1
|
Yang X, Yan F, He Z, Liu S, Cheng Y, Wei K, Gan S, Yuan J, Wang S, Xiao Y, Ren K, Liu N, Hu X, Ding X, Hu X, Xiang S. ITSN2L Interacts with and Negatively Regulates RABEP1. Int J Mol Sci 2015; 16:28242-54. [PMID: 26633357 PMCID: PMC4691038 DOI: 10.3390/ijms161226091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 01/26/2023] Open
Abstract
Intersectin-2Long (ITSN2L) is a multi-domain protein participating in endocytosis and exocytosis. In this study, RABEP1 was identified as a novel ITSN2L interacting protein using a yeast two-hybrid screen from a human brain cDNA library and this interaction, specifically involving the ITSN2L CC domain and RABEP1 CC3 regions, was further confirmed by in vitro GST (glutathione-S-transferase) pull-down and in vivo co-immunoprecipitation assays. Corroboratively, we observed that these two proteins co-localize in the cytoplasm of mammalian cells. Furthermore, over-expression of ITSN2L promotes RABEP1 degradation and represses RABEP1-enhanced endosome aggregation, indicating that ITSN2L acts as a negative regulator of RABEP1. Finally, we showed that ITSN2L and RABEP1 play opposite roles in regulating endocytosis. Taken together, our results indicate that ITSN2L interacts with RABEP1 and stimulates its degradation in regulation of endocytosis.
Collapse
Affiliation(s)
- Xiaoxu Yang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Feng Yan
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Zhicheng He
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Shan Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Yeqing Cheng
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Ke Wei
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Shiquan Gan
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Jing Yuan
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Shang Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Ye Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Kaiqun Ren
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Ning Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Xiang Hu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Xiaofeng Ding
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Xingwang Hu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410081, China.
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
2
|
The role of FcεRI expressed in dendritic cells and monocytes. Cell Mol Life Sci 2015; 72:2349-60. [PMID: 25715742 DOI: 10.1007/s00018-015-1870-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 01/23/2023]
Abstract
Early studies regarding the function of FcεRI in dendritic cells (DCs) and monocytes have focused on its role in mediating inflammatory signaling and enhancing T cell immunity. It has been the case in part because FcεRI is the major receptor that mediates allergic inflammatory signaling in mast cells and basophils and because DCs and monocytes are antigen presenting cells capable of activating naïve and/or effector T cells. These studies have led to the general belief that FcεRI-mediated DC signaling and antigen presentation promote development and activation of Th2 cells and contribute to allergic inflammatory diseases. However, this belief has long suffered from a lack of evidence. Recently, studies have emerged that provide evidence supporting an opposing role: that FcεRI on DCs instead promotes immune homeostasis and regulation. In this review, we will update the current status of our understanding of FcεRI biology and function, with a specific focus on DCs and monocytes.
Collapse
|
3
|
Cruse G, Beaven MA, Music SC, Bradding P, Gilfillan AM, Metcalfe DD. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling. Mol Biol Cell 2015; 26:1711-27. [PMID: 25717186 PMCID: PMC4436782 DOI: 10.1091/mbc.e14-07-1221] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 02/18/2015] [Indexed: 01/29/2023] Open
Abstract
MS4A4 traffics through endocytic recycling pathways and stabilizes surface KIT expression by regulating endocytosis and recycling. Silencing MS4A4 reduces KIT recruitment to lipid raft microdomains and PLCg1 signaling while promoting AKT signaling, cell migration, and proliferation. This study is the first to describe functions for human MS4A4. MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1–enriched microdomains. Silencing of MS4A4 in human mast cells altered ligand-induced KIT endocytosis pathways and reduced receptor recycling to the cell surface, thus promoting KIT signaling in the endosomes while reducing that in the plasma membrane, as exemplified by Akt and PLCγ1 phosphorylation, respectively. The altered endocytic trafficking of KIT also resulted in an increase in SCF-induced mast cell proliferation and migration, which may reflect altered signaling in these cells. Our data reveal a novel function for MS4A family proteins in regulating trafficking and signaling, which could have implications in both proliferative and immunological diseases.
Collapse
Affiliation(s)
- Glenn Cruse
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Michael A Beaven
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stephen C Music
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, United Kingdom
| | - Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
4
|
Abstract
Mast cells are key effector and immunoregulatory cells in IgE-associated immune responses, including allergic disorders. IgE antibodies bind to the high-affinity IgE receptor, FcεRI, expressed on the surface of mast cells; antigen-induced cross-linking of FcεRI-bound IgE molecules activates the mast cell to release an array of proinflammatory and immunomodulatory mediators. Because mast cells often respond to very low levels of antigen in vivo, the level of FcεRI expressed on the surface of these cells is an important factor in determining the responsiveness of these cells to antigen. FcεRI surface expression is regulated by a number of processes, including FcεRI stabilization, FcεRI recycling, and antigen-induced internalization. Although members of the Rab family of small GTPases and the ubiquitin ligase, Cbl, have recently emerged as major regulators of many of the membrane trafficking events that govern FcεRI expression levels, the mechanisms and intracellular pathways that regulate FcεRI trafficking remain poorly defined. This chapter outlines a number of flow cytometry-based assays that can be used to investigate cell surface FcεRI expression and dynamics (stabilization, recycling, and internalization) on bone marrow-derived mast cells (BMCMCs), the most commonly used model system for studying mast cells in vitro. Given the importance of FcεRI levels to mast cell responsiveness and function, the characterization of FcεRI expression and dynamics on different mast cell populations is critical when trying to compare IgE-dependent processes between different mast cell populations.
Collapse
Affiliation(s)
- Eon J Rios
- Department of Epithelial Biology, Stanford University, Palo Alto, CA, USA
| | | |
Collapse
|
5
|
Wu KY, He M, Hou QQ, Sheng AL, Yuan L, Liu F, Liu WW, Li G, Jiang XY, Luo ZG. Semaphorin 3A activates the guanosine triphosphatase Rab5 to promote growth cone collapse and organize callosal axon projections. Sci Signal 2014; 7:ra81. [PMID: 25161316 DOI: 10.1126/scisignal.2005334] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Axon guidance (pathfinding) wires the brain during development and is regulated by various attractive and repulsive cues. Semaphorin 3A (Sema3A) is a repulsive cue, inducing the collapse of axon growth cones. In the mammalian forebrain, the corpus callosum is the major commissure that transmits information flow between the two hemispheres, and contralateral axons assemble into well-defined tracts. We found that the patterning of callosal axon projections in rodent layer II and III (L2/3) cortical neurons in response to Sema3A was mediated by the activation of Rab5, a small guanosine triphosphatase (GTPase) that mediates endocytosis, through the membrane fusion protein Rabaptin-5 and the Rab5 guanine nucleotide exchange factor (GEF) Rabex-5. Rabaptin-5 bound directly to Plexin-A1 in the Sema3A receptor complex [an obligate heterodimer formed by Plexin-A1 and neuropilin 1 (NP1)]; Sema3A enhanced this interaction in cultured neurons. Rabaptin-5 bridged the interaction between Rab5 and Plexin-A1. Sema3A stimulated endocytosis from the cell surface of callosal axon growth cones. In utero electroporation to reduce Rab5 or Rabaptin-5 impaired axon fasciculation or caused mistargeting of L2/3 callosal projections in rats. Overexpression of Rabaptin-5 or Rab5 rescued the defective callosal axon fasciculation or mistargeting of callosal axons caused by the loss of Sema3A-Plexin-A1 signaling in rats expressing dominant-negative Plexin-A1 or in NP1-deficient mice. Thus, our findings suggest that Rab5, its effector Rabaptin-5, and its regulator Rabex-5 mediate Sema3A-induced axon guidance during brain development.
Collapse
Affiliation(s)
- Kong-Yan Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Miao He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qiong-Qiong Hou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Ai-Li Sheng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Lei Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Fei Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Wen-Wen Liu
- Chinese Academy of Sciences Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 11 Beiyitiao, Zhong Guan Cun, Beijing 100190, China
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xing-Yu Jiang
- Chinese Academy of Sciences Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 11 Beiyitiao, Zhong Guan Cun, Beijing 100190, China
| | - Zhen-Ge Luo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
| |
Collapse
|
6
|
Cochran SD, Cole JB, Null DJ, Hansen PJ. Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle. BMC Genet 2013; 14:49. [PMID: 23759029 PMCID: PMC3686577 DOI: 10.1186/1471-2156-14-49] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/23/2013] [Indexed: 11/22/2022] Open
Abstract
Background Identification of single nucleotide polymorphisms (SNPs) for specific genes involved in reproduction might improve reliability of genomic estimates for these low-heritability traits. Semen from 550 Holstein bulls of high (≥ 1.7; n = 288) or low (≤ −2; n = 262) daughter pregnancy rate (DPR) was genotyped for 434 candidate SNPs using the Sequenom MassARRAY® system. Three types of SNPs were evaluated: SNPs previously reported to be associated with reproductive traits or physically close to genetic markers for reproduction, SNPs in genes that are well known to be involved in reproductive processes, and SNPs in genes that are differentially expressed between physiological conditions in a variety of tissues associated in reproductive function. Eleven reproduction and production traits were analyzed. Results A total of 40 SNPs were associated (P < 0.05) with DPR. Among these were genes involved in the endocrine system, cell signaling, immune function and inhibition of apoptosis. A total of 10 genes were regulated by estradiol. In addition, 22 SNPs were associated with heifer conception rate, 33 with cow conception rate, 36 with productive life, 34 with net merit, 23 with milk yield, 19 with fat yield, 13 with fat percent, 19 with protein yield, 22 with protein percent, and 13 with somatic cell score. The allele substitution effect for SNPs associated with heifer conception rate, cow conception rate, productive life and net merit were in the same direction as for DPR. Allele substitution effects for several SNPs associated with production traits were in the opposite direction as DPR. Nonetheless, there were 29 SNPs associated with DPR that were not negatively associated with production traits. Conclusion SNPs in a total of 40 genes associated with DPR were identified as well as SNPs for other traits. It might be feasible to include these SNPs into genomic tests of reproduction and other traits. The genes associated with DPR are likely to be important for understanding the physiology of reproduction. Given the large number of SNPs associated with DPR that were not negatively associated with production traits, it should be possible to select for DPR without compromising production.
Collapse
Affiliation(s)
- Sarah D Cochran
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA
| | | | | | | |
Collapse
|
7
|
Tripathi LP, Kambara H, Moriishi K, Morita E, Abe T, Mori Y, Chen YA, Matsuura Y, Mizuguchi K. Proteomic analysis of hepatitis C virus (HCV) core protein transfection and host regulator PA28γ knockout in HCV pathogenesis: a network-based study. J Proteome Res 2012; 11:3664-79. [PMID: 22646850 DOI: 10.1021/pr300121a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) causes chronic liver disease worldwide. HCV Core protein (Core) forms the viral capsid and is crucial for HCV pathogenesis and HCV-induced hepatocellular carcinoma, through its interaction with the host factor proteasome activator PA28γ. Here, using BD-PowerBlot high-throughput Western array, we attempt to further investigate HCV pathogenesis by comparing the protein levels in liver samples from Core-transgenic mice with or without the knockout of PA28γ expression (abbreviated PA28γ(-/-)CoreTG and CoreTG, respectively) against the wild-type (WT). The differentially expressed proteins integrated into the human interactome were shown to participate in compact and well-connected cellular networks. Functional analysis of the interaction networks using a newly developed data warehouse system highlighted cellular pathways associated with vesicular transport, immune system, cellular adhesion, and cell growth and death among others that were prominently influenced by Core and PA28γ in HCV infection. Follow-up assays with in vitro HCV cell culture systems validated VTI1A, a vesicular transport associated factor, which was upregulated in CoreTG but not in PA28γ(-/-)CoreTG, as a novel regulator of HCV release but not replication. Our analysis provided novel insights into the Core-PA28γ interplay in HCV pathogenesis and identified potential targets for better anti-HCV therapy and potentially novel biomarkers of HCV infection.
Collapse
Affiliation(s)
- Lokesh P Tripathi
- National Institute of Biomedical Innovation, 7-6-8 Saito Asagi, Ibaraki, Osaka, 567-0085, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kageyama-Yahara N, Suehiro Y, Yamamoto T, Kadowaki M. Rab5a regulates surface expression of FcεRI and functional activation in mast cells. Biol Pharm Bull 2011; 34:760-3. [PMID: 21532169 DOI: 10.1248/bpb.34.760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Surface expression levels of high-affinity immunoglobulin E (IgE) receptors (FcεRI) on mast cells are regulated by constitutive internalization from the plasma membrane, which is thought to be an important determinant of FcεRI-mediated signaling potential. However, molecular mechanism of FcεRI trafficking has remained poorly understood. Rab proteins are small guanosine 5'-triphosphatases (GTPases) involved in the regulation of membrane traffic. In particular, Rab5 has been shown to regulate transport in the early endocytic pathway, whereas it is not known whether the FcεRI surface expression levels are regulated by Rab5. In this study, we investigated the role of individual Rab5 isoforms in mast cells by small interfering RNA knockdown method. Our results demonstrate that Rab5a knockdown enhanced FcεRI-dependent mast cell activation and upregulated FcεRI surface expression in its steady state. In contrast, Rab5c knockdown caused suppression of the activation. These findings revealed modulatory and individual roles of Rab5 isoforms in mast cell functions.
Collapse
Affiliation(s)
- Natsuko Kageyama-Yahara
- Division of Gastrointestinal Pathophysiology, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan.
| | | | | | | |
Collapse
|
9
|
Abstract
Elevated IgE levels and increased IgE sensitization to allergens are central features of allergic asthma. IgE binds to the high-affinity Fcε receptor I (FcεRI) on mast cells, basophils, and dendritic cells and mediates the activation of these cells upon antigen-induced cross-linking of IgE-bound FcεRI. FcεRI activation proceeds through a network of signaling molecules and adaptor proteins and is negatively regulated by a number of cell surface and intracellular proteins. Therapeutic neutralization of serum IgE in moderate-to-severe allergic asthmatics reduces the frequency of asthma exacerbations through a reduction in cell surface FcεRI expression that results in decreased FcεRI activation, leading to improved asthma control. Our increasing understanding of IgE receptor signaling may lead to the development of novel therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Lawren C Wu
- Department of Immunology, Genentech, Incorporated, South San Francisco, California 94080, USA.
| |
Collapse
|
10
|
Mazucato VM, Silveira E Souza AMM, Nicoletti LM, Jamur MC, Oliver C. GD1b-derived gangliosides modulate FcεRI endocytosis in mast cells. J Histochem Cytochem 2011; 59:428-40. [PMID: 21411813 DOI: 10.1369/0022155411400868] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The role of the mast cell-specific gangliosides in the modulation of the endocytic pathway of FcεRI was investigated in RBL-2H3 cells and in the ganglioside-deficient cell lines, E5 and D1. MAb BC4, which binds to the α subunit of FcεRI, was used in the analysis of receptor internalization. After incubation with BC4-FITC for 30 min, endocytic vesicles in RBL-2H3 and E5 cells were dispersed in the cytoplasm. After 1 hr, the endocytic vesicles of the RBL-2H3 cells had fused and formed clusters, whereas in the E5 cells, the fusion was slower. In contrast, in D1 cells, the endocytic vesicles were smaller and remained close to the plasma membrane even after 3 hr of incubation. When incubated with BC4-FITC and subsequently imunolabeled for markers of various endocytic compartments, a defect in the endocytic pathway in the E5 and D1 cells became evident. In the D1 cells, this defect was observed at the initial steps of endocytosis. Therefore, the ganglioside derivatives from GD1b are important in the endocytosis of FcεRI in mast cells. Because gangliosides may play a role in mast cell-related disease processes, they provide an attractive target for drug therapy and diagnosis.
Collapse
Affiliation(s)
- Vivian Marino Mazucato
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
11
|
Kaur D, Saunders R, Hollins F, Woodman L, Doe C, Siddiqui S, Bradding P, Brightling C. Mast cell fibroblastoid differentiation mediated by airway smooth muscle in asthma. THE JOURNAL OF IMMUNOLOGY 2010; 185:6105-14. [PMID: 20952685 DOI: 10.4049/jimmunol.1000638] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cell microlocalization to the airway smooth muscle (ASM) bundle is a key feature of asthma, but whether these mast cells have an altered phenotype is uncertain. In this paper, we report that in vivo, mast cells within the ASM bundle, in contrast to mast cells in the bronchial submucosa, commonly expressed fibroblast markers and the number of these cells was closely related to the degree of airway hyperresponsiveness. In vitro human lung mast cells and mast cell lines cultured with fibronectin or with primary human ASM cells acquired typical fibroblastic markers and morphology. This differentiation toward a fibroblastoid phenotype was mediated by ASM-derived extracellular matrix proteins, independent of cell adhesion molecule-1, and was attenuated by α5β1 blockade. Fibroblastoid mast cells demonstrated increased chymase expression and activation with exaggerated spontaneous histamine release. Together these data indicate that in asthma, ASM-derived extracellular matrix proteins mediate human mast cell transition to a fibroblastoid phenotype, suggesting that this may be pivotal in the development of airway dysfunction in asthma.
Collapse
Affiliation(s)
- Davinder Kaur
- Institute for Lung Health, Department of Infection, Inflammation, and Immunity, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Mast cells can function as effector and immunoregulatory cells in immunoglobulin E-associated allergic disorders, as well as in certain innate and adaptive immune responses. This review focuses on exciting new developments in the field of mast cell biology published in the past year. We highlight advances in the understanding of FcvarepsilonRI-mediated signaling and mast cell-activation events, as well as in the use of genetic models to study mast cell function in vivo. Finally, we discuss newly identified functions for mast cells or individual mast cell products, such as proteases and interleukin 10, in host defense, cardiovascular disease and tumor biology and in settings in which mast cells have anti-inflammatory or immunosuppressive functions.
Collapse
Affiliation(s)
- Janet Kalesnikoff
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | |
Collapse
|