1
|
Gawde S, Siebert N, Ruprecht K, Kumar G, Ko RM, Massey K, Guthridge JM, Mao-Draayer Y, Schindler P, Hastermann M, Pardo G, Paul F, Axtell RC. Serum Proteomics Distinguish Subtypes of NMO Spectrum Disorder and MOG Antibody-Associated Disease and Highlight Effects of B-Cell Depletion. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200268. [PMID: 38885457 PMCID: PMC11186702 DOI: 10.1212/nxi.0000000000200268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/15/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND AND OBJECTIVES AQP4 antibody-positive NMOSD (AQP4-NMOSD), MOG antibody-associated disease (MOGAD), and seronegative NMOSD (SN-NMOSD) are neuroautoimmune conditions that have overlapping clinical manifestations. Yet, important differences exist in these diseases, particularly in B-cell depletion (BCD) efficacy. Yet, the biology driving these differences remains unclear. Our study aims to clarify biological pathways distinguishing these diseases beyond autoantibodies and investigate variable BCD effects through proteomic comparisons. METHODS In a retrospective study, 1,463 serum proteins were measured in 53 AQP4-NMOSD, 25 MOGAD, 18 SN-NMOSD, and 49 healthy individuals. To identify disease subtype-associated signatures, we examined serum proteins in patients without anti-CD20 B-cell depletion (NoBCD). We then assessed the effect of BCD treatment within each subtype by comparing proteins between BCD-treated and NoBCD-treated patients. RESULTS In NoBCD-treated patients, serum profiles distinguished the 3 diseases. AQP4-NMOSD showed elevated type I interferon-induced chemokines (CXCL9 and CXCL10) and TFH chemokine (CXCL13). MOGAD exhibited increased cytotoxic T-cell proteases (granzyme B and granzyme H), while SN-NMOSD displayed elevated Wnt inhibitory factor 1, a marker for nerve injury. Across all subtypes, BCD-treated patients showed reduction of B-cell-associated proteins. In AQP4-NMOSD, BCD led to a decrease in several inflammatory pathways, including IL-17 signaling, cytokine storm, and macrophage activation. By contrast, BCD elevated these pathways in patients with MOGAD. BCD had no effect on these pathways in SN-NMOSD. DISCUSSION Proteomic profiles show unique biological pathways that distinguish AQP4-NMOSD, MOGAD, or SN-NMOSD. Furthermore, BCD uniquely affects inflammatory pathways in each disease type, providing an explanation for the disparate therapeutic response in AQP4-NMOSD and MOGAD.
Collapse
Affiliation(s)
- Saurabh Gawde
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Nadja Siebert
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Klemens Ruprecht
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Gaurav Kumar
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Rose M Ko
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Kaylea Massey
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Joel M Guthridge
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Yang Mao-Draayer
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Patrick Schindler
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Maria Hastermann
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Gabriel Pardo
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Friedemann Paul
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Robert C Axtell
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| |
Collapse
|
2
|
Arffman M, Meriranta L, Autio M, Holte H, Jørgensen J, Brown P, Jyrkkiö S, Jerkeman M, Drott K, Fluge Ø, Björkholm M, Karjalainen-Lindsberg ML, Beiske K, Pedersen MØ, Leivonen SK, Leppä S. Inflammatory and subtype-dependent serum protein signatures predict survival beyond the ctDNA in aggressive B cell lymphomas. MED 2024; 5:583-602.e5. [PMID: 38579729 DOI: 10.1016/j.medj.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Biological heterogeneity of large B cell lymphomas (LBCLs) is poorly captured by current prognostic tools, hampering optimal treatment decisions. METHODS We dissected the levels of 1,463 serum proteins in a uniformly treated trial cohort of 109 patients with high-risk primary LBCL (ClinicalTrials.gov: NCT01325194) and correlated the profiles with molecular data from tumor tissue and circulating tumor DNA (ctDNA) together with clinical data. FINDINGS We discovered clinically and biologically relevant associations beyond established clinical estimates and ctDNA. We identified an inflamed serum protein profile, which reflected host response to lymphoma, associated with inflamed and exhausted tumor microenvironment features and high ctDNA burden, and translated to poor outcome. We composed an inflammation score based on the identified inflammatory proteins and used the score to predict survival in an independent LBCL trial cohort (ClinicalTrials.gov: NCT03293173). Furthermore, joint analyses with ctDNA uncovered multiple serum proteins that correlate with tumor burden. We found that SERPINA9, TACI, and TARC complement minimally invasive subtype profiling and that TACI and TARC can be used to evaluate treatment response in a subtype-dependent manner in the liquid biopsy. CONCLUSIONS Altogether, we discovered distinct serum protein landscapes that dissect the heterogeneity of LBCLs and provide agile, minimally invasive tools for precision oncology. FUNDING This research was funded by grants from the Research Council of Finland, Finnish Cancer Organizations, Sigrid Juselius Foundation, University of Helsinki, iCAN Digital Precision Cancer Medicine Flagship, Orion Research Foundation sr, and Helsinki University Hospital.
Collapse
MESH Headings
- Adult
- Aged
- Female
- Humans
- Male
- Middle Aged
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Blood Proteins/genetics
- Blood Proteins/analysis
- Circulating Tumor DNA/blood
- Circulating Tumor DNA/genetics
- Inflammation/blood
- Inflammation/genetics
- Lymphoma, B-Cell/blood
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/mortality
- Lymphoma, Large B-Cell, Diffuse/blood
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Prognosis
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Maare Arffman
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Leo Meriranta
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Matias Autio
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Harald Holte
- Department of Oncology, Oslo University Hospital and KG Jebsen Centre for B Cell Malignancies, Oslo, Norway
| | - Judit Jørgensen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Brown
- Department of Hematology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Sirkku Jyrkkiö
- Department of Oncology, Turku University Hospital, Turku, Finland
| | - Mats Jerkeman
- Department of Oncology, Skane University Hospital, Lund, Sweden
| | - Kristina Drott
- Department of Oncology, Skane University Hospital, Lund, Sweden
| | - Øystein Fluge
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Magnus Björkholm
- Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | - Klaus Beiske
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Mette Ølgod Pedersen
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Suvi-Katri Leivonen
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Sirpa Leppä
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
3
|
Nakkala S, Modak C, Bathula R, Lanka G, Somadi G, Sreekanth S, Jain A, Potlapally SR. Identification of new anti-cancer agents against CENTERIN: Structure-based virtual screening, AutoDock and binding free energy studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
SoRelle ED, Reinoso-Vizcaino NM, Horn GQ, Luftig MA. Epstein-Barr virus perpetuates B cell germinal center dynamics and generation of autoimmune-associated phenotypes in vitro. Front Immunol 2022; 13:1001145. [PMID: 36248899 PMCID: PMC9554744 DOI: 10.3389/fimmu.2022.1001145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 02/03/2023] Open
Abstract
Human B cells encompass functionally diverse lineages and phenotypic states that contribute to protective as well as pathogenic responses. Epstein-Barr virus (EBV) provides a unique lens for studying heterogeneous B cell responses, given its adaptation to manipulate intrinsic cell programming. EBV promotes the activation, proliferation, and eventual outgrowth of host B cells as immortalized lymphoblastoid cell lines (LCLs) in vitro, which provide a foundational model of viral latency and lymphomagenesis. Although cellular responses and outcomes of infection can vary significantly within populations, investigations that capture genome-wide perspectives of this variation at single-cell resolution are in nascent stages. We have recently used single-cell approaches to identify EBV-mediated B cell heterogeneity in de novo infection and within LCLs, underscoring the dynamic and complex qualities of latent infection rather than a singular, static infection state. Here, we expand upon these findings with functional characterizations of EBV-induced dynamic phenotypes that mimic B cell immune responses. We found that distinct subpopulations isolated from LCLs could completely reconstitute the full phenotypic spectrum of their parental lines. In conjunction with conserved patterns of cell state diversity identified within scRNA-seq data, these data support a model in which EBV continuously drives recurrent B cell entry, progression through, and egress from the Germinal Center (GC) reaction. This "perpetual GC" also generates tangent cell fate trajectories including terminal plasmablast differentiation, which constitutes a replicative cul-de-sac for EBV from which lytic reactivation provides escape. Furthermore, we found that both established EBV latency and de novo infection support the development of cells with features of atypical memory B cells, which have been broadly associated with autoimmune disorders. Treatment of LCLs with TLR7 agonist or IL-21 was sufficient to generate an increased frequency of IgD-/CD27-/CD23-/CD38+/CD138+ plasmablasts. Separately, de novo EBV infection led to the development of CXCR3+/CD11c+/FCRL4+ B cells within days, providing evidence for possible T cell-independent origins of a recently described EBV-associated neuroinvasive CXCR3+ B cell subset in patients with multiple sclerosis. Collectively, this work reveals unexpected virus-driven complexity across infected cell populations and highlights potential roles of EBV in mediating or priming foundational aspects of virus-associated immune cell dysfunction in disease.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC, United States
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, United States
| | | | - Gillian Q. Horn
- Department of Immunology, Duke University, Durham, NC, United States
| | - Micah A. Luftig
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
5
|
MORTALIN-Ca 2+ axis drives innate rituximab resistance in diffuse large B-cell lymphoma. Cancer Lett 2022; 537:215678. [PMID: 35447282 DOI: 10.1016/j.canlet.2022.215678] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin's lymphoma, with the combination of rituximab and chemotherapy being the standard treatment for it. Although rituximab monotherapy has a remarkable response rate, drug resistance with unclear mechanisms and lack of effective second-line therapy limit the survival benefits of patients with lymphoma. Here, we report that MORTALIN is highly expressed and correlates with resistance to rituximab-based therapy and poor survival in patients with DLBCL. Mechanistically, gain- and loss-of-function experiments revealed that the voltage-dependent anion channel 1-binding protein, MORTALIN, regulated Ca2+ release from the endoplasmic reticulum through mitochondria-associated membrane, facilitating AP1-mediated cell proliferation and YY-1-mediated downregulation of FAS in DLBCL cells. These dual mechanisms contribute to rituximab resistance. In mouse models, genetic depletion of MORTALIN markedly increased the antitumor activity of rituximab. We shed mechanistic light on MORTALIN-Ca2+-CaMKII-AP1-mediated proliferation and MORTALIN-Ca2+-CaMKII-inhibited death receptor in DLBCL, leading to rituximab resistance, and propose MORTALIN as a novel target for the treatment of DLBCL.
Collapse
|
6
|
Alonso-Alonso R, Rodriguez M, Morillo D, Cordoba R, Piris MA. An analysis of genetic targets for guiding clinical management of follicular lymphoma. Expert Rev Hematol 2020; 13:1361-1372. [PMID: 33176509 DOI: 10.1080/17474086.2020.1850252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Follicular lymphoma (FL) is one of the most common non-Hodgkin lymphoma (NHL) types, where genomic studies have accumulated potentially useful information about frequently mutated genes and deregulated pathways, which has allowed to a better understanding of the molecular pathogenesis of this tumor and the complex interrelationship between the tumoral cells and the stroma. Areas covered: The results of the molecular studies performed on Follicular Lymphoma have been here reviewed, summarizing the results of the clinical trials so far developed on this basis and discussing the reasons for the successes and failures. Searches were performed on June 1st, 2020, in PubMed and ClinicalTrials.gov. Expert opinion: Targeted therapy for follicular lymphoma has multiple opportunities including the use of epigenetic drugs, PI3K inhibitors, modifiers of the immune stroma and others. Data currently known on FL pathogenesis suggest that combining these treatments with immunotherapy should be explored in clinical trials, mainly for patients with clinical progression or adverse prognostic markers. Association of targeted trials with dynamic molecular studies of the tumor and serum samples is advised. Chemotherapy-free approaches should also be explored as first-line therapy for FL patients.
Collapse
Affiliation(s)
- Ruth Alonso-Alonso
- Services of Pathology and Haematology, Fundación Jimenez Diaz , Madrid, Spain
| | - Marta Rodriguez
- Services of Pathology and Haematology, Fundación Jimenez Diaz , Madrid, Spain
| | - Daniel Morillo
- Services of Pathology and Haematology, Fundación Jimenez Diaz , Madrid, Spain
| | - Raul Cordoba
- Services of Pathology and Haematology, Fundación Jimenez Diaz , Madrid, Spain
| | - Miguel A Piris
- Services of Pathology and Haematology, Fundación Jimenez Diaz , Madrid, Spain
| |
Collapse
|
7
|
Szumera-Ciećkiewicz A, Rymkiewicz G, Sokół K, Paszkiewicz-Kozik E, Borysiuk A, Poleszczuk J, Bachnio K, Bystydzienski Z, Woroniecka R, Grygalewicz B, Kotarska M, Stańczak M, Owczarek D, Pytlak B, Prochorec-Sobieszek M, Walewski J. Significance of CD10 protein expression in the diagnostics of follicular lymphoma: A comparison of conventional immunohistochemistry with flow cytometry supported by the establishment of BCL2 and BCL6 rearrangements. Int J Lab Hematol 2020; 42:453-463. [PMID: 32364682 DOI: 10.1111/ijlh.13222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/12/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Histopathological examination and immunohistochemistry (IHC) with a crucial role of CD10 expression remain a standard diagnostic tool in follicular lymphoma (FL). The results of IHC CD10 detection with different primary antibodies are not fully reproducible, but some reports show that flow cytometry (FCM) can be a reliable method of CD10 identification. METHODS The aim of the study was to compare results of CD10 expression in FL by IHC and FCM including immunophenotypic features in the context of the BCL2 and BCL6 alterations. RESULTS Out of 76 histopathologically diagnosed FL, a group of 25 cases had simultaneously FCM. Immunohistochemically 77.6% of cases were CD10-positive with comparable and reproducible results to FCM. Differences between the FCM expression of CD5/CD10/CD11c/CD25/CD43 and BCL2 overexpression (BCL2(+)higher ) correlated with the BCL2 and BCL6 rearrangements (R) status. Lack of CD10 expression corresponded with the absence of BCL2R and higher MUM1 expression by IHC results but had no clinical impact on the long-time outcomes. CONCLUSIONS Immunohistochemistry staining is a comparable method to FCM assessment in the evaluation of CD10 expression and diagnosis of FL. Fine-needle aspiration biopsy/FCM (FNAB/FCM) could be a useful tool for verifying FL diagnosis and CD10 detection. Despite its heterogeneity, FL has a characteristic immunophenotype. BCL2R and BCL6R FL cases differ mainly in levels of BCL2 and CD10 with CD43 co-expression; BCL2(+)higher by FCM correlates with BCL2R. Moreover, FNAB plays an important role in material provision for supportive karyotyping and BCL2R, BCL6R assessed by FISH.
Collapse
Affiliation(s)
- Anna Szumera-Ciećkiewicz
- Pathology Laboratory, Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Grzegorz Rymkiewicz
- Pathology Laboratory, Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Flow Cytometry Laboratory, Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Kamil Sokół
- Pathology Laboratory, Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Ewa Paszkiewicz-Kozik
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anita Borysiuk
- Flow Cytometry Laboratory, Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jan Poleszczuk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Bachnio
- Flow Cytometry Laboratory, Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Zbigniew Bystydzienski
- Flow Cytometry Laboratory, Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Renata Woroniecka
- Cytogenetics Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Beata Grygalewicz
- Cytogenetics Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Martyna Kotarska
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Monika Stańczak
- Pathology Laboratory, Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Daria Owczarek
- Pathology Laboratory, Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Beata Pytlak
- Pathology Laboratory, Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Monika Prochorec-Sobieszek
- Pathology Laboratory, Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Jan Walewski
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
8
|
Maestre L, García-García JF, Jiménez S, Reyes-García AI, García-González Á, Montes-Moreno S, Arribas AJ, González-García P, Caleiras E, Banham AH, Piris MÁ, Roncador G. High-mobility group box (TOX) antibody a useful tool for the identification of B and T cell subpopulations. PLoS One 2020; 15:e0229743. [PMID: 32106280 PMCID: PMC7046285 DOI: 10.1371/journal.pone.0229743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/13/2020] [Indexed: 11/19/2022] Open
Abstract
Thymocyte selection-associated high-mobility group box (TOX) is a DNA-binding factor that is able to regulate transcription by modifying local chromatin structure and modulating the formation of multi-protein complexes. TOX has multiple roles in the development of the adaptive immune system including development of CD4 T cells, NK cells and lymph node organogenesis. However very few antibodies recognizing this molecule have been reported and no extensive study of the expression of TOX in reactive and neoplastic lymphoid tissue has been performed to date. In the present study, we have investigated TOX expression in normal and neoplastic lymphoid tissues using a novel rat monoclonal antibody that recognizes its target molecule in paraffin-embedded tissue sections. A large series of normal tissues and B- and T-cell lymphomas was studied, using whole sections and tissue microarrays. We found that the majority of precursor B/T lymphoblastic, follicular and diffuse large B-cell lymphomas, nodular lymphocyte-predominant Hodgkin lymphomas and angioimmunoblastic T-cell lymphomas strongly expressed the TOX protein. Burkitt and mantle cell lymphomas showed TOX expression in a small percentage of cases. TOX was not found in the majority of chronic lymphocytic leukemia, myelomas, marginal zone lymphomas and classical Hodgkin lymphomas. In conclusion, we describe for the first time the expression of TOX in normal and neoplastic lymphoid tissues. The co-expression of TOX and PD-1 identified in normal and neoplastic T cells is consistent with recent studies identifying TOX as a critical regulator of T-cell exhaustion and a potential immunotherapy target. Its differential expression may be of diagnostic relevance in the differential diagnosis of follicular lymphoma, the identification of the phenotype of diffuse large B-cell lymphoma and the recognition of peripheral T-cell lymphoma with a follicular helper T phenotype.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Murine-Derived/immunology
- Antibody Specificity
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- B-Lymphocyte Subsets/pathology
- Cell Line, Tumor
- Female
- Gene Expression
- High Mobility Group Proteins/genetics
- High Mobility Group Proteins/immunology
- High Mobility Group Proteins/metabolism
- Humans
- Lymphoid Tissue/immunology
- Lymphoid Tissue/metabolism
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Male
- Mice
- Mice, Inbred C57BL
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alberto J. Arribas
- Università della Svizzera Italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | | | | | - Alison H. Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Miguel Ángel Piris
- Department of Pathology, Fundación Jiménez Díaz, CIBERONC, Madrid, Spain
| | | |
Collapse
|
9
|
Sun Z, Li J, Lin M, Zhang S, Luo J, Tang Y. An RNA-seq-Based Expression Profiling of Radiation-Induced Esophageal Injury in a Rat Model. Dose Response 2019; 17:1559325819843373. [PMID: 31105479 PMCID: PMC6505253 DOI: 10.1177/1559325819843373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022] Open
Abstract
Radiation-induced acute injury is the main reason for the suspension of radiotherapy and unsuccessful treatment of cancer. It is of great importance to understand the molecular mechanism of radiation-induced esophageal injury. We used RNA-seq data from normal esophageal tissue and irradiated esophageal tissues and applied computational approaches to identify and characterize differentially expressed genes and detected 40 059 messenger RNAs (mRNAs) previously annotated and 717 novel long noncoding RNAs (lncRNAs). There were 14 upregulated and 32 downregulated lncRNAs among the differentially expressed lncRNA group. Their target genes were involved in the mRNA surveillance pathway, pathological immune responses, and cellular homeostasis. Additionally, we found 853 differentially expressed mRNAs, and there were 384 upregulated and 469 downregulated mRNAs. Notably, we found that the differentially expressed mRNAs were enriched for steroid biosynthesis, the tumor necrosis factor signaling pathway, focal adhesion, pathways in cancer, extracellular matrix-receptor interaction, and so on. The response of normal esophageal tissues to ionizing radiation is multifarious. The radiation-induced cell damage response by multiple pathways followed by pathological immune responses activated. Studies on the dynamic network of molecules involved in radiation-induced esophageal injury are under way to clarify the regulatory mechanisms and identify the candidate targets.
Collapse
Affiliation(s)
- Zhiqiang Sun
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jinhui Li
- Department of Gastroenterology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Min Lin
- Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Shuyu Zhang
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Judong Luo
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yiting Tang
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, China
| |
Collapse
|
10
|
Comparison of Myocyte Enhancer Factor 2B Versus Other Germinal Center-associated Antigens in the Differential Diagnosis of B-Cell Non-Hodgkin Lymphomas. Am J Surg Pathol 2018; 42:342-350. [DOI: 10.1097/pas.0000000000001015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Moore EM, Swerdlow SH, Gibson SE. J chain and myocyte enhancer factor 2B are useful in differentiating classical Hodgkin lymphoma from nodular lymphocyte predominant Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Hum Pathol 2017; 68:47-53. [PMID: 28851661 DOI: 10.1016/j.humpath.2017.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/07/2017] [Accepted: 08/18/2017] [Indexed: 10/19/2022]
Abstract
Although most classical Hodgkin lymphomas (CHLs) are easily distinguished from nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) and primary mediastinal large B-cell lymphoma (PMBL), cases with significant CD20 expression cause diagnostic confusion. Although the absence of OCT-2 and BOB.1 are useful in these circumstances, a variable proportion of CHLs are positive for these antigens. We investigated the utility of J chain and myocyte enhancer factor 2B (MEF2B) in the diagnosis of CHL; NLPHL; PMBL; T-cell/histiocyte-rich large B-cell lymphoma (TCRLBL); and B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and CHL, compared with OCT-2 and BOB.1. J chain and MEF2B highlighted lymphocyte predominant (LP) cells in 20/20 (100%) NLPHLs and were negative in 43/43 (100%) CHLs. Fourteen of 15 (93%) PMBLs and 4/4 (100%) TCRLBLs were MEF2B positive, whereas 67% of PMBLs and 50% of TCRLBLs were J chain positive. Three of 3 B-cell lymphomas, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and CHL, were negative for J chain and MEF2B. J chain and MEF2B were 100% sensitive and specific for NLPHL versus CHL. MEF2B was 100% sensitive and 98% specific for PMBL versus CHL. Whereas loss of OCT-2 and/or BOB.1 expression had a sensitivity of only 86% and specificity of 100% for CHL versus NLPHL, PMBL, and TCRLBL, lack of both J chain and MEF2B expression was 100% sensitive and 97% specific. J chain and MEF2B are highly sensitive and specific markers of NLPHL versus CHL; are particularly useful in highlighting LP cells; and, with rare exception, are of greater utility than OCT-2 and BOB.1 in differentiating CHL from NLPHL and other large B-cell lymphomas.
Collapse
Affiliation(s)
- Erika M Moore
- University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | | | - Sarah E Gibson
- University of Pittsburgh School of Medicine, Pittsburgh, PA 15213.
| |
Collapse
|
12
|
Eatemadi A, Aiyelabegan HT, Negahdari B, Mazlomi MA, Daraee H, Daraee N, Eatemadi R, Sadroddiny E. Role of protease and protease inhibitors in cancer pathogenesis and treatment. Biomed Pharmacother 2016; 86:221-231. [PMID: 28006747 DOI: 10.1016/j.biopha.2016.12.021] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/26/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022] Open
Abstract
Cancer is the second cause of death in 2015, and it has been estimated to surpass heart diseases as the leading cause of death in the next few years. Several mechanisms are involved in cancer pathogenesis. Studies have indicated that proteases are also implicated in tumor growth and progression which is highly dependent on nutrient and oxygen supply. On the other hand, protease inhibitors could be considered as a potent strategy in cancer therapy. On the basis of the type of the key amino acid in the active site of the protease and the mechanism of peptide bond cleavage, proteases can be classified into six groups: cysteine, serine, threonine, glutamic acid, aspartate proteases, as well as matrix metalloproteases. In this review, we focus on the role of different types of proteases and protease inhibitors in cancer pathogenesis.
Collapse
Affiliation(s)
- Ali Eatemadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Lorestan, Iran.
| | - Hammed T Aiyelabegan
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Tehran University of Medical Sciences International Campus (TUMS-IC), Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Mazlomi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadis Daraee
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Lorestan, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Daraee
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Lorestan, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Esmaeil Sadroddiny
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Xerri L, Dirnhofer S, Quintanilla-Martinez L, Sander B, Chan JKC, Campo E, Swerdlow SH, Ott G. The heterogeneity of follicular lymphomas: from early development to transformation. Virchows Arch 2015; 468:127-39. [PMID: 26481245 DOI: 10.1007/s00428-015-1864-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/10/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
Follicular lymphoma (FL) is a lymphoma composed of germinal center B cells, i.e., centroblasts and centrocytes, that almost always show at least a focal follicular growth pattern. Most cases have a characteristic CD5-, CD10+, BCL6+, and BCL2+ immunophenotype, and 85 % of cases exhibit the hallmark translocation t(14;18)(q32;q21) involving BCL2 and IGH. Although the typical clinicopathological findings of FL are well recognized, cases with unusual clinical, morphologic, immunophenotypic, and genetic features may pose problems in diagnosis and nomenclature. In the slide workshop organized by the European Association for Haematopathology (EAHP) and the Society for Hematopathology (SH) held in Istanbul, Turkey, unusual variants of FL were discussed based on the submitted cases, including early lesions, localized extranodal presentation, uncommon immunophenotype, rare genetic alterations, diffuse variant, and marginal zone differentiation. Interesting features such as blastoid morphology and unusual progression forms were presented, aiming to understand the genetic basis of transformation. In this report, novel findings and diagnostic challenges emerging from the submitted cases will be highlighted, and new terminologies for some of these lesions are proposed.
Collapse
Affiliation(s)
- Luc Xerri
- Department of Bio-Pathology, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France.
| | - Stephan Dirnhofer
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | - Elias Campo
- Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Steven H Swerdlow
- Division of Hematopathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Hospital and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| |
Collapse
|
14
|
Cozzolino I, Varone V, Picardi M, Baldi C, Memoli D, Ciancia G, Selleri C, De Rosa G, Vetrani A, Zeppa P. CD10, BCL6, and MUM1 expression in diffuse large B-cell lymphoma on FNA samples. Cancer Cytopathol 2015; 124:135-43. [PMID: 26414904 DOI: 10.1002/cncy.21626] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gene expression profiling has divided diffuse large B-cell lymphoma (DLBCL) into 2 main subgroups: germinal center B (GCB) and non-GCB type. This classification is reproducible by immunohistochemistry using specific antibodies such as CD10, B-cell lymphoma 6 (BCL6), and multiple myeloma oncogene 1 (MUM1). Fine-needle aspiration (FNA) plays an important role in the diagnosis of non-Hodgkin lymphoma, and in some cases FNA may be the only available pathological specimen. The objectives of the current study were to evaluate CD10, BCL6, and MUM1 immunostaining on FNA samples by testing the CD10, BCL6, and MUM1 algorithm on both FNA cell blocks (CB) and conventional smears (CS), evaluating differences in CB and CS immunocytochemical (ICC) performance, and comparing results with histological data. METHODS Thirty-eight consecutive DLBCL cases diagnosed by FNA were studied. Additional passes were used to prepare CB in 22 cases and CS in 16 cases; the corresponding sections and smears were immunostained using CD10, BCL6, and MUM1 in all cases. The data obtained were compared with histological immunostaining in 24 cases. RESULTS ICC was successful in 33 cases (18 CB and 15 CS) and not evaluable in 5 cases (4 CB and 1 CS). The CD10-BCL6-MUM1 algorithm subclassified DLBCL as GCB (9 cases) and non-GCB (24 cases). ICC data were confirmed on histologic staining in 24 cases. CONCLUSIONS CD10, BCL6, and MUM1 ICC staining can be performed on FNA samples. The results herein prove it is reliable both on CB and CS, and is equally effective and comparable to immunohistochemistry data.
Collapse
Affiliation(s)
| | - Valeria Varone
- Department of Advanced Biomedical Sciences, University of Naples "Federico II, " Naples, Italy
| | - Marco Picardi
- Department of Medicine and Surgery, University of Naples "Federico II, " Naples, Italy
| | - Carlo Baldi
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Domenico Memoli
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Giuseppe Ciancia
- Department of Advanced Biomedical Sciences, University of Naples "Federico II, " Naples, Italy
| | - Carmine Selleri
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Gaetano De Rosa
- Department of Advanced Biomedical Sciences, University of Naples "Federico II, " Naples, Italy
| | - Antonio Vetrani
- Department of Public Health, University of Naples "Federico II, " Naples, Italy
| | - Pio Zeppa
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| |
Collapse
|
15
|
Diagnostic Utility of the Germinal Center–associated Markers GCET1, HGAL, and LMO2 in Hematolymphoid Neoplasms. Appl Immunohistochem Mol Morphol 2015; 23:491-8. [DOI: 10.1097/pai.0000000000000107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Jian W, Zhong L, Wen J, Tang Y, Qiu B, Wu Z, Yan J, Zhou X, Zhao T. SEPTIN2 and STATHMIN Regulate CD99-Mediated Cellular Differentiation in Hodgkin's Lymphoma. PLoS One 2015; 10:e0127568. [PMID: 26000982 PMCID: PMC4441373 DOI: 10.1371/journal.pone.0127568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 04/16/2015] [Indexed: 11/30/2022] Open
Abstract
Hodgkin’s lymphoma (HL) is a lymphoid neoplasm characterized by Hodgkin’s and Reed-Sternberg (H/RS) cells, which is regulated by CD99. We previously reported that CD99 downregulation led to the transformation of murine B lymphoma cells (A20) into cells with an H/RS phenotype, while CD99 upregulation induced differentiation of classical Hodgkin’s lymphoma (cHL) cells (L428) into terminal B-cells. However, the molecular mechanism remains unclear. In this study, using fluorescence two-dimensional differential in-gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS), we have analyzed the alteration of protein expression following CD99 upregulation in L428 cells as well as downregulation of mouse CD99 antigen-like 2 (mCD99L2) in A20 cells. Bioinformatics analysis showed that SEPTIN2 and STATHMIN, which are cytoskeleton proteins, were significantly differentially expressed, and chosen for further validation and functional analysis. Differential expression of SEPTIN2 was found in both models and was inversely correlated with CD99 expression. STATHMIN was identified in the A20 cell line model and its expression was positively correlated with that of CD99. Importantly, silencing of SEPTIN2 with siRNA substantially altered the cellular cytoskeleton in L428 cells. The downregulation of STATHMIN by siRNA promoted the differentiation of H/RS cells toward terminal B-cells. These results suggest that SEPTIN2-mediated cytoskeletal rearrangement and STATHMIN-mediated differentiation may contribute to changes in cell morphology and differentiation of H/RS cells with CD99 upregulation in HL.
Collapse
Affiliation(s)
- Wenjing Jian
- Department of Molecular and Tumor Pathology Laboratory of Guangdong Province, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Lin Zhong
- Department of Pathology, the Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jing Wen
- Department of Molecular and Tumor Pathology Laboratory of Guangdong Province, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yao Tang
- Department of Molecular and Tumor Pathology Laboratory of Guangdong Province, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Bo Qiu
- Department of Molecular and Tumor Pathology Laboratory of Guangdong Province, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Ziqing Wu
- Department of Molecular and Tumor Pathology Laboratory of Guangdong Province, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jinhai Yan
- Department of Molecular and Tumor Pathology Laboratory of Guangdong Province, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Xinhua Zhou
- Department of Molecular and Tumor Pathology Laboratory of Guangdong Province, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- * E-mail: (TZ); (XHZ)
| | - Tong Zhao
- Department of Pathology, the Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- * E-mail: (TZ); (XHZ)
| |
Collapse
|
17
|
Purroy N, Bergua J, Gallur L, Prieto J, Lopez LA, Sancho JM, García-Marco JA, Castellví J, Montes-Moreno S, Batlle A, de Villambrosia SG, Carnicero F, Ferrando-Lamana L, Piris MA, Lopez A. Long-term follow-up of dose-adjusted EPOCH plus rituximab (DA-EPOCH-R) in untreated patients with poor prognosis large B-cell lymphoma. A phase II study conducted by the Spanish PETHEMA Group. Br J Haematol 2014; 169:188-98. [PMID: 25521006 DOI: 10.1111/bjh.13273] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/17/2014] [Indexed: 11/27/2022]
Abstract
This prospective multi-institutional phase II study was designed to assess the efficacy and safety of dose-adjusted EPOCH (etoposide, prednisone, vincristine, cyclophosphamide and doxorubicin) plus rituximab (DA-EPOCH-R) in untreated patients with poor prognosis large B-cell lymphomas. Eighty-one patients diagnosed with diffuse large B-cell lymphoma (DLBCL, n = 68), primary mediastinal DLBCL (n = 6) and follicular lymphoma Grade 3b (n = 7), with an age-adjusted International Prognostic Index >1, were eligible for analysis. Median age was 60 years (range: 21-77). Sixty-five patients (80·2%) achieved complete response. After a median follow-up time of 64 months, 10-year event-free survival and overall survival (OS) were 47·8% and 63·6%, respectively. None of the studied clinical and biological characteristics were associated with poorer outcome. Interestingly, patients with BCL6 rearrangement achieved a 10-year OS of 100%, while patients with BCL2 rearrangement exhibited a poorer outcome compared to activated B-cell tumours and germinal centre B-cell without BCL2 rearranged tumours. Results achieved with DA-EPOCH-R showed a good long-term outcome and a tolerable toxicity profile in high-risk large B cell lymphoma patients. Outcome was not affected by tumour cell proliferation or by cell of origin, highlighting the requirement of new biological markers for patient subclassification of high-risk DLBCL patients.
Collapse
Affiliation(s)
- Noelia Purroy
- Department of Haematology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang X(M, Aguilera N. New Immunohistochemistry for B-Cell Lymphoma and Hodgkin Lymphoma. Arch Pathol Lab Med 2014; 138:1666-72. [DOI: 10.5858/arpa.2014-0058-ra] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Context
B-cell non-Hodgkin lymphoma is a heterogeneous group of lymphoproliferative malignancies with different clinical behaviors and treatments. It is important to differentiate individual B-cell lymphoma to apply the best treatment and management. Morphology and immunohistochemistry are the primary tools used for diagnosing lymphoma. There is a characteristic pattern of expression with immunohistochemical antibodies in most well-defined B-cell lymphomas. Some cases of B-cell lymphoma, however, show unusual morphologic and immunophenotypic features. The new and sometimes more specific antibodies have been developed recently, which may further define those lymphomas. Only with use of the antibodies over time does their true nature and specificity become evident.
Objectives
To present new antibodies for B-cell lymphoma that enhance the probability for diagnosis or can act as alternate markers in unusual cases, in which a B-cell lymphoma does not present with characteristic immunohistochemical staining, and to present prognostic markers that allow for better management of patients with specific B-cell lymphomas.
Data Sources
Data were obtained from literature review and figures from slides in personal practice.
Conclusions
The immunohistochemical antibodies presented in this article increase our ability to understand, diagnosis, and manage patients with B-cell lymphoma.
Collapse
Affiliation(s)
- Xiaohong (Mary) Zhang
- From the Department of Laboratory Medicine, Geisinger Medical Laboratories, Wilkes-Barre, Pennsylvania (Dr Zhang)
| | - Nadine Aguilera
- and the Department of Pathology, University of Virginia Health System, Charlottesville (Dr Aguilera)
| |
Collapse
|
19
|
Coutinho R, Clear AJ, Owen A, Wilson A, Matthews J, Lee A, Alvarez R, Gomes da Silva M, Cabeçadas J, Calaminici M, Gribben JG. Poor concordance among nine immunohistochemistry classifiers of cell-of-origin for diffuse large B-cell lymphoma: implications for therapeutic strategies. Clin Cancer Res 2013; 19:6686-95. [PMID: 24122791 DOI: 10.1158/1078-0432.ccr-13-1482] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE The opportunity to improve therapeutic choices on the basis of molecular features of the tumor cells is on the horizon in diffuse large B-cell lymphoma (DLBCL). Agents such as bortezomib exhibit selective activity against the poor outcome activated B-cell type (ABC) DLBCL. In order for targeted therapies to succeed in this disease, robust strategies that segregate patients into molecular groups with high reliability are needed. Although molecular studies are considered gold standard, several immunohistochemistry (IHC) algorithms have been published that claim to be able to stratify patients according to their cell-of-origin and to be relevant for patient outcome. However, results are poorly reproducible by independent groups. EXPERIMENTAL DESIGN We investigated nine IHC algorithms for molecular classification in a dataset of DLBCL diagnostic biopsies, incorporating immunostaining for CD10, BCL6, BCL2, MUM1, FOXP1, GCET1, and LMO2. IHC profiles were assessed and agreed among three expert observers. A consensus matrix based on all scoring combinations and the number of subjects for each combination allowed us to assess reliability. The survival impact of individual markers and classifiers was evaluated using Kaplan-Meier curves and the log-rank test. RESULTS The concordance in patient's classification across the different algorithms was low. Only 4% of the tumors have been classified as germinal center B-cell type (GCB) and 21% as ABC/non-GCB by all methods. None of the algorithms provided prognostic information in the R-CHOP (rituximab plus cyclophosphamide-adriamycin-vincristine-prednisone)-treated cohort. CONCLUSION Further work is required to standardize IHC algorithms for DLBCL cell-of-origin classification for these to be considered reliable alternatives to molecular-based methods to be used for clinical decisions.
Collapse
Affiliation(s)
- Rita Coutinho
- Authors' Affiliations: Department of Hemato-Oncology, Barts Cancer Institute, Queen Mary University of London; Department of Histopathology, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom; Departments of Hematology, and Pathology, Portuguese Institute of Oncology, Lisbon, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sissolak G, Wood L, Smith L, Chan JWC, Armitage J, Jacobs P. Tissue microarray in a subset of South African patients with DLBCL. Transfus Apher Sci 2013; 49:120-32. [PMID: 23942329 DOI: 10.1016/j.transci.2013.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tissue samples from 93 de novo diffuse large B-cell lymphoma patients seen between 1995 and 2009 randomly receiving either standard combination chemotherapy (CHOP, n=48) or the identical program with rituximab (n=45) were subtyped using an investigational immunohistochemical (IHC) based tissue microarray (TMA) and contrasted to the approximately corresponding categories as defined either by Hans and associates using a three marker panel into germinal or non-germinal centre subtypes or by Choi and colleagues with two additional antibodies into germinal centre (GCB) or activated B-cells (ABC). Each of these primary subdivisions was further evaluated for expression of BCL2 and LMO2 both of which are recognised to predicate response. The addition of rituximab to the uniform drug regimen did not show any significant improvement in 5 years overall (63% versus 59%, p 0.68) or event-free survival (42% versus 39%, p 0.94), for CHOP versus R-CHOP comparisons. Similarly no differences were evident in subtype analysis. Interestingly however, when segregated on the Choi criteria, cytotoxic drugs alone showed a non-significant trend in improved survival (74% versus 55%, p 0.32) as well as event-free survival (44% versus 40%, p 0.42) for the germinal centre as opposed to the activated B-cell subtype. Nevertheless not even a small difference could be demonstrated in the presence of the anti CD 20 monoclonal antibody. According to Choi, both regimens (chemotherapy or immunotherapy antibody) revealed similar results to the Hans algorithm on 5 years OS as well as 3 year EFS when comparing GCB versus ABC or non-GCB subgroups. BCL2 and LMO2 marker expression of the respective immunohistochemical (IHC) subtype, despite small sample size, revealed the following. Analysis by Choi criteria on survival for BCL2, no matter for which subsets (GCB or ABC) or treatment modality (chemotherapy with or without the addition of rituximab) showed no difference in 5 years OS or EFS. In contrast, a significant difference for better EFS (p=0.0015) in the BCL2 positive group of the ABC subgroups subtypes treated with rituximab containing chemotherapy. For LMO2 similar results on survival outcome were seen thus showing no difference in 5 years OS or EFS - regardless of subtype or treatment modality. Also here, this was contrasted by better EFS (p=0.039) in the LMO2 positive group of ABC subtypes when treated with the rituximab containing regimen. The use of the IHC based TMA methodology has shown to be a simple, cost effective and a robust alternative to gene expression profiling (GEP) which is currently regarded as the gold standard for the classification in lymphomas. It provides a useful prognostic tool in stratifying DLBCL or other entities in future, even when frozen tissue samples are not available for GEP analysis. With the current budgetary limitations in South African public hospitals chemotherapy protocols for lymphoproliferative disorders exclude agents such as rituximab. Local therapeutic drug committees consider the approximately 15% overall survival benefit seen at 5 years for DLBCL when rituximab is added to combination chemotherapy as too marginal for justifying the arising additional expenses. Accordingly, demonstration that a specific molecular subtype accounts for superior outcome, when using these regimens, is needed. Such an option would provide convincing evidence for the use of immunochemotherapy in a resource constrained setting.
Collapse
Affiliation(s)
- Gerhard Sissolak
- Division of Clinical Haematology, Faculty of Health Sciences, Stellenbosch University, Tygerberg Academic Hospital, South Africa
| | | | | | | | | | | |
Collapse
|
21
|
Dyhdalo KS, Lanigan C, Tubbs RR, Cook JR. Immunoarchitectural patterns of germinal center antigens including LMO2 assist in the differential diagnosis of marginal zone lymphoma vs follicular lymphoma. Am J Clin Pathol 2013; 140:149-54. [PMID: 23897248 DOI: 10.1309/ajcphpvh4m7mtwun] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES To examine the immunoarchitectural patterns of the germinal center (GC)-associated markers CD10, BCL6, and LMO2 and their utility in the differential diagnosis of marginal zone lymphoma (MZL) vs follicular lymphoma (FL). METHODS Forty-two cases of MZL involving lymph nodes and 88 cases of FL were examined. RESULTS Interfollicular staining for GC markers was uncommon in MZL but common in FL, including BCL2-positive and BCL2-negative cases. Two atypical patterns of intrafollicular GC staining were identified that were more common in MZL than in FL. CONCLUSIONS Staining for LMO2 in addition to CD10 and BCL6 facilitates the detection of a GC phenotype in FL. Lymph nodes involved by MZL frequently show characteristic alterations of GC immunoarchitecture. Recognizing these altered patterns assists in the distinction between MZL and FL.
Collapse
Affiliation(s)
- Kathryn S. Dyhdalo
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Christopher Lanigan
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Raymond R. Tubbs
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - James R. Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
22
|
Abstract
The small B-cell neoplasms represent some of the most frequently encountered lymphoproliferative disorders in routine surgical pathology practice. This report reviews the current diagnostic criteria for classifying small B-cell neoplasms and distinguishing them from newly recognized precursor conditions that do not appear to represent overt lymphomas. Newly available immunohistochemical stains and molecular studies that may assist in the diagnosis and classification of these neoplasms are also discussed.
Collapse
Affiliation(s)
- James R Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA.
| |
Collapse
|
23
|
The contribution of HGAL/GCET2 in immunohistological algorithms: a comparative study in 424 cases of nodal diffuse large B-cell lymphoma. Mod Pathol 2012; 25:1439-45. [PMID: 22743653 DOI: 10.1038/modpathol.2012.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diffuse large B-cell lymphoma can be subclassified into at least two molecular subgroups by gene expression profiling: germinal center B-cell like and activated B-cell like diffuse large B-cell lymphoma. Several immunohistological algorithms have been proposed as surrogates to gene expression profiling at the level of protein expression, but their reliability has been an issue of controversy. Furthermore, the proportion of misclassified cases of germinal center B-cell subgroup by immunohistochemistry, in all reported algorithms, is higher compared with germinal center B-cell cases defined by gene expression profiling. We analyzed 424 cases of nodal diffuse large B-cell lymphoma with the panel of markers included in the three previously described algorithms: Hans, Choi, and Tally. To test whether the sensitivity of detecting germinal center B-cell cases could be improved, the germinal center B-cell marker HGAL/GCET2 was also added to all three algorithms. Our results show that the inclusion of HGAL/GCET2 significantly increased the detection of germinal center B-cell cases in all three algorithms (P<0.001). The proportions of germinal center B-cell cases in the original algorithms were 27%, 34%, and 19% for Hans, Choi, and Tally, respectively. In the modified algorithms, with the inclusion of HGAL/GCET2, the frequencies of germinal center B-cell cases were increased to 38%, 48%, and 35%, respectively. Therefore, HGAL/GCET2 protein expression may function as a marker for germinal center B-cell type diffuse large B-cell lymphoma. Consideration should be given to the inclusion of HGAL/GCET2 analysis in algorithms to better predict the cell of origin. These findings bear further validation, from comparison to gene expression profiles and from clinical/therapeutic data.
Collapse
|
24
|
Diffuse large B-cell lymphoma of the orbit: clinicopathologic, immunohistochemical, and prognostic features of 20 cases. Am J Ophthalmol 2012; 154:87-98.e1. [PMID: 22503694 DOI: 10.1016/j.ajo.2012.01.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 11/22/2022]
Abstract
PURPOSE To evaluate a series of orbital diffuse large B-cell lymphomas (DLBCL) for prognostic features and therapeutic outcomes. DESIGN Retrospective multicenter case study of clinical and immunohistochemical features of 20 patients. METHODS Clinical, histopathologic, and immunohistochemical features were correlated with outcomes. Immunohistochemistry for biomarkers including Bcl-6, CD5, CD10, CD20, FOXP1, GCET1, and MUM1 was performed to differentiate between 2 major genetic subtypes of DLBCL: activated B-cell-like (ABC) and germinal center B-cell-like (GCB). RESULTS Sixteen patients presented with unilateral and 4 with bilateral tumors. Three had bony erosion of the orbit on imaging studies. Of 14 patients with detailed follow-ups, 3 had a prior or concurrent lymphomatous disease; 8 had stage I disease (limited to the orbit) at presentation; and 3 were newly diagnosed with systemic (stage IV) DLBCL. Localized disease was treated with combined systemic chemotherapy, including rituximab and radiation with no deaths to date; there was 1 death related to systemic DLBCL. Clinical staging was the best predictive method and no immunohistochemical feature or subcategory (ABC vs GCB) correlated with outcome. CONCLUSIONS Primary orbital DLBCL has a more favorable prognosis than systemic DLBCL and may arise from a preexistent hematolymphomatous neoplasm (4 out of 20 cases). In our series, orbital DLBCL had a 57% likelihood of being restricted to the ocular adnexa. Clinical staging was more helpful in predicting outcome than any single immunohistopathologic feature or combination of biomarkers. Orbital radiation of 30 gray in conjunction with systemic chemotherapy with rituximab can achieve disease-specific survival approaching 100% in purely localized cases.
Collapse
|
25
|
Plasmablastic lymphoma of the retroperitoneum in an HIV- and HCV-positive patient: hard to diagnose and harder to treat. Med Oncol 2012; 29:3529-34. [DOI: 10.1007/s12032-012-0248-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
|
26
|
Visco C, Li Y, Xu-Monette ZY, Miranda RN, Green TM, Li Y, Tzankov A, Wen W, Liu WM, Kahl BS, d'Amore ESG, Montes-Moreno S, Dybkær K, Chiu A, Tam W, Orazi A, Zu Y, Bhagat G, Winter JN, Wang HY, O'Neill S, Dunphy CH, Hsi ED, Zhao XF, Go RS, Choi WWL, Zhou F, Czader M, Tong J, Zhao X, van Krieken JH, Huang Q, Ai W, Etzell J, Ponzoni M, Ferreri AJM, Piris MA, Møller MB, Bueso-Ramos CE, Medeiros LJ, Wu L, Young KH. Comprehensive gene expression profiling and immunohistochemical studies support application of immunophenotypic algorithm for molecular subtype classification in diffuse large B-cell lymphoma: a report from the International DLBCL Rituximab-CHOP Consortium Program Study. Leukemia 2012; 26:2103-13. [PMID: 22437443 DOI: 10.1038/leu.2012.83] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gene expression profiling (GEP) has stratified diffuse large B-cell lymphoma (DLBCL) into molecular subgroups that correspond to different stages of lymphocyte development-namely germinal center B-cell like and activated B-cell like. This classification has prognostic significance, but GEP is expensive and not readily applicable into daily practice, which has lead to immunohistochemical algorithms proposed as a surrogate for GEP analysis. We assembled tissue microarrays from 475 de novo DLBCL patients who were treated with rituximab-CHOP chemotherapy. All cases were successfully profiled by GEP on formalin-fixed, paraffin-embedded tissue samples. Sections were stained with antibodies reactive with CD10, GCET1, FOXP1, MUM1 and BCL6 and cases were classified following a rationale of sequential steps of differentiation of B cells. Cutoffs for each marker were obtained using receiver-operating characteristic curves, obviating the need for any arbitrary method. An algorithm based on the expression of CD10, FOXP1 and BCL6 was developed that had a simpler structure than other recently proposed algorithms and 92.6% concordance with GEP. In multivariate analysis, both the International Prognostic Index and our proposed algorithm were significant independent predictors of progression-free and overall survival. In conclusion, this algorithm effectively predicts prognosis of DLBCL patients matching GEP subgroups in the era of rituximab therapy.
Collapse
Affiliation(s)
- C Visco
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Martin-Arruti M, Vaquero M, Díaz de Otazu R, Zabalza I, Ballesteros J, Roncador G, García-Orad A. Bcl-2 and BLIMP-1 expression predict worse prognosis in gastric diffuse large B cell lymphoma (DLCBL) while other markers for nodal DLBCL are not useful. Histopathology 2012; 60:785-92. [DOI: 10.1111/j.1365-2559.2011.04160.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
28
|
Cotta CV, Coleman JF, Li S, Hsi ED. Nodular lymphocyte predominant Hodgkin lymphoma and diffuse large B-cell lymphoma: a study of six cases concurrently involving the same site. Histopathology 2011; 59:1194-203. [DOI: 10.1111/j.1365-2559.2011.04054.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Nodal marginal zone lymphoma: gene expression and miRNA profiling identify diagnostic markers and potential therapeutic targets. Blood 2011; 119:e9-e21. [PMID: 22110251 DOI: 10.1182/blood-2011-02-339556] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Nodal marginal zone lymphoma (NMZL) is a small B-cell neoplasm whose molecular pathogenesis is still essentially unknown and whose differentiation from other small B-cell lymphomas is hampered by the lack of specific markers. We have analyzed gene expression, miRNA profile, and copy number data from 15 NMZL cases. For comparison, 16 follicular lymphomas (FLs), 9 extranodal marginal zone lymphomas, and 8 reactive lymph nodes and B-cell subtypes were included. The results were validated by quantitative RT-PCR in an independent series, including 61 paraffin-embedded NMZLs. NMZL signature showed an enriched expression of gene sets identifying interleukins, integrins, CD40, PI3K, NF-κB, and TGF-β, and included genes expressed by normal marginal zone cells and memory B cells. The most highly overexpressed genes were SYK, TACI, CD74, CD82, and CDC42EP5. Genes linked to G(2)/M and germinal center were down-regulated. Comparison of the gene expression profiles of NMZL and FL showed enriched expression of CHIT1, TGFB1, and TACI in NMZL, and BCL6, LMO2, and CD10 in FL. NMZL displayed increased expression of miR-221, miR-223, and let-7f, whereas FL strongly expressed miR-494. Our study identifies new candidate diagnostic molecules for NMZL and reveals survival pathways activated in NMZL.
Collapse
|
30
|
Piris MA. The use of molecular profiling for diagnosis and research in non-Hodgkin's lymphoma. Hematol Rep 2011; 3:e2. [PMID: 22586510 PMCID: PMC3269214 DOI: 10.4081/hr.2011.s3.e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Molecular profiling facilitates the understanding of the genetic processes underlying the development of cancer, and makes it possible to use specific signatures to prognosticate clinical outcome and to predict response to specific treatments. There has been a great increase in the availability of tools for exploring genetic abnormalities in cancer cells, which have allowed a more comprehensive characterization of the mutations, translocations, and copy-number variations that may affect the development of cancer or therapy response. An improved understanding of the molecular basis of cancer is helping also in the identification of new molecular targets for therapy.
Collapse
|
31
|
Prognostic significance of immunohistochemical biomarkers in diffuse large B-cell lymphoma: a study from the Lunenburg Lymphoma Biomarker Consortium. Blood 2011; 117:7070-8. [DOI: 10.1182/blood-2011-04-345256] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Lunenburg Lymphoma Biomarker Consortium (LLBC) evaluated the prognostic value of IHC biomarkers in a large series of patients with diffuse large B-cell lymphoma (DLBCL). Clinical data and tumor samples were retrieved from 12 studies from Europe and North America, with patients treated before or after the rituximab era. Using tissue microarrays from 1514 patients, IHC for BCL2, BCL6, CD5, CD10, MUM1, Ki67, and HLA-DR was performed and scored according to previously validated protocols. Optimal cut points predicting overall survival of patients treated in the rituximab era could only be determined for CD5 (P = .003) and Ki67 (P = .02), whereas such cut points for BCL2, BCL6, HLA-DR, and MUM1 could only be defined in patients not receiving rituximab. A prognostic model for patients treated in the rituximab era identified 4 risk groups using BCL2, Ki67, and International Prognostic Index (IPI) with improved discrimination of low-risk patients. Newly recognized correlations between specific biomarkers and IPI highlight the importance of carefully controlling for clinical and biologic factors in prognostic models. These data demonstrate that the IPI remains the best available index in patients with DLBCL treated with rituximab and chemotherapy.
Collapse
|
32
|
Gene-expression profiling and not immunophenotypic algorithms predicts prognosis in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Blood 2011; 117:4836-43. [PMID: 21441466 DOI: 10.1182/blood-2010-12-322362] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diffuse large B-cell lymphomas (DLBCLs) can be divided into germinal-center B cell-like (GCB) and activated-B cell-like (ABC) subtypes by gene-expression profiling (GEP), with the latter showing a poorer outcome. Although this classification can be mimicked by different immunostaining algorithms, their reliability is the object of controversy. We constructed tissue microarrays with samples of 157 DLBCL patients homogeneously treated with immunochemotherapy to apply the following algorithms: Colomo (MUM1/IRF4, CD10, and BCL6 antigens), Hans (CD10, BCL6, and MUM1/IRF4), Muris (CD10 and MUM1/IRF4 plus BCL2), Choi (GCET1, MUM1/IRF4, CD10, FOXP1, and BCL6), and Tally (CD10, GCET1, MUM1/IRF4, FOXP1, and LMO2). GEP information was available in 62 cases. The proportion of misclassified cases by immunohistochemistry compared with GEP was higher when defining the GCB subset: 41%, 48%, 30%, 60%, and 40% for Colomo, Hans, Muris, Choi, and Tally, respectively. Whereas the GEP groups showed significantly different 5-year progression-free survival (76% vs 31% for GCB and activated DLBCL) and overall survival (80% vs 45%), none of the immunostaining algorithms was able to retain the prognostic impact of the groups (GCB vs non-GCB). In conclusion, stratification based on immunostaining algorithms should be used with caution in guiding therapy, even in clinical trials.
Collapse
|
33
|
Ninan MJ, Wadhwa PD, Gupta P. Prognostication of diffuse large B-cell lymphoma in the rituximab era. Leuk Lymphoma 2011; 52:360-73. [DOI: 10.3109/10428194.2010.543716] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
34
|
Gascoyne RD, Rosenwald A, Poppema S, Lenz G. Prognostic biomarkers in malignant lymphomas. Leuk Lymphoma 2011; 51 Suppl 1:11-9. [PMID: 20658955 DOI: 10.3109/10428194.2010.500046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There has recently been a rapid expansion in research aimed at identifying biomarkers that could improve the prognosis for patients with various subtypes of malignant lymphoma. Genomic and genetic studies have led to the identification of biological and clinical subgroups of diffuse large B-cell lymphomas with distinct underlying molecular features, divergent activation of oncogenetic pathways, and clinical course. Molecular studies of follicular lymphoma have suggested complex interactions between malignant cells and the surrounding immunological network that could affect disease progression. Moreover, the inflammatory cells of Hodgkin lymphoma have been shown to produce a complex network of cytokines and chemokines that provide a permissive microenvironment for tumor growth. Research into specific biomarkers and signaling pathways of malignant lymphomas might therefore result in the identification of novel targets for future therapeutic strategies. As gene expression profiling techniques are not yet feasible in the clinical laboratory, studies have aimed to translate the findings into more widely applicable techniques that might allow this research to be applied to routine clinical practice. This review focuses on recent advances in translational and clinical research on biomarkers in malignant lymphomas.
Collapse
Affiliation(s)
- Randy D Gascoyne
- British Columbia Cancer Agency, Department of Pathology and Experimental Therapeutics, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
35
|
Banerjee D. Recent Advances in the Pathobiology of Hodgkin's Lymphoma: Potential Impact on Diagnostic, Predictive, and Therapeutic Strategies. Adv Hematol 2011; 2011:439456. [PMID: 21318045 PMCID: PMC3034907 DOI: 10.1155/2011/439456] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/04/2010] [Accepted: 11/12/2010] [Indexed: 12/20/2022] Open
Abstract
From its first description by Thomas Hodgkin in 1832, Hodgkin's disease, now called Hodgkin's lymphoma, has continued to be a fascinating neoplasm even to this day. In this review, historical aspects, epidemiology, diagnosis, tumor biology, new observations related to host-microenvironment interactions, gene copy number variation, and gene expression profiling in this complex neoplasm are described, with an exploration of chemoresistance mechanisms and potential novel therapies for refractory disease.
Collapse
Affiliation(s)
- Diponkar Banerjee
- Centre for Translational and Applied Genomics (CTAG), Department of Pathology, British Columbia Cancer Agency (BCCA), 600 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 4E6
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5
| |
Collapse
|
36
|
Hodgkin's Lymphomas: A Tumor Recognized by Its Microenvironment. Adv Hematol 2010; 2011:142395. [PMID: 20981155 PMCID: PMC2963118 DOI: 10.1155/2011/142395] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 10/03/2010] [Indexed: 12/22/2022] Open
Abstract
Thomas Hodgkin's and Samuel Wilks first recognized Hodgkin disease in the first half of the 19th century. Initially described as lymphogranulomatosis, it was later recognized to be a lymphoid neoplasm derived from B cells and was classified on the basis of its histopathological features. Hodgkin lymphomas are now regarded as encompassing two clearly defined entities according to the WHO classification: nodular lymphocyte-predominant Hodgkin Lymphoma (NLPHL) and classical Hodgkin Lymphoma (CHL). This paper focuses on the current knowledge about the biological features that characterize both NLPHL and CHL, highlighting those relevant to correct pathological diagnosis and those that might be associated with patient outcome.
Collapse
|
37
|
Rodig SJ, Kutok JL, Paterson JC, Nitta H, Zhang W, Chapuy B, Tumwine LK, Montes-Moreno S, Agostinelli C, Johnson NA, Ben-Neriah S, Farinha P, Shipp MA, Piris MA, Grogan TM, Pileri SA, Gascoyne RD, Marafioti T. The pre-B-cell receptor associated protein VpreB3 is a useful diagnostic marker for identifying c-MYC translocated lymphomas. Haematologica 2010; 95:2056-62. [PMID: 20823132 DOI: 10.3324/haematol.2010.025767] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND During B-cell development, precursor B cells transiently express the pre-B-cell receptor composed of μ heavy chain complexed with VpreB and λ5 surrogate light chain polypeptides. Recent profiling studies unexpectedly revealed abundant transcripts of one member of the VpreB family, VpreB3, in a subset of mature B cells and Burkitt lymphoma. DESIGN AND METHODS Here we used a novel antibody to investigate the normal expression pattern of VpreB3 protein in human hematopoietic and lymphoid tissues, and to determine whether VpreB3 could serve as a useful diagnostic biomarker for select B-cell lymphomas. RESULTS We found that VpreB3 protein is normally expressed by precursor B cells in bone marrow and by a subset of normal germinal center B cells in secondary lymphoid organs. Among lymphoid malignancies, we found an association between VpreB3 expression and B-cell tumors with c-MYC abnormalities. VpreB3 was highly expressed in all cases of Burkitt lymphoma, whether of endemic or sporadic origin (44/44 cases, 100%), all cases of B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma (5/5 cases, 100%), and the majority of diffuse large B-cell lymphomas harboring a c-MYC translocation (15/18 cases, 83%). The expression of VpreB3 in diffuse large B-cell lymphomas without a c-MYC translocation was associated with c-MYC polysomy in 25/75 cases (33%) but only rarely observed in diffuse large B-cell lymphomas lacking a c-MYC abnormality (9/98 cases, 9%). CONCLUSIONS We conclude that for B-cell tumors with features suggesting a possible c-MYC translocation, such as intermediate to large cell size and high proliferation rate, the presence of VpreB3 should prompt subsequent confirmatory genetic testing, whereas the absence of VpreB3 is virtually always associated with wild-type c-MYC alleles.
Collapse
Affiliation(s)
- Scott J Rodig
- Department of Pathology, Brigham & Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Martín-Pérez D, Sánchez E, Maestre L, Suela J, Vargiu P, Di Lisio L, Martínez N, Alves J, Piris MA, Sánchez-Beato M. Deregulated expression of the polycomb-group protein SUZ12 target genes characterizes mantle cell lymphoma. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:930-42. [PMID: 20558579 DOI: 10.2353/ajpath.2010.090769] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Polycomb proteins are known to be of great importance in human cancer pathogenesis. SUZ12 is a component of the Polycomb PRC2 complex that, along with EZH2, is involved in embryonic stem cell differentiation. EZH2 plays an essential role in many cancer types, but an equivalent involvement of SUZ12 has not been as thoroughly demonstrated. Here we show that SUZ12 is anomalously expressed in human primary tumors, especially in mantle cell lymphoma (MCL), pulmonary carcinomas and melanoma, and is associated with gene locus amplification in some cases. Using MCL as a model, functional and genomic studies demonstrate that SUZ12 loss compromises cell viability, increases apoptosis, and targets genes involved in central oncogenic pathways associated with MCL pathogenesis. Our results support the hypothesis that the abnormal expression of SUZ12 accounts for some of the unexplained features of MCL, such as abnormal DNA repair and increased resistance to apoptosis.
Collapse
Affiliation(s)
- Daniel Martín-Pérez
- Lymphoma Group, Molecular Pathology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Montes-Moreno S, Gonzalez-Medina AR, Rodriguez-Pinilla SM, Maestre L, Sanchez-Verde L, Roncador G, Mollejo M, García JF, Menarguez J, Montalbán C, Ruiz-Marcellan MC, Conde E, Piris MA. Aggressive large B-cell lymphoma with plasma cell differentiation: immunohistochemical characterization of plasmablastic lymphoma and diffuse large B-cell lymphoma with partial plasmablastic phenotype. Haematologica 2010; 95:1342-9. [PMID: 20418245 DOI: 10.3324/haematol.2009.016113] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Plasmablastic lymphoma has recently come to be considered a distinct entity among mature B cell neoplasms, although the limits with diffuse large B-cell lymphoma (DLBCL) need to be more accurately defined. DESIGN AND METHODS Here we show the results of an immunohistochemical study of 35 cases of plasmablastic lymphoma compared with a set of 111 conventional DLBCLs. RESULTS Our results demonstrate that the use of a limited combination of immunohistochemical markers (PAX5&CD20, PRDM1/BLIMP1 and XBP1s) enables the identification of a plasmablastic immunophenotype highly characteristic of plasmablastic lymphoma cases and associated with an aggressive clinical behavior. Additionally, the study shows that the acquisition of a partial plasmablastic phenotype (PRDM1/BLIMP1 expression) in DLBCL is associated with shorter survival in R-CHOP-treated patients. CONCLUSIONS The use of a restricted combination of immunohistochemical markers (PAX5&CD20, PRDM1/BLIMP1 and XBP1s) enables a more accurate definition of terminal differentiation for large B-cell lymphoma.
Collapse
Affiliation(s)
- Santiago Montes-Moreno
- Lymphoma Group, Molecular Pathology Programme Spanish National Cancer Research Centre, CNIO, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen Z, Du Z, Chen J, Chen Z, Bao Y, Tang F. Prognostic evaluation of immunohistochemical profiles in diffuse large B-cell lymphoma: a Chinese study. Med Oncol 2010; 28:241-8. [PMID: 20165991 DOI: 10.1007/s12032-010-9433-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 01/25/2010] [Indexed: 01/22/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) has been classified into different prognostic subgroups using immunohistochemistry in Western populations. However, the applicability in Chinese patients of these subgroups was unclear. We collected 116 specimens and performed immunohistochemical staining for CD10, BCL-6, MUM1, CD138, and CD5, and the results were classified into subgroups according to 3 different algorithms. We then analyzed the subgroups' correlation to patient survival. Expression of CD10 and BCL-6 predicted favorable 5-year OS (70 and 62.5%, respectively) and PFS (64.3 and 61.5%, respectively) rates. In contrast, the expression of MUM1 predicted unfavorable 5-year OS (23.1%) and PFS (17.9%) rates and was also independent of other markers. All algorithms led to useful subclassifications. Using Hans' algorithm based on CD10, BCL-6, and MUM1, the non-germinal center (GC) subgroup (66.4%) had worse 5-year OS (29.8%) and PFS (26.7%) rates than did the GC subgroup. Likewise, using Muris' algorithm based on CD10 and MUM1, fewer non-GC cases (27%) showed poorer OS (20.3%) and PFS (16.2%) rates than did GC cases, an effect that was independent of both the International Prognostic Index, a clinical indicator, and treatment. It identified a subgroup with a high-risk of death and seemed to be applicable in our series. In conclusion, these algorithms can be used effectively in Chinese patients with DLBCL.
Collapse
Affiliation(s)
- Zi Chen
- Department of Hematology, Huashan Hospital, Fudan University, 200040 Shanghai, China.
| | | | | | | | | | | |
Collapse
|
41
|
Chen Y, Han T, Iqbal J, Irons R, Chan WC, Zhu X, Fu K. Diffuse large B-cell lymphoma in Chinese patients: immunophenotypic and cytogenetic analyses of 124 cases. Am J Clin Pathol 2010; 133:305-13. [PMID: 20093241 DOI: 10.1309/ajcp4h6adgydzmoa] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In diffuse large B-cell lymphoma (DLBCL), BCL2 expression usually correlates with the t(14;18) (q32;q21) in germinal center B-cell (GCB) subtype and with gain/amplification of chromosome 18q21 in the activated B cell-like subtype. Studies have suggested that the GCB subtype is less common in Chinese than in Western populations. We studied 124 Chinese DLBCL cases using immunohistochemical, conventional cytogenetics, and interphase fluorescence in situ hybridization analyses. A cohort of 114 well-characterized DLBCL cases from Western populations was also analyzed for comparison. Lower incidences of the GCB subtype (P = .0001) and the t(14;18) translocation (P = .0001) were present in Chinese cases. However, BCL2 overexpression was more frequent in Chinese compared with Western cases (P = .0054). BCL2 expression was associated with gain of chromosome 18/18q in the Chinese and Western cohorts. More interestingly, BCL2 expression was associated with gain of chromosome 3/3q in Chinese DLBCL cases, whereas this association was less significant in Western cases.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pathology, Shanghai Cancer Hospital and Institute, Fudan University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Quintanilla-Martinez L, de Jong D, de Mascarel A, Hsi ED, Kluin P, Natkunam Y, Parrens M, Pileri S, Ott G. Gray zones around diffuse large B cell lymphoma. Conclusions based on the workshop of the XIV meeting of the European Association for Hematopathology and the Society of Hematopathology in Bordeaux, France. J Hematop 2009; 2:211-36. [PMID: 20309430 PMCID: PMC2798939 DOI: 10.1007/s12308-009-0053-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 12/01/2009] [Indexed: 12/16/2022] Open
Abstract
The term "gray-zone" lymphoma has been used to denote a group of lymphomas with overlapping histological, biological, and clinical features between various types of lymphomas. It has been used in the context of Hodgkin lymphomas (HL) and non-Hodgkin lymphomas (NHL), including classical HL (CHL), and primary mediastinal large B cell lymphoma, cases with overlapping features between nodular lymphocyte predominant Hodgkin lymphoma and T-cell/histiocyte-rich large B cell lymphoma, CHL, and Epstein-Barr-virus-positive lymphoproliferative disorders, and peripheral T cell lymphomas simulating CHL. A second group of gray-zone lymphomas includes B cell NHL with intermediate features between diffuse large B cell lymphoma and classical Burkitt lymphoma. In order to review controversial issues in gray-zone lymphomas, a joint Workshop of the European Association for Hematopathology and the Society for Hematopathology was held in Bordeaux, France, in September 2008. The panel members reviewed and discussed 145 submitted cases and reached consensus diagnoses. This Workshop summary is focused on the most controversial aspects of gray-zone lymphomas and describes the panel's proposals regarding diagnostic criteria, terminology, and new prognostic and diagnostic parameters.
Collapse
Affiliation(s)
- Leticia Quintanilla-Martinez
- Institute of Pathology, Eberhard-Karls-University of Tübingen, Tübingen, Germany
- Institute of Pathology, University Hospital Tübingen, Liebermeisterstr. 8, 72076 Tübingen, Germany
| | - Daphne de Jong
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Antoine de Mascarel
- Department of Pathology, CHU de Bordeaux, Hospital Haut-Lévêque, University of Bordeaux, Bordeaux, France
| | - Eric D. Hsi
- Department of Clinical Pathology, Cleveland Clinic, Cleveland, OH USA
| | - Philip Kluin
- Department of Pathology and Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yaso Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA USA
| | - Marie Parrens
- Department of Pathology, CHU de Bordeaux, Hospital Haut-Lévêque, University of Bordeaux, Bordeaux, France
| | - Stefano Pileri
- Hematopathology Section, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Hospital, and Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
| |
Collapse
|
43
|
Choi WWL, Weisenburger DD, Greiner TC, Piris MA, Banham AH, Delabie J, Braziel RM, Geng H, Iqbal J, Lenz G, Vose JM, Hans CP, Fu K, Smith LM, Li M, Liu Z, Gascoyne RD, Rosenwald A, Ott G, Rimsza LM, Campo E, Jaffe ES, Jaye DL, Staudt LM, Chan WC. A new immunostain algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy. Clin Cancer Res 2009; 15:5494-502. [PMID: 19706817 DOI: 10.1158/1078-0432.ccr-09-0113] [Citation(s) in RCA: 464] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Hans and coworkers previously developed an immunohistochemical algorithm with approximately 80% concordance with the gene expression profiling (GEP) classification of diffuse large B-cell lymphoma (DLBCL) into the germinal center B-cell-like (GCB) and activated B-cell-like (ABC) subtypes. Since then, new antibodies specific to germinal center B-cells have been developed, which might improve the performance of an immunostain algorithm. EXPERIMENTAL DESIGN We studied 84 cases of cyclophosphamide-doxorubicin-vincristine-prednisone (CHOP)-treated DLBCL (47 GCB, 37 ABC) with GCET1, CD10, BCL6, MUM1, FOXP1, BCL2, MTA3, and cyclin D2 immunostains, and compared different combinations of the immunostaining results with the GEP classification. A perturbation analysis was also applied to eliminate the possible effects of interobserver or intraobserver variations. A separate set of 63 DLBCL cases treated with rituximab plus CHOP (37 GCB, 26 ABC) was used to validate the new algorithm. RESULTS A new algorithm using GCET1, CD10, BCL6, MUM1, and FOXP1 was derived that closely approximated the GEP classification with 93% concordance. Perturbation analysis indicated that the algorithm was robust within the range of observer variance. The new algorithm predicted 3-year overall survival of the validation set [GCB (87%) versus ABC (44%); P < 0.001], simulating the predictive power of the GEP classification. For a group of seven primary mediastinal large B-cell lymphoma, the new algorithm is a better prognostic classifier (all "GCB") than the Hans' algorithm (two GCB, five non-GCB). CONCLUSION Our new algorithm is significantly more accurate than the Hans' algorithm and will facilitate risk stratification of DLBCL patients and future DLBCL research using archival materials.
Collapse
Affiliation(s)
- William W L Choi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
van Krieken JHJM. New developments in the pathology of malignant lymphoma: a review of the literature published from January to April 2008. J Hematop 2009; 1:37-45. [PMID: 19669203 PMCID: PMC2712329 DOI: 10.1007/s12308-008-0010-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- J Han J M van Krieken
- Department of Pathology, Nijmegen Medical Centre, Radboud University, P.O. Box 9101, 6500, HB Nijmegen, The Netherlands,
| |
Collapse
|
45
|
Nam-Cha SH, Montes-Moreno S, Salcedo MT, Sanjuan J, Garcia JF, Piris MA. Lymphocyte-rich classical Hodgkin's lymphoma: distinctive tumor and microenvironment markers. Mod Pathol 2009; 22:1006-15. [PMID: 19465900 DOI: 10.1038/modpathol.2009.54] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The existence, diagnostic features, and the biological and clinical relevance of lymphocyte-rich classical Hodgkin's lymphoma remain controversial. A comparative marker analysis of lymphocyte-rich classical Hodgkin's lymphoma, nodular lymphocyte-predominance Hodgkin's lymphoma, and of other subtypes of classical Hodgkin's lymphoma was carried out. Markers were selected focusing on B-cell lineage and transcription program (OCT.1, OCT.2, BOB.1, BCL6, PAX-5, GCET1, KLHL6, and BLIMP1), the NF-kappaB signaling pathway (REL-B, C-REL, TRAF-1, p-50, and MUM-1) and the T-cell microenvironment (CD3, CD57, PD-1, CXCL-13, and CD10, BCL-6, CD23). Lymphocyte-rich classical Hodgkin's lymphoma cases displayed features intermediate between those of classical Hodgkin's lymphoma and nodular lymphocyte-predominance Hodgkin's lymphoma. The expression of B-cell transcription factors such as OCT.1, OCT.2, BOB.1, and BCL6 was more frequent in lymphocyte-rich classical Hodgkin's lymphoma than in classical Hodgkin's lymphoma. A follicular T-cell microenvironment was also identified in 50% of lymphocyte-rich classical Hodgkin's lymphoma cases. NF-kB markers were expressed at frequencies comparable with those observed in classical Hodgkin's lymphoma. The neoplastic cell immunophenotype and microenvironment in lymphocyte-rich classical Hodgkin's lymphoma closely mimic that which are observed in the outer zone of the germinal center, where B-cell blasts with germinal-center markers co-express CD30 and the B-cell transcription program, surrounded by follicular T-cell rosettes. Lymphocyte-rich classical Hodgkin's lymphoma seems to be characterized by a stronger expression of the B-cell transcription program by the neoplastic cells and by a follicular T-cell background, occupying an intermediate position between classical Hodgkin's lymphoma and nodular lymphocyte-predominance Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Syong H Nam-Cha
- [ Department of Pathology, Complejo Hospitalario Universitario de Albacete, Albacete, Spain.
| | | | | | | | | | | |
Collapse
|
46
|
Schmitz R, Stanelle J, Hansmann ML, Küppers R. Pathogenesis of classical and lymphocyte-predominant Hodgkin lymphoma. ANNUAL REVIEW OF PATHOLOGY 2009; 4:151-74. [PMID: 19400691 DOI: 10.1146/annurev.pathol.4.110807.092209] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hodgkin and Reed-Sternberg (HRS) cells in classical Hodgkin lymphoma (HL) and lymphocytic and histiocytic (L&H) cells in nodular lymphocyte-predominant HL (NLPHL) are derived from germinal-center B cells. HRS cells have, however, largely lost their B cell phenotype and aberrantly express markers and transcriptional regulators of other hematolymphoid cell types. Deregulation of multiple signaling pathways and downstream transcription factors, including receptor tyrosine kinases, nuclear factor-kappa B (NF-kappaB), and Janus kinase/signal transducer and activator of transcription (JAK/STAT), is a further hallmark of HRS cells. These cells harbor genetic lesions that contribute to or cause increases in the activity of transcription factors of the NF-kappaB and STAT families. HRS cells are found within a mixed reactive cellular infiltrate and interact with these nonmalignant cells in a complex fashion that appears to be essential for HRS cell survival and proliferation. Less is known about the pathogenesis of L&H cells in NLPHL, but increases in the activity of receptor tyrosine kinases, NF-kappaB, and JAK/STAT have also been detected.
Collapse
Affiliation(s)
- Roland Schmitz
- Institute for Cell Biology (Tumor Research), Medical School, University of Duisburg-Essen, Essen, Germany.
| | | | | | | |
Collapse
|
47
|
Brune V, Tiacci E, Pfeil I, Döring C, Eckerle S, van Noesel CJM, Klapper W, Falini B, von Heydebreck A, Metzler D, Bräuninger A, Hansmann ML, Küppers R. Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis. ACTA ACUST UNITED AC 2008; 205:2251-68. [PMID: 18794340 PMCID: PMC2556780 DOI: 10.1084/jem.20080809] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pathogenesis of nodular lymphocyte–predominant Hodgkin lymphoma (NLPHL) and its relationship to other lymphomas are largely unknown. This is partly because of the technical challenge of analyzing its rare neoplastic lymphocytic and histiocytic (L&H) cells, which are dispersed in an abundant nonneoplastic cellular microenvironment. We performed a genome-wide expression study of microdissected L&H lymphoma cells in comparison to normal and other malignant B cells that indicated a relationship of L&H cells to and/or that they originate from germinal center B cells at the transition to memory B cells. L&H cells show a surprisingly high similarity to the tumor cells of T cell–rich B cell lymphoma and classical Hodgkin lymphoma, a partial loss of their B cell phenotype, and deregulation of many apoptosis regulators and putative oncogenes. Importantly, L&H cells are characterized by constitutive nuclear factor κB activity and aberrant extracellular signal-regulated kinase signaling. Thus, these findings shed new light on the nature of L&H cells, reveal several novel pathogenetic mechanisms in NLPHL, and may help in differential diagnosis and lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Verena Brune
- Institute for Cell Biology (Tumor Research), University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|