1
|
Neault M, Lebert-Ghali CÉ, Fournier M, Capdevielle C, Garfinkle EAR, Obermayer A, Cotton A, Boulay K, Sawchyn C, St-Amand S, Nguyen KH, Assaf B, Mercier FE, Delisle JS, Drobetsky EA, Hulea L, Shaw TI, Zuber J, Gruber TA, Melichar HJ, Mallette FA. CBFA2T3-GLIS2-dependent pediatric acute megakaryoblastic leukemia is driven by GLIS2 and sensitive to navitoclax. Cell Rep 2023; 42:113084. [PMID: 37716355 DOI: 10.1016/j.celrep.2023.113084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 09/18/2023] Open
Abstract
Pediatric acute megakaryoblastic leukemia (AMKL) is an aggressive blood cancer associated with poor therapeutic response and high mortality. Here we describe the development of CBFA2T3-GLIS2-driven mouse models of AMKL that recapitulate the phenotypic and transcriptional signatures of the human disease. We show that an activating Ras mutation that occurs in human AMKL increases the penetrance and decreases the latency of CBF2AT3-GLIS2-driven AMKL. CBFA2T3-GLIS2 and GLIS2 modulate similar transcriptional networks. We identify the dominant oncogenic properties of GLIS2 that trigger AMKL in cooperation with oncogenic Ras. We find that both CBFA2T3-GLIS2 and GLIS2 alter the expression of a number of BH3-only proteins, causing AMKL cell sensitivity to the BCL2 inhibitor navitoclax both in vitro and in vivo, suggesting a potential therapeutic option for pediatric patients suffering from CBFA2T3-GLIS2-driven AMKL.
Collapse
Affiliation(s)
- Mathieu Neault
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Charles-Étienne Lebert-Ghali
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Marilaine Fournier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | - Caroline Capdevielle
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Elizabeth A R Garfinkle
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alyssa Obermayer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | - Karine Boulay
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Christina Sawchyn
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Sarah St-Amand
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Kamy H Nguyen
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | - Béatrice Assaf
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | | | - Jean-Sébastien Delisle
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Elliot A Drobetsky
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Laura Hulea
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Tanja A Gruber
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada.
| | - Frédérick A Mallette
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
2
|
Mouse Models of Frequently Mutated Genes in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246192. [PMID: 34944812 PMCID: PMC8699817 DOI: 10.3390/cancers13246192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Acute myeloid leukemia is a clinically and biologically heterogeneous blood cancer with variable prognosis and response to conventional therapies. Comprehensive sequencing enabled the discovery of recurrent mutations and chromosomal aberrations in AML. Mouse models are essential to study the biological function of these genes and to identify relevant drug targets. This comprehensive review describes the evidence currently available from mouse models for the leukemogenic function of mutations in seven functional gene groups: cell signaling genes, epigenetic modifier genes, nucleophosmin 1 (NPM1), transcription factors, tumor suppressors, spliceosome genes, and cohesin complex genes. Additionally, we provide a synergy map of frequently cooperating mutations in AML development and correlate prognosis of these mutations with leukemogenicity in mouse models to better understand the co-dependence of mutations in AML.
Collapse
|
3
|
Murdande SS. Role of rat sarcoma virus mutations in cancer and potential target for cancer therapy. Future Sci OA 2020; 6:FSO455. [PMID: 32257368 PMCID: PMC7117548 DOI: 10.2144/fsoa-2019-0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The prevalence of oncogenic rat sarcoma virus (RAS) mutations has made RAS a popular target for cancer therapies. Significant discoveries have been reported regarding cancer molecular biology following the study of RAS mutations. These discoveries are integral in shaping the era of targeted cancer therapy, with direct targeting of RAS or downstream RAS effectors, such as Grb2 and MAPK a possibility. Novel agents such as farnesyltransferase directly bind and sequester RAS. While these new agents and approaches have shown promise in preclinical and clinical studies, the complexity of RAS signaling and the potential for robust adaptive feedback continue to present substantial challenges. Therefore, the development of targeted therapies will require a detailed understanding of the properties and dependencies of specific cancers to a RAS mutation. This review provides an overview of RAS mutations and their relationship with cancer and discusses their potential as therapeutic targets. The widespread prevalence of cancer has focused research attention on the discovery and development of newer therapies. Significant discoveries regarding genetic mutations have provided new opportunities for development of targeted cancer therapies. In this review, mutations in the rat sarcoma virus protein are discussed along with their potential as targets for drug development.
Collapse
Affiliation(s)
- Sanjana S Murdande
- ROSS University School of Medicine, Lloyd Erskine Sandiford Center, St Michael BB11039, Barbados
| |
Collapse
|
4
|
Tayou J. Identification of subsets of actionable genetic alterations in KRAS-mutant lung cancers using association rule mining. Cell Oncol (Dordr) 2018; 41:395-408. [DOI: 10.1007/s13402-018-0377-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2018] [Indexed: 12/21/2022] Open
|
5
|
Sinclair PB, Blair HH, Ryan SL, Buechler L, Cheng J, Clayton J, Hanna R, Hollern S, Hawking Z, Bashton M, Schwab CJ, Jones L, Russell LJ, Marr H, Carey P, Halsey C, Heidenreich O, Moorman AV, Harrison CJ. Dynamic clonal progression in xenografts of acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21. Haematologica 2018; 103:634-644. [PMID: 29449437 PMCID: PMC5865429 DOI: 10.3324/haematol.2017.172304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 02/08/2018] [Indexed: 01/12/2023] Open
Abstract
Intrachromosomal amplification of chromosome 21 is a heterogeneous chromosomal rearrangement occurring in 2% of cases of childhood precursor B-cell acute lymphoblastic leukemia. These abnormalities are too complex to engineer faithfully in animal models and are unrepresented in leukemia cell lines. As a resource for future functional and preclinical studies, we have created xenografts from the leukemic blasts of patients with intrachromosomal amplification of chromosome 21 and characterized them by in-vivo and ex-vivo luminescent imaging, flow immunophenotyping, and histological and ultrastructural analyses of bone marrow and the central nervous system. Investigation of up to three generations of xenografts revealed phenotypic evolution, branching genomic architecture and, compared with other B-cell acute lymphoblastic leukemia genetic subtypes, greater clonal diversity of leukemia-initiating cells. In support of intrachromosomal amplification of chromosome 21 as a primary genetic abnormality, it was always retained through generations of xenografts, although we also observed the first example of structural evolution of this rearrangement. Clonal segregation in xenografts revealed convergent evolution of different secondary genomic abnormalities implicating several known tumor suppressor genes and a region, containing the B-cell adaptor, PIK3AP1, and nuclear receptor co-repressor, LCOR, in the progression of B-cell acute lymphoblastic leukemia. Tracking of mutations in patients and derived xenografts provided evidence for co-operation between abnormalities activating the RAS pathway in B-cell acute lymphoblastic leukemia and for their aggressive clonal expansion in the xeno-environment. Bi-allelic loss of the CDKN2A/B locus was recurrently maintained or emergent in xenografts and also strongly selected as RNA sequencing demonstrated a complete absence of reads for genes associated with the deletions.
Collapse
Affiliation(s)
- Paul B Sinclair
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Helen H Blair
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Sarra L Ryan
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Lars Buechler
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Joanna Cheng
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jake Clayton
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rebecca Hanna
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Shaun Hollern
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Zoe Hawking
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Matthew Bashton
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Claire J Schwab
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Lisa Jones
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Lisa J Russell
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Helen Marr
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Peter Carey
- Department of Clinical Haematology, Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
| | - Christina Halsey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, UK
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Anthony V Moorman
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Christine J Harrison
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
6
|
Abstract
Background Neurofibromatosis type 1 (NF1: Online Mendelian Inheritance in Man (OMIM) #162200) is an autosomal dominantly inherited tumour predisposition syndrome. Heritable constitutional mutations in the NF1 gene result in dysregulation of the RAS/MAPK pathway and are causative of NF1. The major known function of the NF1 gene product neurofibromin is to downregulate RAS. NF1 exhibits variable clinical expression and is characterized by benign cutaneous lesions including neurofibromas and café-au-lait macules, as well as a predisposition to various types of malignancy, such as breast cancer and leukaemia. However, acquired somatic mutations in NF1 are also found in a wide variety of malignant neoplasms that are not associated with NF1. Main body Capitalizing upon the availability of next-generation sequencing data from cancer genomes and exomes, we review current knowledge of somatic NF1 mutations in a wide variety of tumours occurring at a number of different sites: breast, colorectum, urothelium, lung, ovary, skin, brain and neuroendocrine tissues, as well as leukaemias, in an attempt to understand their broader role and significance, and with a view ultimately to exploiting this in a diagnostic and therapeutic context. Conclusion As neurofibromin activity is a key to regulating the RAS/MAPK pathway, NF1 mutations are important in the acquisition of drug resistance, to BRAF, EGFR inhibitors, tamoxifen and retinoic acid in melanoma, lung and breast cancers and neuroblastoma. Other curiosities are observed, such as a high rate of somatic NF1 mutation in cutaneous melanoma, lung cancer, ovarian carcinoma and glioblastoma which are not usually associated with neurofibromatosis type 1. Somatic NF1 mutations may be critical drivers in multiple cancers. The mutational landscape of somatic NF1 mutations should provide novel insights into our understanding of the pathophysiology of cancer. The identification of high frequency of somatic NF1 mutations in sporadic tumours indicates that neurofibromin is likely to play a critical role in development, far beyond that evident in the tumour predisposition syndrome NF1.
Collapse
|
7
|
Bhatia S, Daschkey S, Lang F, Borkhardt A, Hauer J. Mouse models for pre-clinical drug testing in leukemia. Expert Opin Drug Discov 2016; 11:1081-1091. [DOI: 10.1080/17460441.2016.1229297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Krombholz CF, Aumann K, Kollek M, Bertele D, Fluhr S, Kunze M, Niemeyer CM, Flotho C, Erlacher M. Long-term serial xenotransplantation of juvenile myelomonocytic leukemia recapitulates human disease in Rag2-/-γc-/- mice. Haematologica 2016; 101:597-606. [PMID: 26888021 DOI: 10.3324/haematol.2015.138545] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/12/2016] [Indexed: 11/09/2022] Open
Abstract
Juvenile myelomonocytic leukemia is a clonal malignant disease affecting young children. Current cure rates, even with allogeneic hematopoietic stem cell transplantation, are no better than 50%-60%. Pre-clinical research on juvenile myelomonocytic leukemia is urgently needed for the identification of novel therapies but is hampered by the unavailability of culture systems. Here we report a xenotransplantation model that allows long-term in vivo propagation of primary juvenile myelomonocytic leukemia cells. Persistent engraftment of leukemic cells was achieved by intrahepatic injection of 1×10(6) cells into newborn Rag2(-/-)γc(-/-) mice or intravenous injection of 5×10(6) cells into 5-week old mice. Key characteristics of juvenile myelomonocytic leukemia were reproduced, including cachexia and clonal expansion of myelomonocytic progenitor cells that infiltrated bone marrow, spleen, liver and, notably, lung. Xenografted leukemia cells led to reduced survival of recipient mice. The stem cell character of juvenile myelomonocytic leukemia was confirmed by successful serial transplantation that resulted in leukemia cell propagation for more than one year. Independence of exogenous cytokines, low donor cell number and slowly progressing leukemia are advantages of the model, which will serve as an important tool to research the pathophysiology of juvenile myelomonocytic leukemia and test novel pharmaceutical strategies such as DNA methyltransferase inhibition.
Collapse
Affiliation(s)
- Christopher Felix Krombholz
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center, Freiburg, Germany Faculty of Biology, University of Freiburg, Germany
| | - Konrad Aumann
- Department of Pathology, University Medical Center, Freiburg, Germany
| | - Matthias Kollek
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center, Freiburg, Germany Faculty of Biology, University of Freiburg, Germany
| | - Daniela Bertele
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center, Freiburg, Germany
| | - Silvia Fluhr
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center, Freiburg, Germany Hermann Staudinger Graduate School, University of Freiburg, Germany
| | - Mirjam Kunze
- Department of Obstetrics and Gynecology, University Medical Center, Freiburg, Germany
| | - Charlotte M Niemeyer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center, Freiburg, Germany The German Cancer Consortium, Heidelberg, Germany
| | - Christian Flotho
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center, Freiburg, Germany The German Cancer Consortium, Heidelberg, Germany
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center, Freiburg, Germany The German Cancer Consortium, Heidelberg, Germany
| |
Collapse
|
9
|
Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network. Nat Genet 2015; 47:1334-40. [DOI: 10.1038/ng.3420] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/16/2015] [Indexed: 12/18/2022]
|
10
|
Cooperative loss of RAS feedback regulation drives myeloid leukemogenesis. Nat Genet 2015; 47:539-43. [PMID: 25822087 PMCID: PMC4414804 DOI: 10.1038/ng.3251] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/24/2015] [Indexed: 01/15/2023]
Abstract
RAS network activation is common in human cancers and, in acute myeloid leukemia (AML), achieved mainly through gain-of-function mutations in KRAS, NRAS, or the FLT3 receptor tyrosine kinase1. In mice, we show that premalignant myeloid cells harboring a KrasG12D allele retain low Ras signaling owing to a negative feedback involving Spry4 that prevents transformation. In humans, SPRY4 is located on chromosome 5q, a region affected by large heterozygous deletion that are associated with an aggressive disease in which gain-of-function RAS pathway mutations are rare. These 5q deletions often co-occur with chromosome 17 alterations involving deletion of NF1 - another RAS negative regulator - and TP53. Accordingly, combined suppression of Spry4, Nf1 and Trp53 produces high Ras signaling and drives AML in mice. Therefore, SPRY4 is a 5q tumor suppressor whose disruption contributes to a lethal AML subtype that appears to acquire RAS pathway activation through loss of negative regulators.
Collapse
|
11
|
Schurmans S, Polizzi S, Scoumanne A, Sayyed S, Molina-Ortiz P. The Ras/Rap GTPase activating protein RASA3: from gene structure to in vivo functions. Adv Biol Regul 2014; 57:153-61. [PMID: 25294679 DOI: 10.1016/j.jbior.2014.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 01/28/2023]
Abstract
RASA3 (or GTPase Activating Protein III, R-Ras GTPase-activating protein, GAP1(IP4BP)) is a GTPase activating protein of the GAP1 subfamily which targets Ras and Rap1. RASA3 was originally purified from pig platelet membranes through its intrinsic ability to bind inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with high affinity, hence its first name GAP1(IP4BP) (for GAP1 subfamily member which binds I(1,3,4,5)P4). RASA3 was thus the first I(1,3,4,5)P4 receptor identified and cloned. The in vitro and in vivo functions of RASA3 remained somewhat elusive for a long time. However, recently, using genetically-modified mice and cells derived from these mice, the function of RASA3 during megakaryopoiesis, megakaryocyte adhesion and migration as well as integrin signaling has been reported. The goal of this review is thus to summarize and comment recent and less recent data in the literature on RASA3, in particular on the in vivo function of this specific GAP1 subfamily member.
Collapse
Affiliation(s)
- Stéphane Schurmans
- Laboratoire de Génétique Fonctionnelle, GIGA-Signal Transduction, GIGA B34, Université de Liège, Avenue de l'Hôpital 1, B-4000 Liège, Belgium; Secteur de Biochimie Métabolique, Département des Sciences Fonctionnelles, Faculté de Médecine Vétérinaire, Université de Liège, Boulevard de Colonster 20, 4000 Liège, Belgium; Welbio, Belgium.
| | - Séléna Polizzi
- Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM), Institut de Biologie et de Médecine Moléculaires (IBMM), Faculté de Médecine, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium.
| | - Ariane Scoumanne
- Laboratoire de Génétique Fonctionnelle, GIGA-Signal Transduction, GIGA B34, Université de Liège, Avenue de l'Hôpital 1, B-4000 Liège, Belgium; Welbio, Belgium
| | - Sufyan Sayyed
- Laboratoire de Génétique Fonctionnelle, GIGA-Signal Transduction, GIGA B34, Université de Liège, Avenue de l'Hôpital 1, B-4000 Liège, Belgium
| | - Patricia Molina-Ortiz
- Laboratoire de Génétique Fonctionnelle, GIGA-Signal Transduction, GIGA B34, Université de Liège, Avenue de l'Hôpital 1, B-4000 Liège, Belgium; Welbio, Belgium
| |
Collapse
|
12
|
van Hattum H, Waldmann H. Chemical Biology Tools for Regulating RAS Signaling Complexity in Space and Time. ACTA ACUST UNITED AC 2014; 21:1185-95. [DOI: 10.1016/j.chembiol.2014.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/14/2014] [Accepted: 08/01/2014] [Indexed: 12/31/2022]
|
13
|
Pasmant E, Gilbert-Dussardier B, Petit A, de Laval B, Luscan A, Gruber A, Lapillonne H, Deswarte C, Goussard P, Laurendeau I, Uzan B, Pflumio F, Brizard F, Vabres P, Naguibvena I, Fasola S, Millot F, Porteu F, Vidaud D, Landman-Parker J, Ballerini P. SPRED1, a RAS MAPK pathway inhibitor that causes Legius syndrome, is a tumour suppressor downregulated in paediatric acute myeloblastic leukaemia. Oncogene 2014; 34:631-8. [PMID: 24469042 DOI: 10.1038/onc.2013.587] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 11/11/2013] [Accepted: 12/03/2013] [Indexed: 01/10/2023]
Abstract
Constitutional dominant loss-of-function mutations in the SPRED1 gene cause a rare phenotype referred as neurofibromatosis type 1 (NF1)-like syndrome or Legius syndrome, consisted of multiple café-au-lait macules, axillary freckling, learning disabilities and macrocephaly. SPRED1 is a negative regulator of the RAS MAPK pathway and can interact with neurofibromin, the NF1 gene product. Individuals with NF1 have a higher risk of haematological malignancies. SPRED1 is highly expressed in haematopoietic cells and negatively regulates haematopoiesis. SPRED1 seemed to be a good candidate for leukaemia predisposition or transformation. We performed SPRED1 mutation screening and expression status in 230 paediatric lymphoblastic and acute myeloblastic leukaemias (AMLs). We found a loss-of-function frameshift SPRED1 mutation in a patient with Legius syndrome. In this patient, the leukaemia blasts karyotype showed a SPRED1 loss of heterozygosity, confirming SPRED1 as a tumour suppressor. Our observation confirmed that acute leukaemias are rare complications of the Legius syndrome. Moreover, SPRED1 was significantly decreased at RNA and protein levels in the majority of AMLs at diagnosis compared with normal or paired complete remission bone marrows. SPRED1 decreased expression correlated with genetic features of AML. Our study reveals a new mechanism which contributes to deregulate RAS MAPK pathway in the vast majority of paediatric AMLs.
Collapse
Affiliation(s)
- E Pasmant
- 1] UMR_S745 INSERM, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes Sorbonne Paris Cité, Paris, France [2] Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - A Petit
- 1] Service d'Hématologie-Oncologie, Hôpital A Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France [2] Université Pierre et Marie Curie Paris 6, Paris, France [3] UMR938, Université Paris 6, Pierre et Marie Curie, Paris, France
| | - B de Laval
- INSERM 1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - A Luscan
- 1] UMR_S745 INSERM, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes Sorbonne Paris Cité, Paris, France [2] Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - A Gruber
- UMR_S745 INSERM, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - H Lapillonne
- 1] UMR938, Université Paris 6, Pierre et Marie Curie, Paris, France [2] Service d'Hématologie Biologique, Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - C Deswarte
- 1] Service d'Hématologie-Oncologie, Hôpital A Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France [2] Université Pierre et Marie Curie Paris 6, Paris, France [3] UMR938, Université Paris 6, Pierre et Marie Curie, Paris, France
| | - P Goussard
- Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - I Laurendeau
- UMR_S745 INSERM, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - B Uzan
- UMR967, CEA, Université Paris 7, Fontenay aux Roses, France
| | - F Pflumio
- UMR967, CEA, Université Paris 7, Fontenay aux Roses, France
| | - F Brizard
- Laboratoire d'Hématologie Biologique, C.H.U. de Poitiers, Poitiers, France
| | - P Vabres
- Service de Dermatologie, C.H.U. de Dijon et EA 4271, Université de Bourgogne, France
| | - I Naguibvena
- UMR967, CEA, Université Paris 7, Fontenay aux Roses, France
| | - S Fasola
- 1] Service d'Hématologie-Oncologie, Hôpital A Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France [2] Université Pierre et Marie Curie Paris 6, Paris, France
| | - F Millot
- Service de Pédiatrie, C.H.U de Poitiers, Poitiers, France
| | - F Porteu
- INSERM 1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - D Vidaud
- 1] UMR_S745 INSERM, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes Sorbonne Paris Cité, Paris, France [2] Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France [3] Service de Génétique, C.H.U. de Poitiers, Poitiers, France
| | - J Landman-Parker
- 1] Service d'Hématologie-Oncologie, Hôpital A Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France [2] Université Pierre et Marie Curie Paris 6, Paris, France [3] UMR938, Université Paris 6, Pierre et Marie Curie, Paris, France
| | - P Ballerini
- Service d'Hématologie Biologique, Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
14
|
Abstract
Animal models have been invaluable in the efforts to better understand and ultimately treat patients suffering from leukemia. While important insights have been gleaned from these models, limitations must be acknowledged. In this review, we will highlight the various animal models of leukemia and describe their contributions to the improved understanding and treatment of these cancers.
Collapse
|
15
|
Okal A, Mossalam M, Matissek KJ, Dixon AS, Moos PJ, Lim CS. A chimeric p53 evades mutant p53 transdominant inhibition in cancer cells. Mol Pharm 2013; 10:3922-33. [PMID: 23964676 DOI: 10.1021/mp400379c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Because of the dominant negative effect of mutant p53, there has been limited success with wild-type (wt) p53 cancer gene therapy. Therefore, an alternative oligomerization domain for p53 was investigated to enhance the utility of p53 for gene therapy. The tetramerization domain of p53 was substituted with the coiled-coil (CC) domain from Bcr (breakpoint cluster region). Our p53 variant (p53-CC) maintains proper nuclear localization in breast cancer cells detected via fluorescence microscopy and shows a similar expression profile of p53 target genes as wt-p53. Additionally, similar tumor suppressor activities of p53-CC and wt-p53 were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), annexin-V, 7-aminoactinomycin D (7-AAD), and colony-forming assays. Furthermore, p53-CC was found to cause apoptosis in four different cancer cell lines, regardless of endogenous p53 status. Interestingly, the transcriptional activity of p53-CC was higher than wt-p53 in 3 different reporter gene assays. We hypothesized that the higher transcriptional activity of p53-CC over wt-p53 was due to the sequestration of wt-p53 by endogenous mutant p53 found in cancer cells. Co-immunoprecipitation revealed that wt-p53 does indeed interact with endogenous mutant p53 via its tetramerization domain, while p53-CC escapes this interaction. Therefore, we investigated the impact of the presence of a transdominant mutant p53 on tumor suppressor activities of wt-p53 and p53-CC. Overexpression of a potent mutant p53 along with wt-p53 or p53-CC revealed that, unlike wt-p53, p53-CC retains the same level of tumor suppressor activity. Finally, viral transduction of wt-p53 and p53-CC into a breast cancer cell line that harbors a tumor derived transdominant mutant p53 validated that p53-CC indeed evades sequestration and consequent transdominant inhibition by endogenous mutant p53.
Collapse
Affiliation(s)
- Abood Okal
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | | | | | | | | | | |
Collapse
|
16
|
Muñoz DM, Tung T, Agnihotri S, Singh S, Guha A, Zadeh G, Hawkins C. Loss of p53 cooperates with K-ras activation to induce glioma formation in a region-independent manner. Glia 2013; 61:1862-72. [PMID: 24038521 DOI: 10.1002/glia.22563] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 11/09/2022]
Abstract
Gliomas are recognized as a heterogeneous group of neoplasms differing in their location and morphological features. These differences, between and within varying grades of gliomas, have not been explained solely on the grounds of an oncogenic stimulus. Interactions with the tumor microenvironment as well as inherent characteristics of the cell of origin are likely a source of this heterogeneity. There is an ongoing debate over the cell of origin of gliomas, where some suggest a progenitor, while others argue for a stem cell origin. Thus, it is presumed that neurogenic regions of the brain such as the subventricular zone (SVZ) containing large numbers of neural stem and progenitor populations are more susceptible to transformation. Our studies demonstrate that K-ras(G12D) cooperates with the loss of p53 to induce gliomas from both the SVZ and cortical region, suggesting that cells in the SVZ are not uniquely gliomagenic. Using combinations of doxycycline-inducible K-ras(G12D) and p53 loss, we show that tumors induced by the cooperative actions of these genes remain dependent on active K-ras expression, as deinduction of K-ras(G12D) leads to complete tumor regression despite absence of p53. These results suggest that the interplay between specific combinations of genetic alterations and susceptible cell types, rather than the site of origin, are important determinates of gliomagenesis. Additionally, this model supports the view that, although several genetic events may be necessary to confer traits associated with oncogenic transformation, inactivation of a single oncogenic partner can undermine tumor maintenance, leading to regression and disease remission.
Collapse
Affiliation(s)
- Diana Marcela Muñoz
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Ras proteins are critical nodes in cellular signaling that integrate inputs from activated cell surface receptors and other stimuli to modulate cell fate through a complex network of effector pathways. Oncogenic RAS mutations are found in ∼25% of human cancers and are highly prevalent in hematopoietic malignancies. Because of their structural and biochemical properties, oncogenic Ras proteins are exceedingly difficult targets for rational drug discovery, and no mechanism-based therapies exist for cancers with RAS mutations. This article reviews the properties of normal and oncogenic Ras proteins, the prevalence and likely pathogenic role of NRAS, KRAS, and NF1 mutations in hematopoietic malignancies, relevant animal models of these cancers, and implications for drug discovery. Because hematologic malignancies are experimentally tractable, they are especially valuable platforms for addressing the fundamental question of how to reverse the adverse biochemical output of oncogenic Ras in cancer.
Collapse
|
18
|
Abstract
RAF kinase inhibitor protein (RKIP) is a negative regulator of the RAS-mitogen-activated protein kinase/extracellular signal-regulated kinase signaling cascade. We investigated its role in acute myeloid leukemia (AML), an aggressive malignancy arising from hematopoietic stem and progenitor cells (HSPCs). Western blot analysis revealed loss of RKIP expression in 19/103 (18%) primary AML samples and 4/17 (24%) AML cell lines but not in 10 CD34+ HSPC specimens. In in-vitro experiments with myeloid cell lines, RKIP overexpression inhibited cellular proliferation and colony formation in soft agar. Analysis of two cohorts with 103 and 285 AML patients, respectively, established a correlation of decreased RKIP expression with monocytic phenotypes. RKIP loss was associated with RAS mutations and in transformation assays, RKIP decreased the oncogenic potential of mutant RAS. Loss of RKIP further related to a significantly longer relapse-free survival and overall survival in uni- and multivariate analyses. Our data show that RKIP is frequently lost in AML and correlates with monocytic phenotypes and mutations in RAS. RKIP inhibits proliferation and transformation of myeloid cells and decreases transformation induced by mutant RAS. Finally, loss of RKIP seems to be a favorable prognostic parameter in patients with AML.
Collapse
|
19
|
Odenike O, Thirman MJ, Artz AS, Godley LA, Larson RA, Stock W. Gene Mutations, Epigenetic Dysregulation, and Personalized Therapy in Myeloid Neoplasia: Are We There Yet? Semin Oncol 2011; 38:196-214. [DOI: 10.1053/j.seminoncol.2011.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Khan OM, Ibrahim MX, Jonsson IM, Karlsson C, Liu M, Sjogren AKM, Olofsson FJ, Brisslert M, Andersson S, Ohlsson C, Hultén LM, Bokarewa M, Bergo MO. Geranylgeranyltransferase type I (GGTase-I) deficiency hyperactivates macrophages and induces erosive arthritis in mice. J Clin Invest 2011; 121:628-39. [PMID: 21266780 DOI: 10.1172/jci43758] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 11/10/2010] [Indexed: 11/17/2022] Open
Abstract
RHO family proteins are important for the function of inflammatory cells. They are modified with a 20-carbon geranylgeranyl lipid in a process catalyzed by protein geranylgeranyltransferase type I (GGTase-I). Geranylgeranylation is viewed as essential for the membrane targeting and activity of RHO proteins. Consequently, inhibiting GGTase-I to interfere with RHO protein activity has been proposed as a strategy to treat inflammatory disorders. However, here we show that mice lacking GGTase-I in macrophages develop severe joint inflammation resembling erosive rheumatoid arthritis. The disease was initiated by the GGTase-I-deficient macrophages and was transplantable and reversible in bone marrow transplantation experiments. The cells accumulated high levels of active GTP-bound RAC1, CDC42, and RHOA, and RAC1 remained associated with the plasma membrane. Moreover, GGTase-I deficiency activated p38 and NF-κB and increased the production of proinflammatory cytokines. The results challenge the view that geranylgeranylation is essential for the activity and localization of RHO family proteins and suggest that reduced geranylgeranylation in macrophages can initiate erosive arthritis.
Collapse
Affiliation(s)
- Omar M Khan
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
AML with CBFB-MYH11 rearrangement demonstrate RAS pathway alterations in 92% of all cases including a high frequency of NF1 deletions. Leukemia 2010; 24:1065-9. [PMID: 20164853 DOI: 10.1038/leu.2010.22] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|