associated macrophages, which support tumorigenesis through cancer hallmarks such as immunosuppression, angiogenesis, or matrix remodeling. In the case of chronic lymphocytic leukemia, these macrophages are known as nurse-like cells (NLCs) and they protect leukemic cells from spontaneous apoptosis, contributing to their chemoresistance. We propose an agent-based model of monocyte differentiation into NLCs upon contact with leukemic B cells in vitro. We performed patient-specific model optimization using cultures of peripheral blood mononuclear cells from patients. Using our model, we were able to reproduce the temporal survival dynamics of cancer cells in a patient-specific manner and to identify patient groups related to distinct macrophage phenotypes. Our results show a potentially important role of phagocytosis in the polarization process of NLCs and in promoting cancer cells' enhanced survival.
Collapse
Affiliation(s)
- Nina Verstraete
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Malvina Marku
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marcin Domagala
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Hélène Arduin
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Julie Bordenave
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Jean-Jacques Fournié
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Loïc Ysebaert
- Service d’Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, 31330 Toulouse, France
| | - Mary Poupot
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Vera Pancaldi
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Barcelona Supercomputing Center, Carrer de Jordi Girona, 29, 31, 08034 Barcelona, Spain
| |
Collapse
|
11
|
Chen X, Wang Y, Huang X, Geng S, Li C, Zeng L, Huang L, Du X, Weng J, Lai P. Targeting Bcl-6 prevents sclerodermatous chronic graft-versus-host disease by abrogating T follicular helper differentiation in mice. Int Immunopharmacol 2023; 117:109746. [PMID: 36827923 DOI: 10.1016/j.intimp.2023.109746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Chronic graft-versus-host disease (cGVHD) is the most common cause of non-relapse mortality (NRM) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). CD4+ follicular helper T (Tfh) cells, specialized providers of T cell help to B cells, play a vital role in GVHD pathogenesis. B-cell lymphoma-6 (Bcl-6) transcription factor has been shown to be required for Tfh-mediated germinal center reactions. In this study, we would like to evaluate the effect of Bcl-6 on Tfh function in sclerodermatous cGVHD and the efficacy of Bcl-6 inhibitors (Bcl-6i) for treating a minor histocompatibility complex (miHC) mismatch model of sclerodermatous cGVHD (scl-cGVHD). METHODS A minor histocompatibility haploidentical model of scl-cGVHD was established and received intraperitoneal injection of 79-6, a small-molecule inhibitor of Bcl-6. The clinical manifestations and survival times of cGVHD mice were recorded. The histological assessment was performed by hematoxylin-eosin (HE) and Masson's trichrome staining on the skin and lung tissues. Tfh cells and germinal center B cells in the spleen and peripheral blood were detected by flow cytometry. The cellular markers were immunostained in different organs. ELISA was performed to detect cytokine secretion. RESULTS Bcl-6 inhibition by 79-6 improved the clinical manifestation of scl-cGVHD mice and prolonged their survival. The histopathologic damage, particular the fibrotic changes of scl-cGVHD mice was significantly relieved after 79-6 treatment. Furthermore, 79-6 treatment not only suppressed the development and function of Tfh and Tph cells in the peripheral blood, but also reduced the survival of Tfh cells in the spleen. Moreover, 79-6 decreased the frequency of GC plasmocytes accompanied by a reduction in IL-21. CONCLUSIONS Our study demonstrates that Bcl-6 inhibitor could prevent murine sclerodermatous chronic graft-versus-host disease by abrogating T follicular helper differentiation and suppressing the function of GC B cells, indicating that Bcl-6 inhibition may be a potential treatment for patients with cGVHD.
Collapse
Affiliation(s)
- Xiaomei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong 510080, PR China
| | - Yulian Wang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong 510080, PR China
| | - Xin Huang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong 510080, PR China
| | - Suxia Geng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong 510080, PR China
| | - Chao Li
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong 510080, PR China
| | - Lingji Zeng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong 510080, PR China
| | - Lisi Huang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong 510080, PR China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong 510080, PR China.
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong 510080, PR China.
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong 510080, PR China.
| |
Collapse
|
12
|
Nagler A, Wu CJ. The end of the beginning: application of single-cell sequencing to chronic lymphocytic leukemia. Blood 2023; 141:369-379. [PMID: 36095842 PMCID: PMC9936302 DOI: 10.1182/blood.2021014669] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/23/2022] [Indexed: 01/31/2023] Open
Abstract
Single-cell analysis has emerged over the past decade as a transformative technology informative for the systematic analysis of complex cell populations such as in cancers and the tumor immune microenvironment. The methodologic and analytical advancements in this realm have evolved rapidly, scaling from but a few cells at its outset to the current capabilities of processing and analyzing hundreds of thousands of individual cells at a time. The types of profiling attainable at individual cell resolution now range from genetic and transcriptomic characterization and extend to epigenomic and spatial analysis. Additionally, the increasing ability to achieve multiomic integration of these data layers now yields ever richer insights into diverse molecular disease subtypes and the patterns of cellular circuitry on a per-cancer basis. Over the years, chronic lymphocytic leukemia (CLL) consistently has been at the forefront of genomic investigation, given the ready accessibility of pure leukemia cells and immune cells from circulating blood of patients with this disease. Herein, we review the recent forays into the application of single-cell analysis to CLL, which are already revealing a new understanding of the natural progression of CLL, the impact of novel therapies, and the interactions with coevolving nonmalignant immune cell populations. As we emerge from the end of the beginning of this technologic revolution, CLL stands poised to reap the benefits of single-cell analysis from the standpoints of uncovering fresh fundamental biological knowledge and of providing a path to devising regimens of personalized diagnosis, treatment, and monitoring.
Collapse
Affiliation(s)
- Adi Nagler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
13
|
Magalhães-Gama F, Alves-Hanna FS, Araújo ND, Barros MS, Silva FS, Catão CLS, Moraes JS, Freitas IC, Tarragô AM, Malheiro A, Teixeira-Carvalho A, Costa AG. The Yin-Yang of myeloid cells in the leukemic microenvironment: Immunological role and clinical implications. Front Immunol 2022; 13:1071188. [PMID: 36532078 PMCID: PMC9751477 DOI: 10.3389/fimmu.2022.1071188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
The leukemic microenvironment has a high diversity of immune cells that are phenotypically and functionally distinct. However, our understanding of the biology, immunology, and clinical implications underlying these cells remains poorly investigated. Among the resident immune cells that can infiltrate the leukemic microenvironment are myeloid cells, which correspond to a heterogeneous cell group of the innate immune system. They encompass populations of neutrophils, macrophages, and myeloid-derived suppressor cells (MDSCs). These cells can be abundant in different tissues and, in the leukemic microenvironment, are associated with the clinical outcome of the patient, acting dichotomously to contribute to leukemic progression or stimulate antitumor immune responses. In this review, we detail the current evidence and the many mechanisms that indicate that the activation of different myeloid cell populations may contribute to immunosuppression, survival, or metastatic dissemination, as well as in immunosurveillance and stimulation of specific cytotoxic responses. Furthermore, we broadly discuss the interactions of tumor-associated neutrophils and macrophages (TANs and TAMs, respectively) and MDSCs in the leukemic microenvironment. Finally, we provide new perspectives on the potential of myeloid cell subpopulations as predictive biomarkers of therapeutical response, as well as potential targets in the chemoimmunotherapy of leukemias due to their dual Yin-Yang roles in leukemia.
Collapse
Affiliation(s)
- Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores de Diagnóstico e Monitoração, Instituto René Rachou – FIOCRUZ Minas, Belo Horizonte, Brazil
| | - Fabíola Silva Alves-Hanna
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Nilberto Dias Araújo
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Mateus Souza Barros
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Flavio Souza Silva
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Claudio Lucas Santos Catão
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Júlia Santos Moraes
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Izabela Cabral Freitas
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Adriana Malheiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Andréa Teixeira-Carvalho
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores de Diagnóstico e Monitoração, Instituto René Rachou – FIOCRUZ Minas, Belo Horizonte, Brazil
| | - Allyson Guimarães Costa
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil
| |
Collapse
|
14
|
Beider K, Voevoda-Dimenshtein V, Zoabi A, Rosenberg E, Magen H, Ostrovsky O, Shimoni A, Weiss L, Abraham M, Peled A, Nagler A. CXCL13 chemokine is a novel player in multiple myeloma osteolytic microenvironment, M2 macrophage polarization, and tumor progression. J Hematol Oncol 2022; 15:144. [PMID: 36217194 PMCID: PMC9549634 DOI: 10.1186/s13045-022-01366-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/02/2022] [Indexed: 12/04/2022] Open
Abstract
Background We assessed the mechanism by which multiple myeloma (MM) shapes the bone marrow (BM) microenvironment and affects MΦ polarization. Methods In vivo xenograft model of BM-disseminated human myeloma, as well as analysis of MM cell lines, stromal components, and primary samples from patients with MM, was utilized. Results Analysis of the BM from MM-bearing mice inoculated with human CXCR4-expressing RPMI8226 cells revealed a significant increase in M2 MΦ cell numbers (p < 0.01). CXCL13 was one of the most profoundly increased factors upon MM growth with increased levels in the blood of MM-bearing animals. Myeloid cells were the main source of the increased murine CXCL13 detected in MM-infiltrated BM. MM cell lines induced CXCL13 and concurrent expression of M2 markers (MERTK, CD206, CD163) in co-cultured human MΦ in vitro. Interaction with MΦ reciprocally induced CXCL13 expression in MM cell lines. Mechanistically, TGFβ signaling was involved in CXCL13 induction in MM cells, while BTK signaling was implicated in MM-stimulated increase of CXCL13 in MΦ. Recombinant CXCL13 increased RANKL expression and induced TRAP+ osteoclast (OC) formation in vitro, while CXCL13 neutralization blocked these activities. Moreover, mice inoculated with CXCL13-silenced MM cells developed significantly lower BM disease. Reduced tumor load correlated with decreased numbers of M2 MΦ in BM, decreased bone disease, and lower expression of OC-associated genes. Finally, higher levels of CXCL13 were detected in the blood and BM samples of MM patients in comparison with healthy individuals. Conclusions Altogether, our findings suggest that bidirectional interactions of MΦ with MM tumor cells result in M2 MΦ polarization, CXCL13 induction, and subsequent OC activation, enhancing their ability to support bone resorption and MM progression. CXCL13 may thus serve as a potential novel target in MM. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-022-01366-5.
Collapse
Affiliation(s)
- Katia Beider
- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | | | - Ali Zoabi
- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | - Evgenia Rosenberg
- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | - Hila Magen
- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | - Olga Ostrovsky
- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | - Avichai Shimoni
- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | - Lola Weiss
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Michal Abraham
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Amnon Peled
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Arnon Nagler
- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel.
| |
Collapse
|
15
|
Wang B, Wang M, Ao D, Wei X. CXCL13-CXCR5 axis: Regulation in inflammatory diseases and cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188799. [PMID: 36103908 DOI: 10.1016/j.bbcan.2022.188799] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 01/10/2023]
Abstract
Chemokine C-X-C motif ligand 13 (CXCL13), originally identified as a B-cell chemokine, plays an important role in the immune system. The interaction between CXCL13 and its receptor, the G-protein coupled receptor (GPCR) CXCR5, builds a signaling network that regulates not only normal organisms but also the development of many diseases. However, the precise action mechanism remains unclear. In this review, we discussed the functional mechanisms of the CXCL13-CXCR5 axis under normal conditions, with special focus on its association with diseases. For certain refractory diseases, we emphasize the diagnostic and therapeutic role of CXCL13-CXCR5 axis.
Collapse
Affiliation(s)
- Binhan Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Danyi Ao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Harrer C, Otto F, Radlberger RF, Moser T, Pilz G, Wipfler P, Harrer A. The CXCL13/CXCR5 Immune Axis in Health and Disease—Implications for Intrathecal B Cell Activities in Neuroinflammation. Cells 2022; 11:cells11172649. [PMID: 36078057 PMCID: PMC9454489 DOI: 10.3390/cells11172649] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The chemokine C-X-C- ligand 13 (CXCL13) is a major B cell chemoattractant to B cell follicles in secondary lymphoid organs (SLO) that proposedly recruits B cells to the cerebrospinal fluid (CSF) during neuroinflammation. CXCR5, the cognate receptor of CXCL13, is expressed on B cells and certain T cell subsets, in particular T follicular helper cells (Tfh cells), enabling them to follow CXCL13 gradients towards B cell follicles for spatial proximity, a prerequisite for productive T cell–B cell interaction. Tfh cells are essential contributors to B cell proliferation, differentiation, and high-affinity antibody synthesis and are required for germinal center formation and maintenance. Circulating Tfh cells (cTfh) have been observed in the peripheral blood and CSF. Furthermore, CXCL13/CXCR5-associated immune activities organize and shape adaptive B cell-related immune responses outside of SLO via the formation of ectopic lymphoid structures in inflamed tissues, including the central nervous system (CNS). This review summarizes the recent advances in our understanding of the CXCL13/CXCR5 immune axis and its role in vaccination, autoimmunity, and infection with a special focus on its relevance for intrathecal B cell activities in inflammatory CNS diseases.
Collapse
Affiliation(s)
- Christine Harrer
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
- Clinical Division of Social Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Ferdinand Otto
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Richard Friedrich Radlberger
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Tobias Moser
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Georg Pilz
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Peter Wipfler
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Andrea Harrer
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
- Department of Dermatology and Allergology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Correspondence:
| |
Collapse
|
17
|
Liu Y, Song Y, Yin Q. Effects of ibrutinib on T-cell immunity in patients with chronic lymphocytic leukemia. Front Immunol 2022; 13:962552. [PMID: 36059445 PMCID: PMC9437578 DOI: 10.3389/fimmu.2022.962552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL), a highly heterogeneous B-cell malignancy, is characterized by tumor microenvironment disorder and T-cell immune dysfunction, which play a major role in the proliferation and survival of CLL cells. Ibrutinib is the first irreversible inhibitor of Bruton’s tyrosine kinase (BTK). In addition to targeting B-cell receptor (BCR) signaling to kill tumor cells, increasing evidence has suggested that ibrutinib regulates the tumor microenvironment and T-cell immunity in a direct and indirect manner. For example, ibrutinib not only reverses the tumor microenvironment by blocking cytokine networks and toll-like receptor signaling but also regulates T cells in number, subset distribution, T-cell receptor (TCR) repertoire and immune function by inhibiting interleukin-2 inducible T-cell kinase (ITK) and reducing the expression of inhibitory receptors, and so on. In this review, we summarize the current evidence for the effects of ibrutinib on the tumor microenvironment and cellular immunity of patients with CLL, particularly for the behavior and function of T cells, explore its potential mechanisms, and provide a basis for the clinical benefits of long-term ibrutinib treatment and combined therapy based on T-cell-based immunotherapies.
Collapse
|
18
|
Hu LT, Deng WJ, Chu ZS, Sun L, Zhang CB, Lu SZ, Weng JR, Ren QS, Dong XY, Li WD, Li XB, Du YT, Li Y, Wang WQ. Comprehensive analysis of CXCR family members in lung adenocarcinoma with prognostic values. BMC Pulm Med 2022; 22:259. [PMID: 35768814 PMCID: PMC9245315 DOI: 10.1186/s12890-022-02051-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/24/2022] [Indexed: 12/31/2022] Open
Abstract
Background The expression profiles and molecular mechanisms of CXC chemokine receptors (CXCRs) in Lung adenocarcinoma (LUAD) have been extensively explored. However, the comprehensive prognostic values of CXCR members in LUAD have not yet been clearly identified. Methods Multiple available datasets, including Oncomine datasets, the cancer genome atlas (TCGA), HPA platform, GeneMANIA platform, DAVID platform and the tumor immune estimation resource (TIMER) were used to detect the expression of CXCRs in LUAD, as well as elucidate the significance and value of novel CXCRs-associated genes and signaling pathways in LUAD.
Results The mRNA and/or protein expression of CXCR1, CXCR2, CXCR3, CXCR4, CXCR5 and CXCR6 displayed predominantly decreased in LUAD tissues as compared to normal tissues. On the contrary, compared with the normal tissues, the expression of CXCR7 was significantly increased in LUAD tissues. Subsequently, we constructed a network including CXCR family members and their 20 related genes, and the related GO functions assay showed that CXCRs connected with these genes participated in the process of LUAD through several signal pathways including Chemokine signaling pathway, Cytokine-cytokine receptor interaction and Neuroactive ligand-receptor interaction. TCGA and Timer platform revealed that the mRNA expression of CXCR family members was significantly related to individual cancer stages, cancer subtypes, patient’s gender and the immune infiltration level. Finally, survival analysis showed that low mRNA expression levels of CXCR2 (HR = 0.661, and Log-rank P = 1.90e−02), CXCR3 (HR = 0.674, and Log-rank P = 1.00e−02), CXCR4 (HR = 0.65, and Log-rank P = 5.01e−03), CXCR5 (HR = 0.608, and Log-rank P = 4.80e−03) and CXCR6 (HR = 0.622, and Log-rank P = 1.85e−03) were significantly associated with shorter overall survival (OS), whereas high CXCR7 mRNA expression (HR = 1.604, and Log-rank P = 4.27e−03) was extremely related with shorter OS in patients.
Conclusion Our findings from public databases provided a unique insight into expression characteristics and prognostic values of CXCR members in LUAD, which would be benefit for the understanding of pathogenesis, diagnosis, prognosis prediction and targeted treatment in LUAD.
Collapse
Affiliation(s)
- Lian-Tao Hu
- Basic Medical College, Jiamusi University, Jiamusi, 154002, Heilongjiang, China.,Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China
| | - Wen-Jun Deng
- Basic Medical College, Jiamusi University, Jiamusi, 154002, Heilongjiang, China.,Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China
| | - Zhen-Sheng Chu
- Basic Medical College, Jiamusi University, Jiamusi, 154002, Heilongjiang, China.,Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China
| | - Luo Sun
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China.,First Affiliated Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Chun-Bin Zhang
- Department of Medical Technology, Collaborative Innovation Center for Translation Medical Testing and Application Technology Zhangzhou, Zhang Zhou Health Vocational College, Zhangzhou, 363000, Fujian Province, China
| | - Shi-Zhen Lu
- Basic Medical College, Jiamusi University, Jiamusi, 154002, Heilongjiang, China.,Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China
| | - Jin-Ru Weng
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China.,Stomatological Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Qiao-Sheng Ren
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China.,Stomatological Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Xin-Yu Dong
- Basic Medical College, Jiamusi University, Jiamusi, 154002, Heilongjiang, China.,Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China
| | - Wei-Dong Li
- Basic Medical College, Jiamusi University, Jiamusi, 154002, Heilongjiang, China.,Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China
| | - Xue-Bin Li
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China.,First Affiliated Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Yun-Ting Du
- Department of Laboratory, Cancer Hospital of China Medical University, Shenyang,, Liaoning Province, China
| | - Yue Li
- Basic Medical College, Jiamusi University, Jiamusi, 154002, Heilongjiang, China. .,Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China.
| | - Wei-Qun Wang
- Basic Medical College, Jiamusi University, Jiamusi, 154002, Heilongjiang, China. .,Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi, 154002, Heilongjiang, China.
| |
Collapse
|
19
|
Nurse-like cells sequester B cells in chronic lymphocytic leukemia disorganized lymph nodes via an alternative production of CCL21. Blood Adv 2022; 6:4691-4704. [PMID: 35679464 PMCID: PMC9631672 DOI: 10.1182/bloodadvances.2021006169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Stromal cell architecture is deeply altered in CLL lymph nodes. CCL21, produced by leukemia-induced macrophages, improves retention and niching of malignant CCR7+ B cells in CLL lymph nodes.
Tumor microenvironment exerts a critical role in sustaining homing, retention, and survival of chronic lymphocytic leukemia (CLL) cells in secondary lymphoid organs. Such conditions foster immune surveillance escape and resistance to therapies. The physiological microenvironment is rendered tumor permissive by an interplay of chemokines, chemokine receptors, and adhesion molecules as well as by direct interactions between malignant lymphocytes and stromal cells, T cells, and specialized macrophages referred to as nurselike cells (NLCs). To characterize this complex interplay, we investigated the altered architecture on CLL lymph nodes biopsies and observed a dramatic loss of tissue subcompartments and stromal cell networks as compared with nonmalignant lymph nodes. A supplemental high density of CD68+ cells expressing the homeostatic chemokine CCL21 was randomly distributed. Using an imaging flow cytometry approach, CCL21 mRNA and the corresponding protein were observed in single CD68+ NLCs differentiated in vitro from CLL peripheral blood mononuclear cells. The chemokine was sequestered at the NLC membrane, helping capture of CCR7-high-expressing CLL B cells. Inhibiting the CCL21/CCR7 interaction by blocking antibodies or using therapeutic ibrutinib altered the adhesion of leukemic cells. Our results indicate NLCs as providers of an alternative source of CCL21, taking over the physiological task of follicular reticular cells, whose network is deeply altered in CLL lymph nodes. By retaining malignant B cells, CCL21 provides a protective environment for their niching and survival, thus allowing tumor evasion and resistance to treatment. These findings argue for a specific targeting or reeducation of NLCs as a new immunotherapy strategy for this disease.
Collapse
|
20
|
Rusyn L, Reinartz S, Nikiforov A, Mikhael N, Vom Stein A, Kohlhas V, Bloehdorn J, Stilgenbauer S, Lohneis P, Buettner R, Robrecht S, Fischer K, Pallasch C, Hallek M, Nguyen PH, Seeger-Nukpezah T. The scaffold protein NEDD9 is necessary for leukemia-cell migration and disease progression in a mouse model of chronic lymphocytic leukemia. Leukemia 2022; 36:1794-1805. [PMID: 35523865 PMCID: PMC9252910 DOI: 10.1038/s41375-022-01586-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/16/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022]
Abstract
The scaffold protein NEDD9 is frequently upregulated and hyperphosphorylated in cancers, and is associated with poor clinical outcome. NEDD9 promotes B-cell adhesion, migration and chemotaxis, pivotal processes for malignant development. We show that global or B-cell-specific deletion of Nedd9 in chronic lymphocytic leukemia (CLL) mouse models delayed CLL development, markedly reduced disease burden and resulted in significant survival benefit. NEDD9 was required for efficient CLL cell homing, chemotaxis, migration and adhesion. In CLL patients, peripheral NEDD9 expression was associated with adhesion and migration signatures as well as leukocyte count. Additionally, CLL lymph nodes frequently expressed high NEDD9 levels, with a subset of patients showing NEDD9 expression enriched in the CLL proliferation centers. Blocking activity of prominent NEDD9 effectors, including AURKA and HDAC6, effectively reduced CLL cell migration and chemotaxis. Collectively, our study provides evidence for a functional role of NEDD9 in CLL pathogenesis that involves intrinsic defects in adhesion, migration and homing.
Collapse
Affiliation(s)
- Lisa Rusyn
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Sebastian Reinartz
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Anastasia Nikiforov
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Nelly Mikhael
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Alexander Vom Stein
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Viktoria Kohlhas
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany
| | | | | | - Philipp Lohneis
- Hämatopathologie Lübeck, Reference Centre for Lymphnode Pathology and Haematopathology, Luebeck, Germany
| | | | - Sandra Robrecht
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Kirsten Fischer
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Christian Pallasch
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Michael Hallek
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Phuong-Hien Nguyen
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany. .,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany.
| | - Tamina Seeger-Nukpezah
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.
| |
Collapse
|
21
|
Vaca AM, Ioannou N, Sivina M, Vlachonikola E, Clise-Dwyer K, Kim E, Li D, Ma Q, Ferrajoli A, Estrov Z, Wierda WG, Patten PEM, Ramsay AG, Burger JA. Activation and expansion of T-follicular helper cells in chronic lymphocytic leukemia nurselike cell co-cultures. Leukemia 2022; 36:1324-1335. [PMID: 35149845 DOI: 10.1038/s41375-022-01519-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 12/16/2022]
Abstract
Interactions between chronic lymphocytic leukemia (CLL) cells and T-cell subsets in the lymph node microenvironment are thought to play a central role in disease biology. To study these interactions in a model of the CLL lymph node microenvironment, we characterized T-cell subsets in CLL nurselike cell (NLC) co-cultures. We focused on T-follicular helper (Tfh) cells, which are characterized by CXCR5 expression and localization to B-cell follicles. In co-cultures from 28 different CLL patients, we detected an expansion of Tfh cells based on PD-1, BCL6, and ICOS expression, with increased IL-21 and downmodulated CD40L surface expression. Regulatory T cells (Treg), which promote immune tolerance, also expanded in NLC co-cultures. T-cell receptor (TR) gene repertoire analyses confirmed the clonal expansion of CD4+ T cells, with an enrichment of TR clonotypes commonly expanded also in primary CLL samples. Multicolor confocal microscopy revealed that Tfh, but not Treg co-localize with proliferating CLL cells in CLL lymph node sections. Collectively, these data provide new insight into the cellular and molecular cross-talk between CLL and T-cell subsets, resulting in clonal expansion of T-helper cells and interaction of Tfh cells with proliferating CLL cells which may open new avenues for therapeutic targeting.
Collapse
Affiliation(s)
- Alicia M Vaca
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nikolaos Ioannou
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Mariela Sivina
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elisavet Vlachonikola
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Hematopoietic Biology & Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ekaterina Kim
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Li
- Department of Stem Cell Transplantation and Hematopoietic Biology & Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qing Ma
- Department of Stem Cell Transplantation and Hematopoietic Biology & Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Piers E M Patten
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Alan G Ramsay
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
22
|
Chang SJ, Chao CT, Kwan AL, Chai CY. The Diagnostic Significance of CXCL13 in M2 Tumor Immune Microenvironment of Human Astrocytoma. Pathol Oncol Res 2022; 28:1610230. [PMID: 35570844 PMCID: PMC9095826 DOI: 10.3389/pore.2022.1610230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022]
Abstract
Background: CXCL13 may act as a mediator of tumor-associated macrophage immunity during malignant progression. Objective: The present study clarifies the clinicopathological significances of CXCL13 and its corresponding trend with M2 macrophage in human astrocytoma. Methods: The predictive potential of CXCL13 was performed using 695 glioma samples derived from TCGA lower-grade glioma and glioblastoma (GBMLGG) dataset. CXCL13 and M2 biomarker CD163 were observed by immunohistochemistry in 112 astrocytoma tissues. Results: An in-depth analysis showed that CXCL13 expression was related to the poor prognosis of glioma patients (p = 0.0002) derive from TCGA analysis. High level of CXCL13 was detected in 43 (38.39%) astrocytoma and CXCL13/CD163 coexpression was expressed in 33 (29.46%) cases. The immunoreactivities of CXCL13 and CXCL13/CD163 were found in the malignant lesions, which were both significantly associated with grade, patient survival, and IDH1 mutation. Single CXCL13 and CXCL13/CD163 coexpression predicted poor overall survival in astrocytoma (p = 0.0039 and p = 0.0002, respectively). Multivariate Cox regression analyses manifested CXCL13/CD163 phenotype was a significant independent prognostic indicator of patient outcome in astrocytoma (CXCL13, p = 0.0642; CXCL13/CD163, p = 0.0368). Conclusion: CXCL13 overexpression is strongly linked to CD163+ M2 infiltration in malignant astrocytoma. CXCL13/CD163 coexpression would imply M2c-related aggressive characteristics existing in astrocytoma progression could also provide predictive trends of patient outcomes.
Collapse
Affiliation(s)
- Shu-Jyuan Chang
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chia-Te Chao
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Meng J, Lv Q, Sui A, Xu D, Zou T, Song M, Gong X, Xing S, Wang X. Hyperuricemia induces lipid disturbances by upregulating the CXCL-13 pathway. Am J Physiol Gastrointest Liver Physiol 2022; 322:G256-G267. [PMID: 34935515 DOI: 10.1152/ajpgi.00285.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The molecular mechanism underlying hyperuricemia-induced lipid metabolism disorders is not clear. The purpose of the current study was to investigate the mechanism of lipid disturbances in a hyperuricemia mice model. RNA-Seq showed that differentially expressed genes (DEGs) in the fatty acid synthesis signaling pathway were mainly enriched and CXCL-13 was significantly enriched in protein-protein interaction networks. Western blotting, Q-PCR, and immunofluorescence results further showed that hyperuricemia upregulated CXCL-13 and disturbed lipid metabolism in vivo and in vitro. Furthermore, CXCL-13 alone also promoted the accumulation of lipid droplets and upregulated the expression of FAS and SREBP1, blocking AMPK signaling and activating the PKC and P38 signaling pathways. Silencing CXCL-13 reversed uric-acid-induced lipid droplet accumulation, which further downregulated FAS and SREBP1 expression, inhibited the p38 and PKC signaling, and activated AMPK signaling. In conclusion, hyperuricemia induces lipid metabolism disorders via the CXCL-13 pathway, making CXCL-13 a key regulatory factor linking hyperuricemia and lipid metabolism disorders. These results may provide novel insights for the treatment of hyperuricemia.NEW & NOTEWORTHY The underlying molecular mechanism of hyperuricemia-induced lipid metabolism disorders is still unclear. The study aimed to investigate the mechanism of lipid disturbance in hyperuricemia mice model. To our knowledge, we proposed for the first time that CXCL-13 may be a key regulator of hyperuricemia and lipid metabolism disorders. These results may provide new insights for the clinical treatment of hyperuricemia.
Collapse
Affiliation(s)
- Jin Meng
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Qiulan Lv
- Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Aihua Sui
- Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Daxing Xu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Tong Zou
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Miao Song
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Xuelin Gong
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Shichao Xing
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China.,Qingdao Women and Children's Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xiaofeng Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
24
|
Zhang H, Yin H, Chen J, Yuan Y. An Integrated Pan-Cancer Analysis of 33 Human Cancers Reveals the Potential Clinical Implications and Immunotherapeutic Value of C-X-C Motif Chemokine Ligand 13. Front Oncol 2022; 12:791962. [PMID: 35141160 PMCID: PMC8818761 DOI: 10.3389/fonc.2022.791962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundC-X-C Motif Chemokine Ligand 13 (CXCL13) plays a crucial part in the pathogenesis of numerous lymphoproliferative disorders, inflammatory responses, and autoimmune diseases. CXCL13 also influence tumor development and prognosis, and be a potential target for cancer treatment. However, CXCL13 expression-based panoramic picture in pan-cancer remain unclear. This study focused on elucidating different expression levels, prognostic significance, immune-related characteristics, epigenetic variations, and immunotherapeutic value of CXCL13.MethodsBased on different databases such as TCGA, GTEX, CCLE and HPA, we studied the expression of CXCL13 in different tissues at different levels. Moreover, we analyzed the correlation between CXCL13 expression and clinicopathological characteristics, prognosis, Mismatch Repair Genes (MMRs), Microsatellite Instability (MSI), tumor mutation burden (TMB), immune cells infiltration, immune-related genes, and the role in tumor immunotherapy. And the expression of CXCL13 in digestive tract cancers and the correlation between CXCL13 and immune genes were further analyzed by histological verification.ResultsCXCL13 was highly expressed in various tumor tissues and was also closely related to prognosis. CXCL13 expression levels were closely related to MSI, TMB and immune cells infiltration, including CD8+ T cells, macrophages, follicular helper T cells and B cells. CXCL13 expression levels were related to immune checkpoint genes and the efficacy of immunotherapy.ConclusionCXCL13 might be a useful biomarker for determining the diagnosis and prognosis of human cancers but also a biomarker for evaluating the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Huanyu Zhang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Honghao Yin
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Jing Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Yuan Yuan,
| |
Collapse
|
25
|
Gao X, Jiang M, Chu Y, Han Y, Jin Y, Zhang W, Wang W, Yang S, Li W, Fan A, Cao J, Wang J, Liu H, Fu X, Chen D, Nie Y, Fan D. ETV4 promotes pancreatic ductal adenocarcinoma metastasis through activation of the CXCL13/CXCR5 signaling axis. Cancer Lett 2022; 524:42-56. [PMID: 34582976 DOI: 10.1016/j.canlet.2021.09.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 01/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has the highest fatality rate of any solid tumor, with a five-year survival rate of only 10% in the USA. PDAC is characterized by early metastasis. More than 50% of patients present with distant metastases at the time of diagnosis, and the majority of patients will develop metastasis within 4 years after tumor resection. Despite extensive studies, the molecular mechanisms underlying PDAC metastasis remain unclear. The polyoma enhancer activator protein (PEA3) subfamily was reported to play a vital role in the initiation and progression of multiple tumors. Herein, we found that ETS variant 4 (ETV4) was highly expressed in PDAC tissues and associated with poor survival. Univariate and multivariate analyses revealed that ETV4 expression was an independent prognostic factor for patient survival. Further experiments showed that ETV4 overexpression promoted PDAC invasion and metastasis both in vitro and in vivo. For the first time, we demonstrated that, mechanistically, ETV4 increased CXCR5 expression by directly binding to the CXCR5 promoter region. Knockdown of CXCR5 significantly reversed ETV4-mediated PDAC migration and invasion, while CXCR5 overexpression exerted the opposite effects. Intriguingly, we found that CXCL13, a specific ligand of CXCR5, increased ETV4 expression and promoted PDAC invasion and metastasis by activating the ERK1/2 pathway. ETV4 knockdown significantly abrogated the enhanced migratory and invasive abilities induced by the CXCL13/CXCR5 axis. In addition, a CXCR5 neutralizing antibody disrupted the CXCL13/ETV4/CXCR5 positive feedback loop and inhibited cell migration and invasion. Overall, in this study, we demonstrated that ETV4 plays a vital role in PDAC metastasis and defined a novel CXCL13/ETV4/CXCR5 positive feedback loop. Targeting this pathway has implications for potential therapeutic strategies for PDAC treatment.
Collapse
Affiliation(s)
- Xiaoliang Gao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Mingzuo Jiang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Yi Chu
- Department of Gastroenterology, The Second Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Yuying Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yirong Jin
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Wenyao Zhang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Weijie Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Suzhen Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Wenjiao Li
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Ahui Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiayi Cao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jiayao Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Fu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Di Chen
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
26
|
CXCL13 in Cancer and Other Diseases: Biological Functions, Clinical Significance, and Therapeutic Opportunities. Life (Basel) 2021; 11:life11121282. [PMID: 34947813 PMCID: PMC8708574 DOI: 10.3390/life11121282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/31/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022] Open
Abstract
The development of cancer is a multistep and complex process involving interactions between tumor cells and the tumor microenvironment (TME). C-X-C chemokine ligand 13 (CXCL13) and its receptor, CXCR5, make crucial contributions to this process by triggering intracellular signaling cascades in malignant cells and modulating the sophisticated TME in an autocrine or paracrine fashion. The CXCL13/CXCR5 axis has a dominant role in B cell recruitment and tertiary lymphoid structure formation, which activate immune responses against some tumors. In most cancer types, the CXCL13/CXCR5 axis mediates pro-neoplastic immune reactions by recruiting suppressive immune cells into tumor tissues. Tobacco smoke and haze (smohaze) and the carcinogen benzo(a)pyrene induce the secretion of CXCL13 by lung epithelial cells, which contributes to environmental lung carcinogenesis. Interestingly, the knockout of CXCL13 inhibits benzo(a)pyrene-induced lung cancer and azoxymethane/dextran sodium sulfate-induced colorectal cancer in mice. Thus, a better understanding of the context-dependent functions of the CXCL13/CXCR5 axis in tumor tissue and the TME is required to design an efficient immune-based therapy. In this review, we summarize the molecular events and TME alterations caused by CXCL13/CXCR5 and briefly discuss the potentials of agents targeting this axis in different malignant tumors.
Collapse
|
27
|
Immune cell topography predicts response to PD-1 blockade in cutaneous T cell lymphoma. Nat Commun 2021; 12:6726. [PMID: 34795254 PMCID: PMC8602403 DOI: 10.1038/s41467-021-26974-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023] Open
Abstract
Cutaneous T cell lymphomas (CTCL) are rare but aggressive cancers without effective treatments. While a subset of patients derive benefit from PD-1 blockade, there is a critically unmet need for predictive biomarkers of response. Herein, we perform CODEX multiplexed tissue imaging and RNA sequencing on 70 tumor regions from 14 advanced CTCL patients enrolled in a pembrolizumab clinical trial (NCT02243579). We find no differences in the frequencies of immune or tumor cells between responders and non-responders. Instead, we identify topographical differences between effector PD-1+ CD4+ T cells, tumor cells, and immunosuppressive Tregs, from which we derive a spatial biomarker, termed the SpatialScore, that correlates strongly with pembrolizumab response in CTCL. The SpatialScore coincides with differences in the functional immune state of the tumor microenvironment, T cell function, and tumor cell-specific chemokine recruitment and is validated using a simplified, clinically accessible tissue imaging platform. Collectively, these results provide a paradigm for investigating the spatial balance of effector and suppressive T cell activity and broadly leveraging this biomarker approach to inform the clinical use of immunotherapies.
Collapse
|
28
|
Zanetti C, Kumar R, Ender J, Godavarthy PS, Hartmann M, Hey J, Breuer K, Weissenberger ES, Minciacchi VR, Karantanou C, Gu Z, Roberts KG, Metzler M, Stock W, Mullighan CG, Bloomfield CD, Filmann N, Bankov K, Hartmann S, Hasserjian RP, Cousins AF, Halsey C, Plass C, Lipka DB, Krause DS. The age of the bone marrow microenvironment influences B-cell acute lymphoblastic leukemia progression via CXCR5-CXCL13. Blood 2021; 138:1870-1884. [PMID: 34424946 PMCID: PMC8767790 DOI: 10.1182/blood.2021011557] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) occurs most commonly in children, whereas chronic myeloid leukemia is more frequent in adults. The myeloid bias of hematopoiesis in elderly individuals has been considered causative, but the age of the bone marrow microenvironment (BMM) may be contributory. Using various murine models of B-ALL in young vs old mice, we recapitulated B-ALL preponderance in children vs adults. We showed differential effects of young vs old BM macrophages on B-ALL cell function. Molecular profiling using RNA- and ATAC-sequencing revealed pronounced differences in young vs old BMM-derived macrophages and enrichment for gene sets associated with inflammation. In concordance with the role of C-X-C motif chemokine (CXCL) 13 for disease-associated B-cell chemoattraction, we found CXCL13 to be highly expressed in young macrophages on a translational compared with a transcriptional level. Inhibition of CXCL13 in BM macrophages impaired leukemia cell migration and decreased the proliferation of cocultured B-ALL cells, whereas recombinant CXCL13 increased pAKT and B-ALL cell expansion. Pretreatment of B-ALL-initiating cells with CXCL13 accelerated B-ALL progression. Deficiency of Cxcr5, the receptor for CXCL13, on B-ALL-initiating cells prolonged murine survival, whereas high expression of CXCR5 in pediatric B-ALL may predict central nervous system relapse. CXCL13 staining was increased in bone sections from pediatric compared with adult patients with B-ALL. Taken together, our study shows that the age of the BMM and, in particular, BM macrophages influence the leukemia phenotype. The CXCR5-CXCL13 axis may act as prognostic marker and an attractive novel target for the treatment of B-ALL.
Collapse
Affiliation(s)
- Costanza Zanetti
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Joscha Ender
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Parimala S Godavarthy
- Department of Internal Medicine II, Hematology, Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Mark Hartmann
- Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German-Israeli Helmholtz Research School in Cancer Biology, Heidelberg, Germany
- Faculty of Biosciences, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
| | - Kersten Breuer
- Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Eva S Weissenberger
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Valentina R Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Christina Karantanou
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Zhaohui Gu
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Kathryn G Roberts
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Wendy Stock
- Department of Hematology and Oncology, University of Chicago, Chicago, IL
| | | | | | | | - Katrin Bankov
- Department of Pathology, Goethe University, Frankfurt am Main, Germany
| | - Sylvia Hartmann
- Department of Pathology, Goethe University, Frankfurt am Main, Germany
| | - Robert P Hasserjian
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Antony F Cousins
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christina Halsey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christoph Plass
- Cancer Epigenetics Group, Division of Epigenomics and Cancer Risk Factors, DKFZ, Heidelberg, Germany
| | - Daniel B Lipka
- Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Faculty of Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- DKFZ, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany; and
- Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
29
|
Aref S, Atia D, Ramez A, Zeid TA, Gouda E. Circulating CXCL13 could be served as a biomarker for chronic lymphocytic leukemia severity. Cancer Biomark 2021; 34:105-111. [PMID: 34719478 DOI: 10.3233/cbm-210207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Recent reports indicated the importance of chemotractants CXCL-13 in solid tumors and lymphoid malignancies. However, the prognostic value of the mentioned cytokines as biomarkers in chronic lymphocytic leukemia patient's remains to be identified. Therefore; this study was designed in order to address the relation between CXCL-13 concentrations levels and markers of severity in CLL patients. METHODS Our study included 150 CLL patients and 20 controls. Serum CXCL-13 was determined by ELISA for CLL patients at diagnosis as well as controls. RESULTS The serum CXCL-13 levels were significantly higher in CLL patients as compared to controls. The high CXCL-13 concentration levels was significantly associated with high number of smudge cells; high LDH; high grade of Rai stage, short time to first treatment (TTT). Cox regression analysis was conducted for prediction of TTT, using age, gender, WBCs, smudge cells, CXCL-13, LDH, ZAP70, CD38, β2-microglobulin, Rai staging as covariates. High LDH, CXCL-13 and CD38% were significantly independent predictor for shorter TTT. CONCLUSION High CXCL-13 serum levels at CLL diagnosis is correlated with other markers of disease activity; and could be served as biomarkers that predict CLL patient's outcome.
Collapse
Affiliation(s)
- Salah Aref
- Hematology Unit, Clinical Pathology Department, Mansoura University, Egypt
| | - Doaa Atia
- Hematology Unit, Clinical Pathology Department, Mansoura University, Egypt
| | - Ahmed Ramez
- Medical Oncology Unit, Mansoura University Oncology Center, Egypt
| | - Tarek Abou Zeid
- Hematology Unit, Internal Medicine Department, Mansoura University Oncology Center, Mansoura University, Egypt
| | - Enas Gouda
- Hematology Unit, Clinical Pathology Department, Mansoura University, Egypt
| |
Collapse
|
30
|
Chao C, Lee W, Wang S, Chen P, Yamamoto A, Chang T, Weng S, Liu J. CXC chemokine ligand-13 promotes metastasis via CXCR5-dependent signaling pathway in non-small cell lung cancer. J Cell Mol Med 2021; 25:9128-9140. [PMID: 34427969 PMCID: PMC8500967 DOI: 10.1111/jcmm.16743] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 01/06/2023] Open
Abstract
The CXC chemokine ligand-13 (CXCL13) is a chemoattractant of B cells and has been implicated in the progression of many cancers. So far, CXCL13 and its related receptor CXCR5 have been proved to regulate cancer cell migration as well as tumour metastasis. However, the role of CXCL13-CXCR5 axis in metastasis of lung cancer is still poorly understood. In this study, we found that CXCL13 and CXCR5 were commonly up-regulated in lung cancer specimens compared with normal tissues among different cohorts. Our evidence showed that CXCL13 obviously promoted migration of lung cancer cells, and this effect was mediated by vascular cell adhesion molecule-1 (VCAM-1) expression. We also confirmed that CXCR5, the major receptor responsible for CXCL13 function, was required for CXCL13-promoted cell migration. We also test the candidate components which are activated after CXCL13 treatment and found that phospholipase C-β (PLCβ), protein kinase C-α (PKCα) and c-Src signalling pathways were involved in CXCL13-promoted cell migration and VCAM-1 expression in lung cancer cells. Finally, CXCL13 stimulated NF-κB transcription factor in lung cancer cells, contributing to VCAM-1 expression in translational level. These evidences propose a novel insight into lung cancer metastasis which is regulated by CXCL13.
Collapse
Affiliation(s)
- Chia‐Chia Chao
- Department of Respiratory TherapyFu Jen Catholic UniversityNew Taipei CityTaiwan
| | - Wei‐Fang Lee
- School of Dental TechnologyCollege of Oral MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Shih‐Wei Wang
- Institute of Biomedical SciencesMacKay Medical CollegeNew Taipei CityTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
- Graduate Institute of Natural ProductsCollege of PharmacyKaohsiung Medical UniversityKaohsiungTaiwan
| | - Po‐Chun Chen
- Translational Medicine CenterShin‐Kong Wu Ho‐Su Memorial HospitalTaipei CityTaiwan
- Department of BiotechnologyCollege of Medical and Health ScienceAsia UniversityTaichungTaiwan
- Department of Medical ResearchChina Medical University HospitalChina Medical UniversityTaichungTaiwan
| | - Ayaho Yamamoto
- Child Health Research CentreThe University of QueenslandSouth BrisbaneQldAustralia
| | - Tsung‐Ming Chang
- Institute of PhysiologySchool of MedicineNational Yang Ming Chiao Tung UniversityTaipei CityTaiwan
| | - Shun‐Long Weng
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
- Department of Obstetrics and GynecologyHsinchu MacKay Memorial HospitalHsinchu CityTaiwan
| | - Ju‐Fang Liu
- Translational Medicine CenterShin‐Kong Wu Ho‐Su Memorial HospitalTaipei CityTaiwan
- Department of Medical ResearchChina Medical University HospitalChina Medical UniversityTaichungTaiwan
- School of Oral HygieneCollege of Oral MedicineTaipei Medical UniversityTaipei CityTaiwan
| |
Collapse
|
31
|
Mantle cell lymphoma polarizes tumor-associated macrophages into M2-like macrophages, which in turn promote tumorigenesis. Blood Adv 2021; 5:2863-2878. [PMID: 34297045 DOI: 10.1182/bloodadvances.2020003871] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are recognized as a hallmark of certain solid cancers and predictors of poor prognosis; however, the functional role of TAMs in lymphoid malignancies, including B-cell lymphoma, has not been well defined. We identified infiltration of F4/80+ TAMs in a syngeneic mouse model using the recently generated murine mantle cell lymphoma (MCL) cell line FC-muMCL1. Multicolor flow cytometric analysis of syngeneic lymphoma tumors showed distinct polarization of F4/80+ TAMs into CD206+ M2 and CD80+ M1 phenotypes. Using human MCL cell lines (Mino, Granta, and JVM2), we further showed that MCL cells polarized monocyte-derived macrophages toward an M2-like phenotype, as assessed by CD163+ expression and increased interleukin-10 (IL-10) level; however, levels of the M1 markers CD80 and IL-12 remained unaffected. To show that macrophages contribute to MCL tumorigenesis, we xenografted the human MCL cell line Mino along with CD14+ monocytes and compared tumor growth between these 2 groups. Results showed that xenografted Mino along with CD14+ monocytes significantly increased the tumor growth in vivo compared with MCL cells alone (P < .001), whereas treatment with liposomal clodronate (to deplete the macrophages) reversed the effect of CD14+ monocytes on growth of MCL xenografts (P < .001). Mechanistically, IL-10 secreted by MCL-polarized M2-like macrophages was found to be responsible for increasing MCL growth by activating STAT1 signaling, whereas IL-10 neutralizing antibody or STAT1 inhibition by fludarabine or STAT1 short hairpin RNA significantly abolished MCL growth (P < .01). Collectively, our data show the existence of a tumor microenvironmental network of macrophages and MCL tumor and suggest the importance of macrophages in interventional therapeutic strategies against MCL and other lymphoid malignancies.
Collapse
|
32
|
CXCL13 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:71-90. [PMID: 34286442 DOI: 10.1007/978-3-030-62658-7_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemokines have emerged as important players in tumorigenic process. An extensive body of literature generated over the last two or three decades strongly implicate abnormally activated or functionally disrupted chemokine signaling in liaising most-if not all-hallmark processes of cancer. It is well-known that chemokine signaling networks within the tumor microenvironment are highly versatile and context-dependent: exert both pro-tumoral and antitumoral activities. The C-X-C motif chemokine ligand 13 (CXCL13), and its cognate receptor CXCR5, represents an emerging example of chemokine signaling axes, which express the ability to modulate tumor growth and progression in either way. Collateral evidence indicate that CXCL13-CXCR5 axis may directly modulate tumor growth by inducing proliferation of cancer cells, as well as promoting invasive phenotypes and preventing their apoptosis. In addition, CXCL13-CXCR5 axis may also indirectly modulate tumor growth by regulating noncancerous cells, particularly the immune cells, within the tumor microenvironment. Here, we review the role of CXCL13, together with CXCR5, in the human tumor microenvironment. We first elaborate their patterns of expression, regulation, and biological functions in normal physiology. We then consider how their aberrant activity, as a result of differential overexpression or co-expression, may directly or indirectly modulate the growth of tumors through effects on both cancerous and noncancerous cells.
Collapse
|
33
|
Enhanced IL-9 secretion by p66Shc-deficient CLL cells modulates the chemokine landscape of the stromal microenvironment. Blood 2021; 137:2182-2195. [PMID: 33181836 DOI: 10.1182/blood.2020005785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022] Open
Abstract
The stromal microenvironment is central to chronic lymphocytic leukemia (CLL) pathogenesis. How leukemic cells condition the stroma to enhance its chemoattractant properties remains elusive. Here, we show that mouse and human CLL cells promote the contact-independent stromal expression of homing chemokines. This function was strongly enhanced in leukemic cells from Eμ-TCL1 mice lacking the pro-oxidant p66Shc adaptor, which develop an aggressive disease with organ infiltration. We identified interleukin-9 (IL-9) as the soluble factor, negatively modulated by p66Shc, that is responsible for the chemokine-elevating activity of leukemic cells on stromal cells. IL-9 blockade in Eμ-TCL1/p66Shc-/- mice resulted in a decrease in the nodal expression of homing chemokines, which correlated with decreased leukemic cell invasiveness. IL-9 levels were found to correlate inversely with residual p66Shc in p66Shc-deficient human CLL cells (n = 52 patients). p66Shc reconstitution in CLL cells normalized IL-9 expression and neutralized their chemokine-elevating activity. Notably, high IL-9 expression in CLL cells directly correlates with lymphadenopathy, liver infiltration, disease severity, and overall survival, emerging as an independent predictor of disease outcome. Our results demonstrate that IL-9 modulates the chemokine landscape in the stroma and that p66Shc, by regulating IL-9 expression, fine tunes the ability of leukemic cells to shape the microenvironment, thereby contributing to CLL pathogenesis.
Collapse
|
34
|
Zhao Q, Guo J, Wang G, Bi Y, Cheng X, Liao Y, Jin S, Li L, Guo Y, Pan L, Zhang X, Tan Y, Zhou G, Yu X. CXCL13 promotes intestinal tumorigenesis through the activation of epithelial AKT signaling. Cancer Lett 2021; 511:1-14. [PMID: 33894331 DOI: 10.1016/j.canlet.2021.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/02/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
The excessive release of proinflammatory chemokines promotes cell proliferation and tumor growth in colorectal cancer. However, their regulatory functions and molecular pathogenesis have not been well elucidated. Here, we observed the upregulation of chemokine (C-X-C motif) ligand 13 (CXCL13) in human colorectal cancers and mouse intestinal tumors. Both CXCL13 deficiency and blockade of CXCL13 signaling ameliorated disease progression. CXCL13 promoted intestinal tumorigenesis through the activation of the AKT signaling pathway in a C-X-C chemokine receptor type 5 (CXCR5)-dependent manner. Intestinal microbiota translocation drove CXCL13 production in dendritic cells through the activation of NF-κB signaling. Inhibition of microbiota translocation decreased CXCL13 production and ameliorated intestinal tumorigenesis. Together, the results of this study identify a role for the CXCL13-CXCR5 axis is involved in the crosstalk between chemokines and cell growth during the development of intestinal tumorigenesis, which also provides a therapeutic strategy for targeting CXCL13/CXCR5 in the future clinical treatment of intestinal tumors.
Collapse
Affiliation(s)
- Qun Zhao
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China; State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jian Guo
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Guizhen Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yun Bi
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xinran Cheng
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Yingying Liao
- Department of Gastroenterology, Renming Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Shu Jin
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Lian Li
- Department of Clinical Laboratory Medicine, Renming Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yang Guo
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Longrui Pan
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xudong Zhang
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Yan Tan
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Guangbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Xianjun Yu
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
35
|
FoxO1-GAB1 axis regulates homing capacity and tonic AKT activity in chronic lymphocytic leukemia. Blood 2021; 138:758-772. [PMID: 33786575 DOI: 10.1182/blood.2020008101] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/21/2021] [Indexed: 12/18/2022] Open
Abstract
Recirculation of chronic lymphocytic leukemia (CLL) cells between the peripheral blood and lymphoid niches plays a critical role in disease pathophysiology, and inhibiting this process is one of the major mechanisms of action for B-cell receptor (BCR) inhibitors such as ibrutinib and idelalisib. Migration is a complex process guided by chemokine receptors and integrins. However, it remains largely unknown how CLL cells integrate multiple migratory signals while balancing survival in the peripheral blood and the decision to return to immune niches. Our study provided evidence that CXCR4/CD5 intraclonal subpopulations can be used to study the regulation of migration of CLL cells. We performed RNA profiling of CXCR4dimCD5bright vs CXCR4brightCD5dim CLL cells and identified differential expression of dozens of molecules with a putative function in cell migration. GRB2-associated binding protein 1 (GAB1) positively regulated CLL cell homing capacity of CXCR4brightCD5dim cells. Gradual GAB1 accumulation in CLL cells outside immune niches was mediated by FoxO1-induced transcriptional GAB1 activation. Upregulation of GAB1 also played an important role in maintaining basal phosphatidylinositol 3-kinase (PI3K) activity and the "tonic" AKT phosphorylation required to sustain the survival of resting CLL B cells. This finding is important during ibrutinib therapy, because CLL cells induce the FoxO1-GAB1-pAKT axis, which represents an adaptation mechanism to the inability to home to immune niches. We have demonstrated that GAB1 can be targeted therapeutically by novel GAB1 inhibitors, alone or in combination with BTK inhibition. GAB1 inhibitors induce CLL cell apoptosis, impair cell migration, inhibit tonic or BCR-induced AKT phosphorylation, and block compensatory AKT activity during ibrutinib therapy.
Collapse
|
36
|
Cuesta-Mateos C, Brown JR, Terrón F, Muñoz-Calleja C. Of Lymph Nodes and CLL Cells: Deciphering the Role of CCR7 in the Pathogenesis of CLL and Understanding Its Potential as Therapeutic Target. Front Immunol 2021; 12:662866. [PMID: 33841445 PMCID: PMC8024566 DOI: 10.3389/fimmu.2021.662866] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 01/13/2023] Open
Abstract
The lymph node (LN) is an essential tissue for achieving effective immune responses but it is also critical in the pathogenesis of chronic lymphocytic leukemia (CLL). Within the multitude of signaling pathways aberrantly regulated in CLL the homeostatic axis composed by the chemokine receptor CCR7 and its ligands is the main driver for directing immune cells to home into the LN. In this literature review, we address the roles of CCR7 in the pathophysiology of CLL, and how this chemokine receptor is of critical importance to develop more rational and effective therapies for this malignancy.
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Immunology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria- Instituto de La Princesa (IIS-IP), Madrid, Spain.,IMMED S.L., Immunological and Medicinal Products, Madrid, Spain.,Catapult Therapeutics BV, Lelystad, Netherlands
| | - Jennifer R Brown
- Chronic Lymphocytic Leukemia (CLL) Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Fernando Terrón
- IMMED S.L., Immunological and Medicinal Products, Madrid, Spain.,Catapult Therapeutics BV, Lelystad, Netherlands
| | - Cecilia Muñoz-Calleja
- Immunology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria- Instituto de La Princesa (IIS-IP), Madrid, Spain.,School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
37
|
CXCR5 CAR-T cells simultaneously target B cell non-Hodgkin's lymphoma and tumor-supportive follicular T helper cells. Nat Commun 2021; 12:240. [PMID: 33431832 PMCID: PMC7801647 DOI: 10.1038/s41467-020-20488-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
CAR-T cell therapy targeting CD19 demonstrated strong activity against advanced B cell leukemia, however shows less efficacy against lymphoma with nodal dissemination. To target both B cell Non-Hodgkin’s lymphoma (B-NHLs) and follicular T helper (Tfh) cells in the tumor microenvironment (TME), we apply here a chimeric antigen receptor (CAR) that recognizes human CXCR5 with high avidity. CXCR5, physiologically expressed on mature B and Tfh cells, is also highly expressed on nodal B-NHLs. Anti-CXCR5 CAR-T cells eradicate B-NHL cells and lymphoma-supportive Tfh cells more potently than CD19 CAR-T cells in vitro, and they efficiently inhibit lymphoma growth in a murine xenograft model. Administration of anti-murine CXCR5 CAR-T cells in syngeneic mice specifically depletes endogenous and malignant B and Tfh cells without unexpected on-target/off-tumor effects. Collectively, anti-CXCR5 CAR-T cells provide a promising treatment strategy for nodal B-NHLs through the simultaneous elimination of lymphoma B cells and Tfh cells of the tumor-supporting TME. CAR-T cell therapy targeting CD19 is not as efficient to treat lymphoma with nodal dissemination as it is for B cell leukaemia. Here, the authors generate CAR-T cells against CXCR5 and show they inhibit tumour growth by depleting both B and follicular T helper cells in lymphoma models.
Collapse
|
38
|
Zhang Y, Wei Z, Dong H, Zhou J, Yuan J, Ni B, Wu Y, Han C, Tian Y. Regulation of mRNA stability by RBPs and noncoding RNAs contributing to the pathogenicity of Th17 cells. RNA Biol 2020; 18:647-656. [PMID: 33302787 DOI: 10.1080/15476286.2020.1862567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Th17 cells remain one of the most important subsets of T cells in numerous autoimmune and chronic inflammatory diseases. Posttranscriptional regulation (PTR), especially mRNA stability, has recently emerged as an important mechanism that controls the fate of Th17 cells. This review summarizes the current knowledge on RNA-binding proteins (RBPs), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) that induce mRNA stability changes and their roles in mediating the differentiation, proliferation, function, and migration of Th17 cells. In addition, we summarize the role of RNA modifications and nonsense-mediated mRNA decay (NMD) in Th17 cells. Ongoing research will help to identify practical applications for the regulation of mRNA stability and provide potential targets to prevent and treat Th17-related autoimmune diseases.
Collapse
Affiliation(s)
- Yiwei Zhang
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China.,Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Zhiyuan Wei
- Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Hui Dong
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jian Zhou
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jizhao Yuan
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Chao Han
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yi Tian
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| |
Collapse
|
39
|
Mesaros O, Jimbu L, Neaga A, Popescu C, Berceanu I, Tomuleasa C, Fetica B, Zdrenghea M. Macrophage Polarization in Chronic Lymphocytic Leukemia: Nurse-Like Cells Are the Caretakers of Leukemic Cells. Biomedicines 2020; 8:E516. [PMID: 33228048 PMCID: PMC7699370 DOI: 10.3390/biomedicines8110516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages are terminally differentiated innate immune cells. Through their activation, they can be polarized towards the pro-inflammatory M1 type or the wound healing-associated, anti-inflammatory M2 type macrophages. In the tumor microenvironment (TME), M2 is the dominant phenotype and these cells are referred to as tumor-associated macrophages (TAMs). TAMs secrete cytokines and chemokines, exerting an antiapoptotic, proliferative and pro-metastatic effect on the tumor cells. TAMs can be found in many cancers, including chronic lymphocytic leukemia (CLL), where they are called nurse-like cells (NLCs). Despite the generally indolent behavior of CLL, the proportion of treatment-refractory patients is significant. As with the majority of cancers, despite significant recent progress, CLL pathogenesis is poorly understood. The emerging role of the TME in nurturing the neoplastic process warrants the investigation of macrophages as a significant pathogenetic element of tumors. In this paper, we review the current knowledge on the role of stromal macrophages in CLL.
Collapse
Affiliation(s)
- Oana Mesaros
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| | - Laura Jimbu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| | - Alexandra Neaga
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
| | - Cristian Popescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
- Department of Infectious Diseases, County Emergency Hospital Alba Iulia, 20 Decebal str., 510093 Alba-Iulia, Romania
| | - Iulia Berceanu
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| | - Bogdan Fetica
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| |
Collapse
|
40
|
Shen Y, Zhang Y, Chen L, Du J, Bao H, Xing Y, Cai M, Si Y. Chemokine CXCL13 acts via CXCR5-ERK signaling in hippocampus to induce perioperative neurocognitive disorders in surgically treated mice. J Neuroinflammation 2020; 17:335. [PMID: 33161894 PMCID: PMC7648984 DOI: 10.1186/s12974-020-02013-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022] Open
Abstract
Background Perioperative neurocognitive disorders (PNDs) occur frequently after surgery and worsen patient outcome. How C-X-C motif chemokine (CXCL) 13 and its sole receptor CXCR5 contribute to PNDs remains poorly understood. Methods A PND model was created in adult male C57BL/6J and CXCR5−/− mice by exploratory laparotomy. Mice were pretreated via intracerebroventricular injection with recombinant CXCL13, short hairpin RNA against CXCL13 or a scrambled control RNA, or ERK inhibitor PD98059. Then surgery was performed to induce PNDs, and animals were assessed in the Barnes maze trial followed by a fear-conditioning test. Expression of CXCL13, CXCR5, and ERK in hippocampus was examined using Western blot, quantitative PCR, and immunohistochemistry. Levels of interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) in hippocampus were assessed by Western blot. Results Surgery impaired learning and memory, and it increased expression of CXCL13 and CXCR5 in the hippocampus. CXCL13 knockdown partially reversed the effects of surgery on CXCR5 and cognitive dysfunction. CXCR5 knockout led to similar cognitive outcomes as CXCL13 knockdown, and it repressed surgery-induced activation of ERK and production of IL-1β and TNF-α in hippocampus. Recombinant CXCL13 induced cognitive deficits and increased the expression of phospho-ERK as well as IL-1β and TNF-α in hippocampus of wild-type mice, but not CXCR5−/− mice. PD98059 partially blocked CXCL13-induced cognitive dysfunction as well as production of IL-1β and TNF-α. Conclusions CXCL13-induced activation of CXCR5 may contribute to PNDs by triggering ERK-mediated production of pro-inflammatory cytokines in hippocampus.
Collapse
Affiliation(s)
- Yanan Shen
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Yuan Zhang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Lihai Chen
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Jiayue Du
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Yan Xing
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211118, People's Republic of China
| | - Mengmeng Cai
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Yanna Si
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China.
| |
Collapse
|
41
|
Ondrisova L, Mraz M. Genetic and Non-Genetic Mechanisms of Resistance to BCR Signaling Inhibitors in B Cell Malignancies. Front Oncol 2020; 10:591577. [PMID: 33154951 PMCID: PMC7116322 DOI: 10.3389/fonc.2020.591577] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
The approval of BTK and PI3K inhibitors (ibrutinib, idelalisib) represents a revolution in the therapy of B cell malignancies such as chronic lymphocytic leukemia (CLL), mantle-cell lymphoma (MCL), diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), or Waldenström's macroglobulinemia (WM). However, these "BCR inhibitors" function by interfering with B cell pathophysiology in a more complex way than anticipated, and resistance develops through multiple mechanisms. In ibrutinib treated patients, the most commonly described resistance-mechanism is a mutation in BTK itself, which prevents the covalent binding of ibrutinib, or a mutation in PLCG2, which acts to bypass the dependency on BTK at the BCR signalosome. However, additional genetic aberrations leading to resistance are being described (such as mutations in the CARD11, CCND1, BIRC3, TRAF2, TRAF3, TNFAIP3, loss of chromosomal region 6q or 8p, a gain of Toll-like receptor (TLR)/MYD88 signaling or gain of 2p chromosomal region). Furthermore, relative resistance to BTK inhibitors can be caused by non-genetic adaptive mechanisms leading to compensatory pro-survival pathway activation. For instance, PI3K/mTOR/Akt, NFkB and MAPK activation, BCL2, MYC, and XPO1 upregulation or PTEN downregulation lead to B cell survival despite BTK inhibition. Resistance could also arise from activating microenvironmental pathways such as chemokine or integrin signaling via CXCR4 or VLA4 upregulation, respectively. Defining these compensatory pro-survival mechanisms can help to develop novel therapeutic combinations of BTK inhibitors with other inhibitors (such as BH3-mimetic venetoclax, XPO1 inhibitor selinexor, mTOR, or MEK inhibitors). The mechanisms of resistance to PI3K inhibitors remain relatively unclear, but some studies point to MAPK signaling upregulation via both genetic and non-genetic changes, which could be co-targeted therapeutically. Alternatively, drugs mimicking the BTK/PI3K inhibition effect can be used to prevent adhesion and/or malignant B cell migration (chemokine and integrin inhibitors) or to block the pro-proliferative T cell signals in the microenvironment (such as IL4/STAT signaling inhibitors). Here we review the genetic and non-genetic mechanisms of resistance and adaptation to the first generation of BTK and PI3K inhibitors (ibrutinib and idelalisib, respectively), and discuss possible combinatorial therapeutic strategies to overcome resistance or to increase clinical efficacy.
Collapse
Affiliation(s)
- Laura Ondrisova
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marek Mraz
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
42
|
Fan L, Wang C, Zhao L, Wang Z, Zhang X, Liu X, Cao L, Xu W, Li J. SHC014748M, a novel selective inhi-bitor of PI3Kδ, demonstrates promising preclinical antitumor activity in B cell lymphomas and chronic lymphocytic leukemia. Neoplasia 2020; 22:714-724. [PMID: 33142237 PMCID: PMC7586065 DOI: 10.1016/j.neo.2020.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 12/14/2022] Open
Abstract
SHC014748M was proved to be more selective for PI3Kδ inhibition relative to other class i PI3K enzymes. SHC014748M showed in vitro activity in most of 23 B lymphoma cell lines and primary CLL cells and also inhibited phosphorylation of AKT, targets downstream of PI3Kδ. In vivo study revealed that SHC014748M significantly reduced lymphoma cell growth in the treatment group compared with control mice. SHC014748M seemed to be a novel promising compound in the treatment of B cell lymphomas and CLL.
PI3Kδ (phosphatidylinositol 3-kinase-δ), one of the class I PI3Ks, is found expressed primarily in leukocytes and plays an essential role in B-cell development and function. This provides a rationale for the development of small molecule inhibitors that selectively target p110δ for patients with indolent non-Hodgkin lymphomas. Here in this paper, we comprehensively evaluated the in vitro and in vivo antitumor activity of SHC014748M, an oral selective inhibitor of PI3Kδ under Phase I clinical evaluation. Biochemical and cell-based assays were used to measure compound potency and selectivity in lymphoma cell lines as well as primary chronic lymphocytic leukemia (CLL) cells. Scid mice were subcutaneously inoculated with the SU-DHL-6 cell line. SHC014748M was more selective for PI3Kδ inhibition relative to other class I PI3K enzymes and showed in vitro activity in most of 23 B lymphoma cell lines and primary CLL cells. SHC014748M also inhibited phosphorylation of AKT, targets downstream of PI3Kδ, in both lymphoma cells and primary CLL cells. In vivo study revealed that SHC014748M significantly reduced lymphoma cell growth in the treatment group compared with control mice. CCL4, CCL17, CCL22 and CXCL13 in patient serum decreased sharply after SHC014748M treatment. According to the results, SHC014748M appeared to be a novel promising compound in the treatment of B cell lymphomas and CLL.
Collapse
Affiliation(s)
- Lei Fan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China.
| | - Chao Wang
- Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing, China
| | - Liwen Zhao
- Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing, China
| | - Zhiqiang Wang
- Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing, China
| | - Xian Zhang
- Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing, China
| | - Xiaorong Liu
- Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing, China
| | - Lei Cao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China.
| |
Collapse
|
43
|
CXCL13 plasma levels function as a biomarker for disease activity in patients with chronic lymphocytic leukemia. Leukemia 2020; 35:1610-1620. [PMID: 33087831 DOI: 10.1038/s41375-020-01063-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/25/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
The chemoattractant CXCL13 organizes the cellular architecture of B-cell follicles and germinal centers. During adaptive immune responses, CXCL13 plasma concentrations transiently increase and function as a biomarker for normal germinal center activity. Chronic lymphocytic leukemia (CLL) cells express high levels of CXCR5, the receptor for CXCL13, and proliferate in pseudofollicles within secondary lymphoid organs (SLO). Given the morphologic and functional similarities between normal and CLL B-cell expansion in SLO, we hypothesized that CXCL13 plasma concentrations would correlate with CLL disease activity and progression. We analyzed CXCL13 plasma concentrations in 400 CLL patients and correlated the findings with other prognostic markers, time to treatment (TTT), CCL3 and CCL4 plasma concentrations, and in vivo CLL cell proliferation. We found that CXCL13 plasma concentrations were higher in CLL patients with active and advanced stage disease, resulting in a significantly shorter TTT. Accordingly, high CXCL13 levels correlated with other markers of disease activity and CCL3 levels. Higher CLL cell birth rates in vivo also associated with higher CXCL13 plasma concentrations. Interestingly, elevated CXCL13 plasma levels normalized during ibrutinib therapy, and increased in ibrutinib resistance patients. Collectively, these studies emphasize the importance of CXCL13 in crosstalk between CLL cells and the SLO microenvironment.
Collapse
|
44
|
Rosenberg EM, Herrington J, Rajasekaran D, Murphy JW, Pantouris G, Lolis EJ. The N-terminal length and side-chain composition of CXCL13 affect crystallization, structure and functional activity. Acta Crystallogr D Struct Biol 2020; 76:1033-1049. [PMID: 33021505 PMCID: PMC7543660 DOI: 10.1107/s2059798320011687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/25/2020] [Indexed: 01/18/2023] Open
Abstract
CXCL13 is the cognate chemokine agonist of CXCR5, a class A G-protein-coupled receptor (GPCR) that is essential for proper humoral immune responses. Using a `methionine scanning' mutagenesis method on the N-terminus of CXCL13, which is the chemokine signaling region, it was shown that minor length alterations and side-chain substitutions still result in CXCR5 activation. This observation indicates that the orthosteric pocket of CXCR5 can tolerate these changes without severely affecting the activity. The introduction of bulk on the ligand was well tolerated by the receptor, whereas a loss of contacts was less tolerated. Furthermore, two crystal structures of CXCL13 mutants were solved, both of which represent the first uncomplexed structures of the human protein. These structures were stabilized by unique interactions formed by the N-termini of the ligands, indicating that CXCL13 exhibits substantial N-terminal flexibility while the chemokine core domain remains largely unchanged. Additionally, it was observed that CXCL13 harbors a large degree of flexibility in the C-terminal extension of the ligand. Comparisons with other published structures of human and murine CXCL13 validate the relative rigidity of the core domain as well as the N- and C-terminal mobilities. Collectively, these mutants and their structures provide the field with additional insights into how CXCL13 interacts with CXCR5.
Collapse
Affiliation(s)
- Eric M. Rosenberg
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - James Herrington
- Yale Center for Molecular Discovery, Yale West Campus, West Haven, CT 06516, USA
| | - Deepa Rajasekaran
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - James W. Murphy
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Georgios Pantouris
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Elias J. Lolis
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
45
|
Relevant Cytokines in the B Cell Lymphoma Micro-Environment. Cancers (Basel) 2020; 12:cancers12092525. [PMID: 32899476 PMCID: PMC7564074 DOI: 10.3390/cancers12092525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/22/2020] [Accepted: 09/02/2020] [Indexed: 12/30/2022] Open
Abstract
Cytokines are soluble protein factors with importance in intercellular communication and, as such, play pivotal roles in the pathogenesis of B cell malignancies. Evidence from in vitro cultures permitted us to choose example cytokines that bind to different biochemical receptor types. Activated malignant B cells or stromal fibroblasts and macrophages prominently secrete the chemokines CCL3 or CXCL12 and CXCL13, respectively. Apart from helper T cells, various cell types of the B cell lymphoma microenvironment are capable of producing the cytokines IL-4, IL-6, IL-10 and TNFα. Owing to its impact on the development of myeloid cells, CSF-1 is among important soluble factors in the B cell lymphoma microenvironment. Inhibitors of B cell receptor-associated kinases often act via the blockade of cytokine production, but also prevent cytokine effects, e.g., chemotaxis. Increments in blood levels in chronic lymphocytic leukemia patients compared to healthy donors and normalization upon treatment with ibrutinib can be explained by producing cell types and modulation of cytokine production observed in vitro.
Collapse
|
46
|
Dubois N, Crompot E, Meuleman N, Bron D, Lagneaux L, Stamatopoulos B. Importance of Crosstalk Between Chronic Lymphocytic Leukemia Cells and the Stromal Microenvironment: Direct Contact, Soluble Factors, and Extracellular Vesicles. Front Oncol 2020; 10:1422. [PMID: 32974152 PMCID: PMC7466743 DOI: 10.3389/fonc.2020.01422] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is caused by the accumulation of malignant B cells due to a defect in apoptosis and the presence of small population of proliferating cells principally in the lymph nodes. The abnormal survival of CLL B cells is explained by a plethora of supportive stimuli produced by the surrounding cells of the microenvironment, including follicular dendritic cells (FDCs), and mesenchymal stromal cells (MSCs). This crosstalk between malignant cells and normal cells can take place directly by cell-to-cell contact (assisted by adhesion molecules such as VLA-4 or CD100), indirectly by soluble factors (chemokines such as CXCL12, CXCL13, or CCL2) interacting with their receptors or by the exchange of material (protein, microRNAs or long non-coding RNAs) via extracellular vesicles. These different communication methods lead to different activation pathways (including BCR and NFκB pathways), gene expression modifications (chemokines, antiapoptotic protein increase, prognostic biomarkers), chemotaxis, homing in lymphoid tissues and survival of leukemic cells. In addition, these interactions are bidirectional, and CLL cells can manipulate the normal surrounding stromal cells in different ways to establish a supportive microenvironment. Here, we review this complex crosstalk between CLL cells and stromal cells, focusing on the different types of interactions, activated pathways, treatment strategies to disrupt this bidirectional communication, and the prognostic impact of these induced modifications.
Collapse
Affiliation(s)
- Nathan Dubois
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Emerence Crompot
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Department of Hematology, Jules Bordet Institute, Brussels, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Department of Hematology, Jules Bordet Institute, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
47
|
CXCL13 is a differentiation- and hypoxia-induced adipocytokine that exacerbates the inflammatory phenotype of adipocytes through PHLPP1 induction. Biochem J 2020; 476:3533-3548. [PMID: 31710352 DOI: 10.1042/bcj20190709] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 01/16/2023]
Abstract
Hypoxia in adipose tissue is regarded as a trigger that induces dysregulation of the secretory profile in adipocytes. Similarly, local dysregulation of adipocytokine secretion is an initial event in the deleterious effects of obesity on metabolism. We previously reported that CXCL13 is highly produced during adipogenesis, however little is known about the roles of CXCL13 in adipocytes. Here, we found that hypoxia, as modeled by 1% O2 or exposure to the hypoxia-mimetic reagent desferrioxamine (DFO) has strong inductive effects on the expression of CXCL13 and CXCR5, a CXCL13 receptor, in both undifferentiated and differentiated adipocytes and in organ-cultured white adipose tissue (WAT). CXCL13 was also highly expressed in WAT from high fat diet-fed mice. Hypoxic profile, typified by increased expression of interleukin-6 (IL-6) and plasminogen activator inhibitor-1 (PAI-1) and decreased expression of adiponectin, was significantly induced by CXCL13 treatment during adipogenic differentiation. Conversely, the treatment of adipocytes with a neutralizing-antibody against CXCL13 as well as CXCR5 knockdown by specific siRNA effectively inhibited DFO-induced inflammation. The phosphorylation of Akt2, a protective factor of adipose inflammation, was significantly inhibited by CXCL13 treatment during adipogenic differentiation. Mechanistically, CXCL13 induces the expression of PHLPP1, an Akt2 phosphatase, through focal adhesion kinase (FAK) signaling; and correspondingly we show that CXCL13 and DFO-induced IL-6 and PAI-1 expression was blocked by Phlpp1 knockdown. Furthermore, we revealed the functional binding sites of PPARγ2 and HIF1-α within the Cxcl13 promoter. Taken together, these results indicate that CXCL13 is an adipocytokine that facilitates hypoxia-induced inflammation in adipocytes through FAK-mediated induction of PHLPP1 in autocrine and/or paracrine manner.
Collapse
|
48
|
P66Shc: A Pleiotropic Regulator of B Cell Trafficking and a Gatekeeper in Chronic Lymphocytic Leukemia. Cancers (Basel) 2020; 12:cancers12041006. [PMID: 32325830 PMCID: PMC7226591 DOI: 10.3390/cancers12041006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Neoplastic B cells from chronic lymphocytic leukemia patients (CLL) have a profound deficiency in the expression of p66Shc, an adaptor protein with pro-apoptotic and pro-oxidant activities. This defect results in leukemic B cell resistance to apoptosis and additionally impinges on the balance between chemokine receptors that control B cell homing to secondary lymphoid organs and the sphingosine phosphate receptor S1PR1 that controls their egress therefrom, thereby favoring leukemic B cell accumulation in the pro-survival lymphoid niche. Ablation of the gene encoding p66Shc in the Eµ-TCL1 mouse model of human CLL enhances leukemogenesis and promotes leukemic cell invasiveness in both nodal and extranodal organs, providing in vivo evidence of the pathogenic role of the p66Shc defect in CLL pathogenesis. Here we present an overview of the functions of p66Shc in B lymphocytes, with a specific focus on the multiple mechanisms exploited by p66Shc to control B cell trafficking and the abnormalities in this process caused by p66Shc deficiency in CLL.
Collapse
|
49
|
Lee SY, Hue SS. Terminal deoxynucleotidyl transferase negative B-lymphoblastic leukaemia/lymphoma with CD138 expression. Pathology 2019; 52:286-289. [PMID: 31883671 DOI: 10.1016/j.pathol.2019.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 11/15/2022]
Affiliation(s)
- Shir Ying Lee
- Division of Haematology, Department of Laboratory Medicine, National University Hospital, Singapore.
| | - Swee Shan Hue
- Department of Pathology, National University Hospital, Singapore
| |
Collapse
|
50
|
Petty AJ, Yang Y. Tumor-Associated Macrophages in Hematologic Malignancies: New Insights and Targeted Therapies. Cells 2019; 8:cells8121526. [PMID: 31783588 PMCID: PMC6952752 DOI: 10.3390/cells8121526] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
The growth of hematologic malignant cells can be facilitated by other non-tumor cells within the same microenvironment, including stromal, vascular, immune and mesenchymal stem cells. Macrophages are an integral part of the human innate immune system and the tumor microenvironment. Complex interplays between the malignant hematologic cells and the infiltrating macrophages promote the formation of leukemia, lymphoma or myeloma-associated macrophages. These pro-tumorigenic macrophages in turn play an important part in facilitating tumor growth, metastasis and chemotherapeutic resistance. Previous reports have highlighted the association between tumor-associated macrophages (TAMs) and disease progression in hematologic malignancies. This review summarizes the role of TAMs in different subtypes of leukemia, lymphoma and myeloma, focusing on new insights and targeted therapies.
Collapse
Affiliation(s)
- Amy J. Petty
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA;
- Division of Hematology, The Ohio State University Wexner Medical Center, 508 BRT, 460 W 12th Avenue, Columbus, OH 43210, OH, USA
| | - Yiping Yang
- Division of Hematology, The Ohio State University Wexner Medical Center, 508 BRT, 460 W 12th Avenue, Columbus, OH 43210, OH, USA
- Correspondence: ; Tel.: +1-(614)-685-0643; Fax: +1-(614)-293-7526
| |
Collapse
|