1
|
Catunda RQ, Ho KKY, Patel S, Roy CB, Alexiou M, Levin L, Ulrich BJ, Kaplan MH, Febbraio M. Loricrin and Cytokeratin Disorganisation in Severe Forms of Periodontitis. Int Dent J 2023; 73:862-872. [PMID: 37316411 PMCID: PMC10658443 DOI: 10.1016/j.identj.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023] Open
Abstract
OBJECTIVE The aim of this research was to investigate the role of the cornified epithelium, the outermost layer of the oral mucosa, engineered to prevent water loss and microorganism invasion, in severe forms of periodontitis (stage III or IV, grade C). METHODS Porphyromonas gingivalis, a major periodontal disease pathogen, can affect cornified epithelial protein expression through chronic activation of signal transducer and activator of transcription 6 (Stat6). We used a mouse model, Stat6VT, that mimics this to determine the effects of barrier defect on P gingivalis-induced inflammation, bone loss, and cornified epithelial protein expression, and compared histologic and immunohistologic findings with tissues obtained from human controls and patients with stage III and IV, grade C disease. Alveolar bone loss in mice was assessed using micro-computerised tomography, and soft tissue morphology was qualitatively and semi-quantitatively assessed by histologic examination for several proteins, including loricrin, filaggrin, cytokeratin 1, cytokeratin 14, a proliferation marker, a pan-leukocyte marker, as well as morphologic signs of inflammation. Relative cytokine levels were measured in mouse plasma by cytokine array. RESULTS In the tissues from patients with periodontal disease, there were greater signs of inflammation (rete pegs, clear cells, inflammatory infiltrates) and a decrease and broadening of expression of loricrin and cytokeratin 1. Cytokeratin 14 expression was also broader and decreased in stage IV. P gingivalis-infected Stat6VT mice showed greater alveolar bone loss in 9 out of 16 examined sites, and similar patterns of disruption to human patients in expression of loricrin and cytokeratins 1 and 14. There were also increased numbers of leukocytes, decreased proliferation, and greater signs of inflammation compared with P gingivalis-infected control mice. CONCLUSIONS Our study provides evidence that changes in epithelial organisation can exacerbate the effects of P gingivalis infection, with similarities to the most severe forms of human periodontitis.
Collapse
Affiliation(s)
- Raisa Queiroz Catunda
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Ka-Yan Ho
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Srushti Patel
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher Bryant Roy
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Maria Alexiou
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Liran Levin
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Mark H Kaplan
- Department of Microbiology & Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Maria Febbraio
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Hutchinson A, Reales G, Willis T, Wallace C. Leveraging auxiliary data from arbitrary distributions to boost GWAS discovery with Flexible cFDR. PLoS Genet 2021; 17:e1009853. [PMID: 34669738 PMCID: PMC8559959 DOI: 10.1371/journal.pgen.1009853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/01/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified thousands of genetic variants that are associated with complex traits. However, a stringent significance threshold is required to identify robust genetic associations. Leveraging relevant auxiliary covariates has the potential to boost statistical power to exceed the significance threshold. Particularly, abundant pleiotropy and the non-random distribution of SNPs across various functional categories suggests that leveraging GWAS test statistics from related traits and/or functional genomic data may boost GWAS discovery. While type 1 error rate control has become standard in GWAS, control of the false discovery rate can be a more powerful approach. The conditional false discovery rate (cFDR) extends the standard FDR framework by conditioning on auxiliary data to call significant associations, but current implementations are restricted to auxiliary data satisfying specific parametric distributions, typically GWAS p-values for related traits. We relax these distributional assumptions, enabling an extension of the cFDR framework that supports auxiliary covariates from arbitrary continuous distributions ("Flexible cFDR"). Our method can be applied iteratively, thereby supporting multi-dimensional covariate data. Through simulations we show that Flexible cFDR increases sensitivity whilst controlling FDR after one or several iterations. We further demonstrate its practical potential through application to an asthma GWAS, leveraging various functional genomic data to find additional genetic associations for asthma, which we validate in the larger, independent, UK Biobank data resource.
Collapse
Affiliation(s)
- Anna Hutchinson
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | - Guillermo Reales
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Willis
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | - Chris Wallace
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Mashkaryan V, Siddiqui T, Popova S, Cosacak MI, Bhattarai P, Brandt K, Govindarajan N, Petzold A, Reinhardt S, Dahl A, Lefort R, Kizil C. Type 1 Interleukin-4 Signaling Obliterates Mouse Astroglia in vivo but Not in vitro. Front Cell Dev Biol 2020; 8:114. [PMID: 32181251 PMCID: PMC7057913 DOI: 10.3389/fcell.2020.00114] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Recent findings suggest that reduced neurogenesis could be one of the underlying reasons for the exacerbated neuropathology in humans, thus restoring the neural stem cell proliferation and neurogenesis could help to circumvent some pathological aspects of Alzheimer’s disease. We recently identified Interleukin-4/STAT6 signaling as a neuron–glia crosstalk mechanism that enables glial proliferation and neurogenesis in adult zebrafish brain and 3D cultures of human astroglia, which manifest neurogenic properties. In this study, by using single cell sequencing in the APP/PS1dE9 mouse model of AD, we found that IL4 receptor (Il4r) is not expressed in mouse astroglia and IL4 signaling is not active in these cells. We tested whether activating IL4/STAT6 signaling would enhance cell proliferation and neurogenesis in healthy and disease conditions. Lentivirus-mediated expression of IL4R or constitutively active STAT6VT impaired the survival capacity of mouse astroglia in vivo but not in vitro. These results suggest that the adult mouse brain generates a non-permissive environment that dictates a negative effect of IL4 signaling on astroglial survival and neurogenic properties in contrast to zebrafish brains and in vitro mammalian cell cultures. Our findings that IL4R signaling in dentate gyrus (DG) of adult mouse brain impinges on the survival of DG cells implicate an evolutionary mechanism that might underlie the loss of neuroregenerative ability of the brain, which might be utilized for basic and clinical aspects for neurodegenerative diseases.
Collapse
Affiliation(s)
- Violeta Mashkaryan
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany
| | - Tohid Siddiqui
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany
| | - Stanislava Popova
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany
| | - Prabesh Bhattarai
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany
| | - Kerstin Brandt
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany
| | - Nambirajan Govindarajan
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany
| | - Andreas Petzold
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Andreas Dahl
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Roger Lefort
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases Dresden, Helmholtz Association, Dresden, Germany.,Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| |
Collapse
|
4
|
Howell MD, Gao P, Kim BE, Lesley LJ, Streib JE, Taylor PA, Zaccaro DJ, Boguniewicz M, Beck LA, Hanifin JM, Schneider LC, Hata TR, Gallo RL, Kaplan MH, Barnes KC, Leung DYM. The signal transducer and activator of transcription 6 gene (STAT6) increases the propensity of patients with atopic dermatitis toward disseminated viral skin infections. J Allergy Clin Immunol 2011; 128:1006-14. [PMID: 21762972 DOI: 10.1016/j.jaci.2011.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 01/10/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disease associated with increased susceptibility to recurrent skin infections. OBJECTIVE We sought to determine why a subset of patients with AD have an increased risk of disseminated viral skin infections. METHODS Human subjects with AD with a history of eczema herpeticum (EH) and various control groups were enrolled. Vaccinia virus (VV) expression was measured by means of PCR and immunofluorescent staining in skin biopsy specimens from each study group after incubation with VV. Transgenic mice with a constitutively active signal transducer and activator of transcription 6 gene (STAT6) were characterized for response to VV skin inoculation. Genotyping for 10 STAT6 single nucleotide polymorphisms (SNPs) was performed in a white patient sample (n = 444). RESULTS VV gene and protein expression were significantly increased in the skin of patients with EH compared with other subject groups after incubation with VV in vitro. Antibody neutralization of IL-4 and IL-13 resulted in lower VV replication in patients with a history of EH. Mice that expressed a constitutively active STAT6 gene compared with wild-type mice had increased mortality and satellite lesion formation after VV skin inoculation. Significant associations were observed between STAT6 SNPs and EH (rs3024975, rs841718, rs167769, and rs703817) and IFN-γ production. The strongest association was observed for a 2-SNP haplotype (patients with AD with a history of EH vs patients with AD without a history of EH, 24.9% vs 9.2%; P = 5.17 × 10(-6)). CONCLUSION The STAT6 gene increases viral replication in the skin of patients with AD with a history of EH. Further genetic association studies and functional investigations are warranted.
Collapse
Affiliation(s)
- Michael D Howell
- Department of Pediatrics, National Jewish Health, Denver, Colo 80206, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Dong L, Zhang X, Fu X, Zhang X, Gao X, Zhu M, Wang X, Yang Z, Jensen ON, Saarikettu J, Yao Z, Silvennoinen O, Yang J. PTB-associated splicing factor (PSF) functions as a repressor of STAT6-mediated Ig epsilon gene transcription by recruitment of HDAC1. J Biol Chem 2010; 286:3451-9. [PMID: 21106524 DOI: 10.1074/jbc.m110.168377] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of transcription requires cooperation between sequence-specific transcription factors and numerous coregulatory proteins. In IL-4/IL-13 signaling several coactivators for STAT6 have been identified, but the molecular mechanisms of STAT6-mediated gene transcription are still not fully understood. Here we identified by proteomic approach that the PTB-associated splicing factor (PSF) interacts with STAT6. In intact cells the interaction was observed only after IL-4 stimulation. The IL-4-induced tyrosine phosphorylation of both STAT6 and PSF is a prerequisite for the efficient association of the two proteins. Functional analysis demonstrated that ectopic expression of PSF resulted in inhibition of STAT6-mediated transcriptional activation and mRNA expression of the Igε germline heavy chain gene, whereas knockdown of PSF increased the STAT6-mediated responses. PSF recruited histone deacetylase 1 (HDAC1) to the STAT6 transcription complex, which resulted in reduction of H3 acetylation at the promoter regions of Ig heavy chain germline Igε and inhibition of STAT6-mediated transcription. In addition, the HDACs inhibitor trichostatin A (TSA) enhanced H3 acetylation, and reverted the PSF-mediated transcriptional repression of Igε gene transcription. In summary, these results identify PSF as a repressor of STAT6-mediated transcription that functions through recruitment of HDAC to the STAT6 transcription complex, and delineates a novel regulatory mechanism of IL-4 signaling that may have implications in the pathogenesis of allergic diseases and pharmacological HDAC inhibition in lymphomas.
Collapse
Affiliation(s)
- Lijie Dong
- Department of Immunology, Basic Medical College, Tianjin Medical University, Heping District, Qixiangtai Road No. 22, Tianjin 300070, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chen HC, Reich NC. Live cell imaging reveals continuous STAT6 nuclear trafficking. THE JOURNAL OF IMMUNOLOGY 2010; 185:64-70. [PMID: 20498360 DOI: 10.4049/jimmunol.0903323] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The STAT6 transcription factor is essential for the development of protective immunity; however, the consequences of its activity can also contribute to the pathogenesis of autoimmune disease. Tyrosine phosphorylation is known to activate STAT6 in response to cytokine stimulation, but there is a gap in our understanding of the mechanisms by which it enters the nucleus. In this study, live cell imaging was used in conjunction with photobleaching techniques to demonstrate the continual nuclear import of STAT6, independent of tyrosine phosphorylation. The protein domain required for nuclear entry includes the coiled coil region of STAT6 and functions similarly before or after cytokine stimulation. The dynamic nuclear shuttling of STAT6 seems to be mediated by the classical importin-alpha-importin-beta1 system. Although STAT6 is imported to the nucleus continually, it accumulates in the nucleus following tyrosine phosphorylation as a result of its ability to bind DNA. These findings will impact diagnostic approaches and strategies to block the deleterious effects of STAT6 in autoimmunity.
Collapse
Affiliation(s)
- Hui-Chen Chen
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
7
|
Crane ED, Stephenson N, Haffner C, Bruns HA. Active immune response protects Stat6VT transgenic mice from developing a lymphoproliferative disorder. Immunobiology 2009; 215:579-85. [PMID: 19822376 DOI: 10.1016/j.imbio.2009.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/02/2009] [Accepted: 09/03/2009] [Indexed: 11/18/2022]
Abstract
Stat6 is a transcription factor that regulates important cellular processes such as proliferation, differentiation, and survival through mediating IL-4 and IL-13 signaling. Importantly, increasing evidence indicates of a role for Stat6 in lymphoproliferative disorders. Mice expressing a constitutively active form of Stat6 (Stat6VT) primarily in T lymphocytes were generated, and it has been recently described that a small percentage (approximately 5%) of these mice develop a spontaneous lymphoproliferative disorder (LPD) resulting in dramatic splenomegaly and altered splenic cell populations. Here, we report that Stat6VT mice housed in a non-pathogen-free environment have an increased incidence (37%) of the LPD. Additionally, examination of the expression of Stat6-regulated genes known to have roles in tumorigenesis demonstrated that there appears to be no one genetic alteration common to lymphocytes from Stat6VT/LPD mice. Interestingly, however, uniform exposure to antigen via immunization resulted in complete abrogation of the LPD in Stat6VT mice.
Collapse
|
8
|
Yu M, Moreno JL, Stains JP, Keegan AD. Complex regulation of tartrate-resistant acid phosphatase (TRAP) expression by interleukin 4 (IL-4): IL-4 indirectly suppresses receptor activator of NF-kappaB ligand (RANKL)-mediated TRAP expression but modestly induces its expression directly. J Biol Chem 2009; 284:32968-79. [PMID: 19801646 DOI: 10.1074/jbc.m109.001016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin 4 (IL-4) inhibits receptor activator of NF-kappaB ligand (RANKL)-induced osteoclast formation and functional activity in a STAT6-dependent manner. IL-4 down-regulates expression of tartrate-resistant acid phosphatase (TRAP) in mature osteoclasts. To determine whether IL-4 regulates TRAP promoter activity, RAW264.7 cells were transfected with a TRAP promoter-luciferase reporter. Treatment with IL-4 alone modestly enhanced TRAP luciferase activity. However, IL-4 suppressed the ability of RANKL to up-regulate TRAP-luciferase activity, suggesting that IL-4 has multiple effects on TRAP transcription. IL-4 also reduced the RANKL-induced association of RNA polymerase II with the TRAP gene in osteoclasts. The TRAP promoter contains a STAT6-binding motif, and STAT6 bound to the endogenous TRAP promoter after IL-4 treatment. To determine the impact of STAT6 binding, we transfected cells with STAT6VT, a constitutively active STAT6 mutant. STAT6VT alone up-regulated TRAP-luciferase activity; this effect was abrogated by mutating the STAT6 binding site in the minimal TRAP promoter. STAT6VT did not inhibit the potent up-regulation of TRAP promoter activity caused by overexpression of NFATc1, PU.1, and microphthalmia transcription factor, downstream targets of macrophage colony-stimulating factor and RANKL. IL-4 down-regulated the expression of c-Fos and NFATc1 in mature osteoclasts. Knockdown of NFATc1 by short interfering RNA caused TRAP expression to be down-regulated, and ectopic expression of NFATc1 abrogated the IL-4-induced down-regulation of TRAP. These results suggest that STAT6 plays two distinct roles in TRAP expression. The IL-4-induced activation of STAT6 mediates suppression of the RANKL-induced TRAP promoter activity indirectly by inhibiting NFATc1 expression. However, in the absence of RANKL and osteoclast differentiation, STAT6 binds the TRAP promoter after IL-4 treatment and directly enhances TRAP expression.
Collapse
Affiliation(s)
- Minjun Yu
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
9
|
Absalon MJ, Smith FO. Treatment strategies for pediatric acute myeloid leukemia. Expert Opin Pharmacother 2009; 10:57-79. [PMID: 19236182 DOI: 10.1517/14656560802627929] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Therapeutic strategies utilized in recently completed Phase III clinical trials in children with de novo acute myeloid leukemia have led to long-term disease-free survival in 50 - 60% of children. This review describes the contributions from early intensification of therapy and postremission intensification using highly myelosuppressive chemotherapy strategies and discusses the controversial roles of allogeneic bone marrow transplantation, maintenance therapy and CNS irradiation. Current strategies focusing on the identification of critical biologic features and measurements of early response to therapy allow for greatly improved risk group stratification. Future improvements in the treatment of children with acute myeloid leukemia will depend on a better understanding of the biology of the disease, targeted therapeutic approaches directed to specific biologic targets, selective use of allogeneic transplantation and innovative clinical trial designs that will allow for the testing of an increasing number of new agents in increasingly small numbers of patients in defined risk groups.
Collapse
Affiliation(s)
- Michael J Absalon
- University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Division of Hematology/Oncology, Cincinnati, OH, USA.
| | | |
Collapse
|
10
|
Recurrent mutations of the STAT6 DNA binding domain in primary mediastinal B-cell lymphoma. Blood 2009; 114:1236-42. [PMID: 19423726 DOI: 10.1182/blood-2009-03-209759] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary mediastinal B-cell lymphoma (PMBL) is a separate entity of aggressive B-cell lymphoma, characterized by a constitutive activation of janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, also observed in Hodgkin lymphoma. Although many cancers exhibit constitutive JAK-STAT pathway activation, mutations of STAT genes have not been reported in neoplasms. Here, we show that MedB-1 PMBL-derived and L1236 Hodgkin-derived cell lines and 20 of 55 (36%) PMBL cases harbor heterozygous missense mutations in STAT6 DNA binding domain, whereas no mutation was found in 25 diffuse large B-cell lymphoma samples. In 3 cases, somatic origin was indicated by the absence of the mutations in the nontumoral tissue. The pattern of STAT6 mutations was different from the classical features of somatic hypermutations. The mutant STAT6 proteins showed a decreased DNA binding ability in transfected HEK cells, but no decrease in expression of STAT6 canonical target genes was observed in PMBL cases with a mutated STAT6 gene. Although the oncogenic properties of STAT6 mutant proteins remain to be determined, their recurrent selection in PMBL strongly argues for their involvement in the pathogenesis of this aggressive B-cell lymphoma.
Collapse
|
11
|
Walker DG, Dalsing-Hernandez JE, Campbell NA, Lue LF. Decreased expression of CD200 and CD200 receptor in Alzheimer's disease: a potential mechanism leading to chronic inflammation. Exp Neurol 2008; 215:5-19. [PMID: 18938162 DOI: 10.1016/j.expneurol.2008.09.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 08/17/2008] [Accepted: 09/04/2008] [Indexed: 12/24/2022]
Abstract
Inflammatory activation of microglia in response to neurodegenerative changes in diseases such as Alzheimer's disease (AD) and Parkinson's disease has been extensively described. These observations have suggested that inflammation could be contributing to disease progression. In this paper, the potential role of CD200 and CD200 receptor (CD200R), whose known functions are to activate anti-inflammatory pathways and induce immune tolerance through binding of CD200 to CD200 receptor (CD200R), was studied in AD. Quantitative studies showed a significant decrease in CD200 protein and mRNA in AD hippocampus and inferior temporal gyrus, but not cerebellum. Immunohistochemistry of brain tissue sections of hippocampus, superior frontal gyrus, inferior temporal gyrus and cerebellum from AD and non-demented cases demonstrated a predominant, though heterogeneous, neuronal localization for CD200. Decreased neuronal expression was apparent in brain regions affected by AD pathology. There was also a significant decrease in CD200R mRNA expression in AD hippocampus and inferior temporal gyrus, but not cerebellum. Low expression of CD200R by microglia was confirmed at the mRNA and protein level using cultured human microglia compared to blood-derived macrophages. Treatment of microglia and macrophages with interleukin-4 and interleukin-13 significantly increased expression of CD200R. Expression of these cytokines was not generally detectable in brain. These data indicate that the anti-inflammatory CD200/CD200R system may be deficient in AD brains. Mechanisms aimed at increasing levels of CD200 and CD200R could have therapeutic potential for controlling inflammation in human neurodegenerative diseases.
Collapse
Affiliation(s)
- Douglas G Walker
- Laboratory of Neuroinflammation, Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, Arizona 85351, USA.
| | | | | | | |
Collapse
|