1
|
Laczik M, Erdős E, Ozgyin L, Hevessy Z, Csősz É, Kalló G, Nagy T, Barta E, Póliska S, Szatmári I, Bálint BL. Extensive proteome and functional genomic profiling of variability between genetically identical human B-lymphoblastoid cells. Sci Data 2022; 9:763. [PMID: 36496436 PMCID: PMC9741606 DOI: 10.1038/s41597-022-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
In life-science research isogenic B-lymphoblastoid cell lines (LCLs) are widely known and preferred for their genetic stability - they are often used for studying mutations for example, where genetic stability is crucial. We have shown previously that phenotypic variability can be observed in isogenic B-lymphoblastoid cell lines. Isogenic LCLs present well-defined phenotypic differences on various levels, for example on the gene expression level or the chromatin level. Based on our investigations, the phenotypic variability of the isogenic LCLs is accompanied by certain genetic variation too. We have developed a compendium of LCL datasets that present the phenotypic and genetic variability of five isogenic LCLs from a multiomic perspective. In this paper, we present additional datasets generated with Next Generation Sequencing techniques to provide genomic and transcriptomic profiles (WGS, RNA-seq, single cell RNA-seq), protein-DNA interactions (ChIP-seq), together with mass spectrometry and flow cytometry datasets to monitor the changes in the proteome. We are sharing these datasets with the scientific community according to the FAIR principles for further investigations.
Collapse
Affiliation(s)
- Miklós Laczik
- grid.7122.60000 0001 1088 8582Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem tér 1., H-4032 Hungary
| | - Edina Erdős
- grid.7122.60000 0001 1088 8582Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem tér 1., H-4032 Hungary
| | - Lilla Ozgyin
- grid.7122.60000 0001 1088 8582Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem tér 1., H-4032 Hungary
| | - Zsuzsanna Hevessy
- grid.7122.60000 0001 1088 8582Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem tér 1., H-4032 Hungary
| | - Éva Csősz
- grid.7122.60000 0001 1088 8582Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem tér 1., H-4032 Hungary
| | - Gergő Kalló
- grid.7122.60000 0001 1088 8582Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem tér 1., H-4032 Hungary
| | - Tibor Nagy
- grid.7122.60000 0001 1088 8582Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem tér 1., H-4032 Hungary ,grid.129553.90000 0001 1015 7851Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert út 4, Gödöllő, H-2100 Hungary
| | - Endre Barta
- grid.7122.60000 0001 1088 8582Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem tér 1., H-4032 Hungary ,grid.129553.90000 0001 1015 7851Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert út 4, Gödöllő, H-2100 Hungary
| | - Szilárd Póliska
- grid.7122.60000 0001 1088 8582Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem tér 1., H-4032 Hungary
| | - István Szatmári
- grid.7122.60000 0001 1088 8582Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem tér 1., H-4032 Hungary ,grid.7122.60000 0001 1088 8582Faculty of Pharmacy, University of Debrecen, Debrecen, Egyetem tér 1., H-4032 Hungary
| | - Bálint László Bálint
- grid.7122.60000 0001 1088 8582Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem tér 1., H-4032 Hungary ,grid.11804.3c0000 0001 0942 9821Department of Bioinformatics, Semmelweis University, Budapest, Tűzoltó utca 7-9., H-1094 Hungary
| |
Collapse
|
2
|
Thieme CJ, Schulz M, Wehler P, Anft M, Amini L, Blàzquez-Navarro A, Stervbo U, Hecht J, Nienen M, Stittrich AB, Choi M, Zgoura P, Viebahn R, Schmueck-Henneresse M, Reinke P, Westhoff TH, Roch T, Babel N. In vitro and in vivo evidence that the switch from calcineurin to mTOR inhibitors may be a strategy for immunosuppression in Epstein-Barr virus-associated post-transplant lymphoproliferative disorder. Kidney Int 2022; 102:1392-1408. [PMID: 36103953 DOI: 10.1016/j.kint.2022.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 01/12/2023]
Abstract
Post-transplant lymphoproliferative disorder is a life-threatening complication of immunosuppression following transplantation mediated by failure of T cells to control Epstein-Barr virus (EBV)-infected and transformed B cells. Typically, a modification or reduction of immunosuppression is recommended, but insufficiently defined thus far. In order to help delineate this, we characterized EBV-antigen-specific T cells and lymphoblastoid cell lines from healthy donors and in patients with a kidney transplant in the absence or presence of the standard immunosuppressants tacrolimus, cyclosporin A, prednisolone, rapamycin, and mycophenolic acid. Phenotypes of lymphoblastoid cell-lines and T cells, T cell-receptor-repertoire diversity, and T-cell reactivity upon co-culture with autologous lymphoblastoid cell lines were analyzed. Rapamycin and mycophenolic acid inhibited lymphoblastoid cell-line proliferation. T cells treated with prednisolone and rapamycin showed nearly normal cytokine production. Proliferation and the viability of T cells were decreased by mycophenolic acid, while tacrolimus and cyclosporin A were strong suppressors of T-cell function including their killing activity. Overall, our study provides a basis for the clinical decision for the modification and reduction of immunosuppression and adds information to the complex balance of maintaining anti-viral immunity while preventing acute rejection. Thus, an immunosuppressive regime based on mTOR inhibition and reduced or withdrawn calcineurin inhibitors could be a promising strategy for patients with increased risk of or manifested EBV-associated post-transplant lymphoproliferative disorder.
Collapse
Affiliation(s)
- Constantin J Thieme
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Malissa Schulz
- Hochschule für Technik und Wirtschaft Berlin (HTW), Berlin, Germany
| | - Patrizia Wehler
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Leila Amini
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arturo Blàzquez-Navarro
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Jochen Hecht
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain; Experimental and Health Sciences Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mikalai Nienen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Mira Choi
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Panagiota Zgoura
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Richard Viebahn
- Department of Surgery, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Michael Schmueck-Henneresse
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Petra Reinke
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Timm H Westhoff
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Toralf Roch
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Nina Babel
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany.
| |
Collapse
|
3
|
Isolation of Neoantigen-Specific Human T Cell Receptors from Different Human and Murine Repertoires. Cancers (Basel) 2022; 14:cancers14071842. [PMID: 35406613 PMCID: PMC8998067 DOI: 10.3390/cancers14071842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 01/24/2023] Open
Abstract
Simple Summary T cell-based immunotherapy has achieved remarkable clinical responses in patients with cancer. Neoepitope-specific T cells can specifically recognize mutated tumor cells and have led to tumor regression in mouse models and clinical studies. However, isolating neoepitope-specific T cell receptors (TCRs) from the patients’ own repertoire has shown limited success. Sourcing T cell repertoires, other than the patients’ own, has certain advantages: the availability of larger amounts of blood from healthy donors, circumventing tumor-related immunosuppression in patients, and including different donors to broaden the pool of specific T cells. Here, for the first time, a side-by-side comparison of three different TCR donor repertoires, including patients and HLA-matched allogenic healthy human repertoires, as well as repertoires of transgenic mice, is performed. Our results support recent studies that using not only healthy donor T cell repertoires, but also transgenic mice might be a viable strategy for isolating TCRs with known specificity directed against neoantigens for adoptive T cell therapy. Abstract (1) Background: Mutation-specific T cell receptor (TCR)-based adoptive T cell therapy represents a truly tumor-specific immunotherapeutic strategy. However, isolating neoepitope-specific TCRs remains a challenge. (2) Methods: We investigated, side by side, different TCR repertoires—patients’ peripheral lymphocytes (PBLs) and tumor-infiltrating lymphocytes (TILs), PBLs of healthy donors, and a humanized mouse model—to isolate neoepitope-specific TCRs against eight neoepitope candidates from a colon cancer and an ovarian cancer patient. Neoepitope candidates were used to stimulate T cells from different repertoires in vitro to generate neoepitope-specific T cells and isolate the specific TCRs. (3) Results: We isolated six TCRs from healthy donors, directed against four neoepitope candidates and one TCR from the murine T cell repertoire. Endogenous processing of one neoepitope, for which we isolated one TCR from both human and mouse-derived repertoires, could be shown. No neoepitope-specific TCR could be generated from the patients’ own repertoire. (4) Conclusion: Our data indicate that successful isolation of neoepitope-specific TCRs depends on various factors such as the heathy donor’s TCR repertoire or the presence of a tumor microenvironment allowing neoepitope-specific immune responses of the host. We show the advantage and feasibility of using healthy donor repertoires and humanized mouse TCR repertoires to generate mutation-specific TCRs with different specificities, especially in a setting when the availability of patient material is limited.
Collapse
|
4
|
Extensive epigenetic and transcriptomic variability between genetically identical human B-lymphoblastoid cells with implications in pharmacogenomics research. Sci Rep 2019; 9:4889. [PMID: 30894562 PMCID: PMC6426863 DOI: 10.1038/s41598-019-40897-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Genotyped human B-lymphoblastoid cell lines (LCLs) are widely used models in mapping quantitative trait loci for chromatin features, gene expression, and drug response. The extent of genotype-independent functional genomic variability of the LCL model, although largely overlooked, may inform association study design. In this study, we use flow cytometry, chromatin immunoprecipitation sequencing and mRNA sequencing to study surface marker patterns, quantify genome-wide chromatin changes (H3K27ac) and transcriptome variability, respectively, among five isogenic LCLs derived from the same individual. Most of the studied LCLs were non-monoclonal and had mature B cell phenotypes. Strikingly, nearly one-fourth of active gene regulatory regions showed significantly variable H3K27ac levels, especially enhancers, among which several were classified as clustered enhancers. Large, contiguous genomic regions showed signs of coordinated activity change. Regulatory differences were mirrored by mRNA expression changes, preferentially affecting hundreds of genes involved in specialized cellular processes including immune and drug response pathways. Differential expression of DPYD, an enzyme involved in 5-fluorouracil (5-FU) catabolism, was associated with variable LCL growth inhibition mediated by 5-FU. The extent of genotype-independent functional genomic variability might highlight the need to revisit study design strategies for LCLs in pharmacogenomics.
Collapse
|
5
|
Burnard S, Lechner-Scott J, Scott RJ. EBV and MS: Major cause, minor contribution or red-herring? Mult Scler Relat Disord 2017; 16:24-30. [DOI: 10.1016/j.msard.2017.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/05/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022]
|
6
|
Su KY, Watanabe A, Yeh CH, Kelsoe G, Kuraoka M. Efficient Culture of Human Naive and Memory B Cells for Use as APCs. THE JOURNAL OF IMMUNOLOGY 2016; 197:4163-4176. [PMID: 27815447 DOI: 10.4049/jimmunol.1502193] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 08/30/2016] [Indexed: 12/27/2022]
Abstract
The ability to culture and expand B cells in vitro has become a useful tool for studying human immunity. A limitation of current methods for human B cell culture is the capacity to support mature B cell proliferation. We developed a culture method to support the efficient activation and proliferation of naive and memory human B cells. This culture supports extensive B cell proliferation, with ∼103-fold increases following 8 d in culture and 106-fold increases when cultures are split and cultured for 8 more days. In culture, a significant fraction of naive B cells undergo isotype switching and differentiate into plasmacytes. Culture-derived (CD) B cells are readily cryopreserved and, when recovered, retain their ability to proliferate and differentiate. Significantly, proliferating CD B cells express high levels of MHC class II, CD80, and CD86. CD B cells act as APCs and present alloantigens and microbial Ags to T cells. We are able to activate and expand Ag-specific memory B cells; these cultured cells are highly effective in presenting Ag to T cells. We characterized the TCR repertoire of rare Ag-specific CD4+ T cells that proliferated in response to tetanus toxoid (TT) presented by autologous CD B cells. TCR Vβ usage by TT-activated CD4+ T cells differs from resting and unspecifically activated CD4+ T cells. Moreover, we found that TT-specific TCR Vβ usage by CD4+ T cells was substantially different between donors. This culture method provides a platform for studying the BCR and TCR repertoires within a single individual.
Collapse
Affiliation(s)
- Kuei-Ying Su
- Department of Immunology, Duke University, Durham, NC 27710.,Tzu Chi Medical Center, Hualien 970, Taiwan; and
| | - Akiko Watanabe
- Department of Immunology, Duke University, Durham, NC 27710
| | - Chen-Hao Yeh
- Department of Immunology, Duke University, Durham, NC 27710
| | - Garnett Kelsoe
- Department of Immunology, Duke University, Durham, NC 27710; .,Human Vaccine Institute, Duke University, Durham, NC 27710
| | | |
Collapse
|
7
|
Sims JS, Grinshpun B, Feng Y, Ung TH, Neira JA, Samanamud JL, Canoll P, Shen Y, Sims PA, Bruce JN. Diversity and divergence of the glioma-infiltrating T-cell receptor repertoire. Proc Natl Acad Sci U S A 2016; 113:E3529-37. [PMID: 27261081 PMCID: PMC4922177 DOI: 10.1073/pnas.1601012113] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although immune signaling has emerged as a defining feature of the glioma microenvironment, how the underlying structure of the glioma-infiltrating T-cell population differs from that of the blood from which it originates has been difficult to measure directly in patients. High-throughput sequencing of T-cell receptor (TCR) repertoires (TCRseq) provides a population-wide statistical description of how T cells respond to disease. We have defined immunophenotypes of whole repertoires based on TCRseq of the α- and β-chains from glioma tissue, nonneoplastic brain tissue, and peripheral blood from patients. Using information theory, we partitioned the diversity of these TCR repertoires into that from the distribution of VJ cassette combinations and diversity due to VJ-independent factors, such as selection due to antigen binding. Tumor-infiltrating lymphocytes (TILs) possessed higher VJ-independent diversity than nonneoplastic tissue, stratifying patients according to tumor grade. We found that the VJ-independent components of tumor-associated repertoires diverge more from their corresponding peripheral repertoires than T-cell populations in nonneoplastic brain tissue, particularly for low-grade gliomas. Finally, we identified a "signature" set of TCRs whose use in peripheral blood is associated with patients exhibiting low TIL divergence and is depleted in patients with highly divergent TIL repertoires. This signature is detectable in peripheral blood, and therefore accessible noninvasively. We anticipate that these immunophenotypes will be foundational to monitoring and predicting response to antiglioma vaccines and immunotherapy.
Collapse
Affiliation(s)
- Jennifer S Sims
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10032
| | - Boris Grinshpun
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032
| | - Yaping Feng
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032; Waksman Institute of Microbiology Genomics Core Facility, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Timothy H Ung
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10032; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045
| | - Justin A Neira
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10032
| | - Jorge L Samanamud
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10032
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032; Department of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032; JP Sulzberger Columbia Genome Center, Columbia University Medical Center, New York, NY 10032;
| | - Peter A Sims
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032; JP Sulzberger Columbia Genome Center, Columbia University Medical Center, New York, NY 10032; Department of Biochemistry & Molecular Biophysics, Columbia University Medical Center, New York, NY 10032
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10032;
| |
Collapse
|
8
|
Lapsia S, Koganti S, Spadaro S, Rajapakse R, Chawla A, Bhaduri-McIntosh S. Anti-TNFα therapy for inflammatory bowel diseases is associated with Epstein-Barr virus lytic activation. J Med Virol 2015; 88:312-8. [PMID: 26307954 DOI: 10.1002/jmv.24331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2015] [Indexed: 01/19/2023]
Abstract
Anti-TNFα therapy, known to suppress T-cell immunity, is increasingly gaining popularity for treatment of autoimmune diseases including inflammatory bowel diseases (IBD). T-cell suppression increases the risk of B-cell EBV-lymphoproliferative diseases and lymphomas. Since EBV-lytic activation is essential for development of EBV-lymphomas and there have been reports of EBV-lymphomas in patients treated with anti-TNFα therapy, we investigated if patients treated with anti-TNFα antibodies demonstrate greater EBV-lytic activity in blood. Peripheral blood mononuclear cells from 10 IBD patients solely on anti-TNFα therapy compared to 3 control groups (10 IBD patients not on immunosuppressive therapy, 10 patients with abdominal pain but without IBD, and 10 healthy subjects) were examined for the percentage of T-cells, EBV load and EBV-lytic transcripts. Patients on anti-TNFα therapy had significantly fewer T-cells, greater EBV load, and increased levels of transcripts from EBV-lytic genes of all kinetic classes compared to controls. Furthermore, exposure of EBV-infected B-cell lines to anti-TNFα antibodies resulted in increased levels of BZLF1 mRNA; BZLF1 encodes for ZEBRA, the viral latency-to-lytic cycle switch. Thus, IBD patients treated with anti-TNFα antibodies have greater EBV loads likely due to enhanced EBV-lytic gene expression and anti-TNFα antibodies may be sufficient to activate the EBV lytic cycle. Findings from this pilot study lay the groundwork for additional scientific and clinical investigation into the effects of anti-TNFα therapy on the life cycle of EBV, a ubiquitous oncovirus that causes lymphomas in the setting of immunocompromise.
Collapse
Affiliation(s)
- Sameer Lapsia
- Division of Gastroenterology, Department of Pediatrics, Stony Brook University School of Medicine, Stony Brook, New York
| | - Siva Koganti
- Division of Infectious Diseases, Department of Pediatrics, Stony Brook University School of Medicine, Stony Brook, New York
| | - Salvatore Spadaro
- Division of Infectious Diseases, Department of Pediatrics, Stony Brook University School of Medicine, Stony Brook, New York
| | - Ramona Rajapakse
- Division of Gastroenterology, Department of Internal Medicine, Stony Brook University School of Medicine, Stony Brook, New York
| | - Anupama Chawla
- Division of Gastroenterology, Department of Pediatrics, Stony Brook University School of Medicine, Stony Brook, New York
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, Stony Brook University School of Medicine, Stony Brook, New York.,Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York
| |
Collapse
|
9
|
Abstract
Epstein-Barr virus (EBV) was discovered 50 years ago as the first candidate human tumor virus. Since then, we have realized that this human γ-herpesvirus establishes persistent infection in the majority of adult humans, but fortunately causes EBV-associated diseases only in few individuals. This is an incredible success story of the human immune system, which controls EBV infection and its transforming capacity for decades. A better understanding of this immune control would not only benefit patients with EBV-associated malignancies, but could also provide clues how to establish such a potent, mostly cell-mediated immune control against other pathogens and tumors. However, the functional relevance of EBV-specific immune responses can only be addressed in vivo, and mice with reconstituted human immune system components (huMice) constitute a small animal model to interrogate the protective value of immune compartments during EBV infection, but also might provide a platform to test EBV-specific vaccines. This chapter will summarize the insights into EBV immunobiology that have already been gained in these models and provide an outlook into promising future avenues to develop this in vivo model of EBV infection and human immune responses further.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
10
|
Lossius A, Johansen JN, Vartdal F, Robins H, Jūratė Šaltytė B, Holmøy T, Olweus J. High-throughput sequencing of TCR repertoires in multiple sclerosis reveals intrathecal enrichment of EBV-reactive CD8+ T cells. Eur J Immunol 2014; 44:3439-52. [PMID: 25103993 DOI: 10.1002/eji.201444662] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/25/2014] [Accepted: 08/06/2014] [Indexed: 01/15/2023]
Abstract
Epstein-Barr virus (EBV) has long been suggested as a pathogen in multiple sclerosis (MS). Here, we used high-throughput sequencing to determine the diversity, compartmentalization, persistence, and EBV-reactivity of the T-cell receptor (TCR) repertoires in MS. TCR-β genes were sequenced in paired samples of cerebrospinal fluid (CSF) and blood from patients with MS and controls with other inflammatory neurological diseases. The TCR repertoires were highly diverse in both compartments and patient groups. Expanded T-cell clones, represented by TCR-β sequences >0.1%, were of different identity in CSF and blood of MS patients, and persisted for more than a year. Reference TCR-β libraries generated from peripheral blood T cells reactive against autologous EBV-transformed B cells were highly enriched for public EBV-specific sequences and were used to quantify EBV-reactive TCR-β sequences in CSF. TCR-β sequences of EBV-reactive CD8+ T cells, including several public EBV-specific sequences, were intrathecally enriched in MS patients only, whereas those of EBV-reactive CD4+ T cells were also enriched in CSF of controls. These data provide evidence for a clonally diverse, yet compartmentalized and persistent, intrathecal T-cell response in MS. The presented strategy links TCR sequence to intrathecal T-cell specificity, demonstrating enrichment of EBV-reactive CD8+ T cells in MS.
Collapse
Affiliation(s)
- Andreas Lossius
- Department of Immunology and Transfusion Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Department of Neurology, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
11
|
B lymphocytes from patients with a hypomorphic mutation in STAT3 resist Epstein-Barr virus-driven cell proliferation. J Virol 2013; 88:516-24. [PMID: 24173212 DOI: 10.1128/jvi.02601-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) oncogenes exert potent B cell proliferative effects. EBV infection gives rise to B cell lines that readily proliferate in culture. This ability of EBV represents a powerful tool to study cell proliferation. In efforts to delineate the contribution of signal transducer and activator of transcription 3 (STAT3) toward EBV-driven cell proliferation, we have discovered that B cells from patients with autosomal dominant hyper-IgE syndrome (AD-HIES) resist such EBV oncogene-driven outgrowth of cells. Patients with AD-HIES have a dominant negative mutation in their STAT3 gene which renders most of the protein nonfunctional. Exposure of healthy subject-derived B cells to EBV resulted in early activation of STAT3, rapidly followed by increased expression of its mRNA and protein. STAT3 upregulation preceded the expression of EBNA2, temporally one of the first viral oncogenes to be expressed. We found that STAT3 was necessary for subsequent survival and for proliferation of EBV-infected cells past the S phase of the cell cycle. Consequently, B cells from AD-HIES patients were prone to dying and accumulated in the S phase, thereby accounting for impaired cell outgrowth. Of importance, we have now identified a cohort of patients with a primary immunodeficiency disorder whose B cells oppose EBV-driven proliferative signals. These findings simultaneously reveal how EBV manipulates host STAT3 even before expression of viral oncogenes to facilitate cell survival and proliferation, processes fundamental to EBV lymphomagenesis.
Collapse
|
12
|
Calarota SA, Chiesa A, Zelini P, Comolli G, Minoli L, Baldanti F. Detection of Epstein-Barr virus-specific memory CD4+ T cells using a peptide-based cultured enzyme-linked immunospot assay. Immunology 2013; 139:533-44. [PMID: 23560877 DOI: 10.1111/imm.12106] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 03/11/2013] [Accepted: 03/30/2013] [Indexed: 11/28/2022] Open
Abstract
Approaches to evaluate T-cell responses to Epstein-Barr virus (EBV) include enzyme-linked immunospot (ELISPOT), which quantifies cells capable of immediate interferon-γ secretion upon antigen stimulation. However, evaluation of expandable EBV-specific memory T cells in an ELISPOT format has not been described previously. We quantified EBV-specific T-cell precursors with high proliferative capacity by using a peptide-based cultured interferon-γ ELISPOT assay. Standard and cultured ELISPOT responses to overlapping peptide pools (15-mers overlapping by 11 amino acids) covering the lytic (BZLF1 and BMRF1) and latent (EBNA1, EBNA3a, EBNA3b, EBNA3c, LMP1 and LMP2) EBV proteins were evaluated in 20 healthy subjects with remote EBV infection and, for comparison, in four solid organ transplant recipients. Cultured ELISPOT responses to both lytic and latent EBV antigens were significantly higher than standard ELISPOT responses. The distribution of EBV-specific T-cell responses detected in healthy virus carriers showed more consistent cultured ELISPOT responses compared with standard ELISPOT responses. T-cell responses quantified by cultured ELISPOT were mainly mediated by CD4+ T cells and a marked pattern of immunodominance to latent-phase antigens (EBNA1 > EBNA3 family antigens > LMP2 > LMP1) was shown. Both the magnitude and distribution of EBV-specific T-cell responses were altered in solid organ transplant recipients; in particular, cultured ELISPOT responses were almost undetectable in a lung-transplanted patient with EBV-associated diseases. Analysis of T-cell responses to EBV by ELISPOT assays might provide new insights into the pathogenesis of EBV-related diseases and serve as new tools in the monitoring of EBV infection in immunocompromised patients.
Collapse
Affiliation(s)
- Sandra A Calarota
- Virology and Microbiology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Evans CM, Kudesia G, McKendrick M. Management of herpesvirus infections. Int J Antimicrob Agents 2013; 42:119-28. [PMID: 23820015 DOI: 10.1016/j.ijantimicag.2013.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 12/19/2022]
Abstract
Management of human herpesviruses remains a considerable clinical challenge, in part due to their ability to cause both lytic and latent disease. Infection with the Herpesviridae results in lifelong infection, which can reactivate at any time. Control of herpesviruses is by the innate and adaptive immune systems. Herpesviruses must evade the host innate immune system to establish infection. Once infected, the adaptive immune response, primarily CD8(+) T-cells, is crucial in establishing and maintaining latency. Latent herpesviruses are characterised by the presence of viral DNA in infected cells and limited or no viral replication. These characteristics provide a challenge to clinicians and those developing antiviral agents. The scope of this review is two-fold. First, to provide an overview of all antivirals used against herpesviruses, including their mechanism of action, pharmacokinetics, side effects, resistance and clinical uses. And second, to address the management of each of the eight herpesviruses both in the immunocompetent and immunocompromised host, providing evidence for clinical management and therapeutic options, which is important to the clinician engaged in the management of these infections.
Collapse
Affiliation(s)
- Cariad M Evans
- Department of Virology, Northern General Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
| | | | | |
Collapse
|
14
|
CD8+ T cells far predominate over CD4+ T cells in healthy immune response to Epstein-Barr virus infected lymphoblastoid cell lines. Blood 2012; 120:5085-7. [DOI: 10.1182/blood-2012-06-437285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Abstract
Varicella zoster virus (VZV) is a highly successful human pathogen, which is never completely eliminated from the host. VZV causes two clinically distinct diseases, varicella (chickenpox) during primary infection and herpes zoster (shingles) following virus reactivation from latency. Throughout its lifecycle the virus encounters the innate and adaptive immune response, and in order to prevent eradication it has developed many mechanisms to evade and overcome these responses. This review will provide a comprehensive overview of the host immune response to VZV infection, during the multiple stages of the virus lifecycle and at key sites of VZV infection. We will also briefly describe some of the strategies employed by the virus to overcome the host immune response and the ongoing challenges in further elucidating the interplay between VZV and the host immune response in an attempt to lead to better therapies and a ‘second generation’ vaccine for VZV disease.
Collapse
Affiliation(s)
- Megan Steain
- Discipline of Infectious Diseases & Immunology, The University of Sydney, NSW, Australia
- Centre for Virus Research, Westmead Millennium Institute, NSW, Australia
| | - Barry Slobedman
- Discipline of Infectious Diseases & Immunology, The University of Sydney, NSW, Australia
- Centre for Virus Research, Westmead Millennium Institute, NSW, Australia
| | - Allison Abendroth
- Discipline of Infectious Diseases & Immunology, The University of Sydney, NSW, Australia
| |
Collapse
|
16
|
O'Reilly RJ, Hasan A, Doubrovina E, Koehne G, Prockop S. Novel strategies for adoptive therapy following HLA disparate transplants. Best Pract Res Clin Haematol 2012; 24:381-91. [PMID: 21925091 DOI: 10.1016/j.beha.2011.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Transplants of SBA-E- allogeneic marrow or G-CSF mobilized CD34+ (ISOLEX) E- peripheral blood progenitor cells which are adequately depleted of T-cells, when administered without post-transplant immunosuppression now induce consistent engraftment with low incidences of acute and chronic GVHD both in HLA matched and HLA disparate recipients. Furthermore, the incidence of relapse post transplant is not increased in patients transplanted for AML, MDS or ALL. In our series, the incidence of severe infections in HLA-matched recipients of such T-cell depleted grafts also does not differ from that detected following similarly matched unmodified grafts. However, in recipients of HLA-haplotype disparate T-cell depleted grafts, the risk of lethal viral infections is increased and prolonged. In many cases, this risk is closely correlated with failures of immunodominant virus-specific donor T-cells transferred in the graft to recognize infected host cells because they are restricted by HLA alleles not shared by the host. To address this limitation, we have developed a panel of artificial antigen presenting cells, each expressing a single prevalent HLA-allele. Using this panel, we are able to selectively generate virus-specific cytotoxic T-cells of desired HLA restriction, to insure their effectiveness in HLA haplotype-disparate transplant recipients. We have also shown that partially HLA-matched, third party-derived EBV-specific T-cells, selected from our bank of previously generated and characterized GMP-grade cell lines on the basis of their HLA restriction, can induce durable remissions of rituximab-refractory EBV lymphomas. These approaches may thus provide new, immediately accessible resources for the generation and broad application of immune cell therapies to treat and prevent severe viral diseases post transplant.
Collapse
Affiliation(s)
- Richard J O'Reilly
- Marrow Transplantation Program, Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | | | | | |
Collapse
|
17
|
Long HM, Leese AM, Chagoury OL, Connerty SR, Quarcoopome J, Quinn LL, Shannon-Lowe C, Rickinson AB. Cytotoxic CD4+ T cell responses to EBV contrast with CD8 responses in breadth of lytic cycle antigen choice and in lytic cycle recognition. THE JOURNAL OF IMMUNOLOGY 2011; 187:92-101. [PMID: 21622860 DOI: 10.4049/jimmunol.1100590] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
EBV, a B lymphotropic herpesvirus, encodes two immediate early (IE)-, >30 early (E)-, and >30 late (L)-phase proteins during its replication (lytic) cycle. Despite this, lytic Ag-induced CD8 responses are strongly skewed toward IE and a few E proteins only, all expressed before HLA I presentation is blocked in lytically infected cells. For comparison, we examined CD4(+) T cell responses to eight IE, E, or L proteins, screening 14 virus-immune donors to overlapping peptide pools in IFN-γ ELISPOT assays, and established CD4(+) T cell clones against 12 defined epitopes for target-recognition assays. We found that the lytic Ag-specific CD4(+) T cell response differs radically from its CD8 counterpart in that it is widely distributed across IE, E, and L Ag targets, often with multiple reactivities detectable per donor and with IE, E, or L epitope responses being numerically dominant, and that all CD4(+) T cell clones, whether IE, E, or L epitope-specific, show strong recognition of EBV-transformed B cell lines, despite the lines containing only a small fraction of lytically infected cells. Efficient recognition occurs because lytic Ags are released into the culture and are acquired and processed by neighboring latently infected cells. These findings suggested that lytic Ag-specific CD4 responses are driven by a different route of Ag display than drives CD8 responses and that such CD4 effectors could be therapeutically useful against EBV-driven lymphoproliferative disease lesions, which contain similarly small fractions of EBV-transformed cells entering the lytic cycle.
Collapse
Affiliation(s)
- Heather M Long
- School of Cancer Sciences and Medical Research Council Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Primary varicella-zoster virus (VZV) infection (varicella) induces VZV-specific antibody and VZV-specific T cell-mediated immunity. T cell-mediated immunity, which is detected within 1-2 weeks after appearance of rash, and consists of both CD4 and CD8 effector and memory T cells, is essential for recovery from varicella. Administration of a varicella vaccine also generates VZV-specific humoral and cellular immune responses. The memory cell responses that develop during varicella or after vaccination contribute to protection following re-exposure to VZV. These responses are subsequently boosted either by endogenous re-exposure (silent reactivation of latent virus) or exogenous re-exposure (environmental). VZV-specific T cell-mediated immunity is also necessary to maintain latent VZV in a subclinical state in sensory ganglia. When these responses decline, as occurs with aging or iatrogenic immune suppression, reactivation of VZV leads to herpes zoster. Similarly, the magnitude of these responses early after the onset of herpes zoster correlates with the extent of zoster-associated pain. These essential immune responses are boosted by the VZV vaccine developed to prevent herpes zoster.
Collapse
|
19
|
Guerreiro M, Na IK, Letsch A, Haase D, Bauer S, Meisel C, Roemhild A, Reinke P, Volk HD, Scheibenbogen C. Human peripheral blood and bone marrow Epstein-Barr virus-specific T-cell repertoire in latent infection reveals distinct memory T-cell subsets. Eur J Immunol 2010; 40:1566-76. [PMID: 20232341 DOI: 10.1002/eji.200940000] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
EBV infection leads to life-long viral persistence. Although EBV infection can result in chronic disease and malignant transformation, most carriers remain disease-free as a result of effective control by T cells. EBV-specific IFN-gamma-producing T cells could be demonstrated in acute and chronic infection as well as during latency. Recent studies, however, provide evidence that assessing IFN-gamma alone is insufficient to assess the quantity and quality of a T-cell response. Using overlapping peptide pools of latent EBV nuclear antigen 1 and lytic BZLF-1 protein and multicolor flow cytometry, we demonstrate that the majority of ex vivo EBV-reactive T cells in healthy virus carriers are indeed IL-2- and/or TNF-producing memory cells, the latter being significantly more frequent in BM. After in vitro expansion, a substantial number of EBV-specific CD4(+) and CD8(+) T cells retained a CC-chemokine receptor 7 (CCR7)-positive memory phenotype. Based on their cytokine profiles, six different EBV-specific T-cell subsets could be distinguished with TNF-single or TNF/IL-2-double producing cells expressing the highest CCR7 levels resembling early-differentiated memory T cells. Our study delineates the memory T-cell profile of a protective immune response and provides a basis for analyzing T-cell responses in EBV-associated diseases.
Collapse
Affiliation(s)
- Manuel Guerreiro
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Using Epstein-Barr viral load assays to diagnose, monitor, and prevent posttransplant lymphoproliferative disorder. Clin Microbiol Rev 2010; 23:350-66. [PMID: 20375356 DOI: 10.1128/cmr.00006-09] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) DNA measurement is being incorporated into routine medical practice to help diagnose, monitor, and predict posttransplant lymphoproliferative disorder (PTLD) in immunocompromised graft recipients. PTLD is an aggressive neoplasm that almost always harbors EBV DNA within the neoplastic lymphocytes, and it is often fatal if not recognized and treated promptly. Validated protocols, commercial reagents, and automated instruments facilitate implementation of EBV load assays by real-time PCR. When applied to either whole blood or plasma, EBV DNA levels reflect clinical status with respect to EBV-related neoplasia. While many healthy transplant recipients have low viral loads, high EBV loads are strongly associated with current or impending PTLD. Complementary laboratory assays as well as histopathologic examination of lesional tissue help in interpreting modest elevations in viral load. Circulating EBV levels in serial samples reflect changes in tumor burden and represent an effective, noninvasive tool for monitoring the efficacy of therapy. In high-risk patients, serial testing permits early clinical intervention to prevent progression toward frank PTLD. Restoring T cell immunity against EBV is a major strategy for overcoming PTLD, and novel EBV-directed therapies are being explored to thwart virus-driven neoplasia.
Collapse
|
21
|
Hellqvist E, Kvarnström M, Söderberg A, Vrethem M, Ernerudh J, Rosén A. Myelin protein zero is naturally processed in the B cells of monoclonal gammopathy of undetermined significance of immunoglobulin M isotype: aberrant triggering of a patient's T cells. Haematologica 2009; 95:627-36. [PMID: 20015874 DOI: 10.3324/haematol.2009.015123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Monoclonal gammopathy of undetermined significance of immunoglobulin M isotype is a condition with clonally expanded B cells, recently suggested to have an infectious origin. This monoclonal gammopathy is frequently associated with polyneuropathy and antibodies against myelin protein zero, whereas the role of the T cells remains largely unknown. We analyzed protein zero-specific B cells, as antigen-presenting cells, and their capacity to activate T helper cells. DESIGN AND METHODS We used a well-characterized monoclonal gammopathy of undetermined significance-derived B-cell line, TJ2, expressing anti-protein zero immunoglobulin M. The ability of TJ2 cells to bind, endocytose, process, and present protein zero was investigated by receptor-clustering and immunofluorescence. The activation of protein zero-specific autologous T cells was studied by measuring interleukin-2 and interferon-gamma with flow cytometry, immunobeads, and enzyme-linked immunospot assays. RESULTS Surface-receptor clustering and endocytosis of receptor-ligand (immunoglobulin M/protein zero) complexes were pronounced after exposure to protein zero. Naturally processed or synthetic protein zero peptide (194-208)-pulsed TJ2 cells significantly induced interleukin-2 secretion from autologous T cells compared to control antigen-pulsed cells (P<0.001). The numbers of interferon-gamma-producing T helper cells, including CD4(+)/CD8(+) cells, were also significantly increased (P=0.0152). Affinity-isolated naturally processed myelin peptides were potent interferon-gamma stimulators for autologous peripheral blood mononuclear cells, but not for control peripheral blood mononuclear cells. CONCLUSIONS We show for the first time that myelin protein zero is naturally processed in B cells from monoclonal gammopathy of undetermined significance of immunoglobulin M isotype, acting as aberrant antigen-presenting cells in activation of a patient's T helper cells. Our findings cast new light on the important role of autoreactive protein zero-specific B cells in the induction of the pathogenic T-cell responses found in nerve lesions of patients with monoclonal gammopathy of undetermined significance with peripheral neuropathy.
Collapse
Affiliation(s)
- Eva Hellqvist
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, SE-581 85 Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
22
|
CD4+ T-cell clones recognizing human lymphoma-associated antigens: generation by in vitro stimulation with autologous Epstein-Barr virus-transformed B cells. Blood 2009; 114:807-15. [PMID: 19443664 DOI: 10.1182/blood-2008-12-194043] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV)-specific T-cell preparations, generated by stimulating immune donor lymphocytes with the autologous virus-transformed B-lymphoblastoid cell line (LCL) in vitro, can be used to target EBV-positive malignancies. Although these preparations are enriched for EBV antigen-specific CD8(+) T cells, most also contain a CD4(+) T-cell population whose specificity is unknown. Here, we show that, although CD4(+) T-cell clones derived from such cultures recognize HLA class II-matched LCLs but not mitogen-activated B lymphoblasts, many (1) do not map to any known EBV antigen, (2) can be raised from EBV-naive as well as EBV-immune persons, and (3) can recognize a broad range of human B lymphoma-derived cell lines irrespective of EBV genome status, providing those lines to express the relevant HLA class II-restricting allele. Importantly, such CD4(+) clones not only produce IFNgamma but are also cytotoxic and can control the outgrowth of HLA-matched lymphoma cells in cocultivation assays. We infer that such CD4(+) T cells recognize cellular antigens that are preferentially up-regulated in EBV-transformed but not mitogen-activated B lymphoblasts and that are also expressed in a range of B-cell malignancies. Such antigens are therefore of potential value as targets for CD4(+) T cell-based immunotherapy.
Collapse
|
23
|
Merlo A, Turrini R, Dolcetti R, Zanovello P, Amadori A, Rosato A. Adoptive cell therapy against EBV-related malignancies: a survey of clinical results. Expert Opin Biol Ther 2008; 8:1265-94. [PMID: 18694349 DOI: 10.1517/14712598.8.9.1265] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Epstein-Barr Virus (EBV) infection is associated with a heterogeneous group of tumors, including lymphoproliferative disorders, Hodgkin's disease, nasopharyngeal carcinoma and Burkitt's lymphoma. As such neoplastic disorders express viral antigens, they can be treated by adoptive immunotherapy strategies relying mostly on in vitro generation and expansion of virus-specific cytotoxic T lymphocytes (CTL), which can be administered to patients for both prophylaxis and treatment. OBJECTIVE We reviewed results obtained in all clinical trials reported thus far employing anti-EBV adoptive immunotherapy for different virus-related malignancies. METHODS 'PTLD after HSCT', 'PTLD after SOT', 'NPC', 'HD', 'SCAEBV' and 'extranodal NK/T cell lymphoma', in combination with 'Adoptive immunotherapy' and 'Adoptive transfer', were used as search keys for papers in PubMed. CONCLUSIONS Although the heterogeneity of different studies precludes their collection for a meta-analysis, it can be inferred that adoptive therapy with EBV-specific CTL is safe, well tolerated and particularly effective in the case of most immunogenic tumors, like post-transplant lymphoproliferative disease.
Collapse
Affiliation(s)
- Anna Merlo
- University of Padova, Department of Oncology and Surgical Sciences, Via Gattamelata 64, I-35128 Padova, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Epstein-Barr virus (EBV) infects various cell types in a wide spectrum of benign and malignant diseases. Laboratory tests for EBV have improved and are increasingly used in diagnosis, prognosis, prediction, and prevention of diseases ranging from infectious mononucleosis to selected subtypes of lymphoma, sarcoma, and carcinoma. Indeed, the presence of EBV is among the most effective tumor markers supporting clinical management of cancer patients. In biopsies, localization of EBER transcripts by in situ hybridization remains the gold standard for identifying latent infection. Other RNA- and protein-based assays detect lytic viral replication and can distinguish carcinoma-derived from lymphocyte-derived EBV in saliva or nasopharyngeal brushings. Analysis of blood using EBV viral load and serology reflects disease status and risk of progression. This review summarizes prior research in the context of basic virologic principles to provide a rational strategy for applying and interpreting EBV tests in various clinical settings. Such assays have been incorporated into standard clinical practice in selected settings such as diagnosis of primary infection and management of patients with immune dysfunction or nasopharyngeal carcinoma. As novel therapies are developed that target virus-infected cells or overcome the adverse effects of infection, laboratory testing becomes even more critical for determining when intervention is appropriate and the extent to which it has succeeded.
Collapse
Affiliation(s)
- Margaret L Gulley
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
| | | |
Collapse
|