1
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
2
|
Pommier Y, Nussenzweig A, Takeda S, Austin C. Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Biol 2022; 23:407-427. [PMID: 35228717 PMCID: PMC8883456 DOI: 10.1038/s41580-022-00452-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
Human topoisomerases comprise a family of six enzymes: two type IB (TOP1 and mitochondrial TOP1 (TOP1MT), two type IIA (TOP2A and TOP2B) and two type IA (TOP3A and TOP3B) topoisomerases. In this Review, we discuss their biochemistry and their roles in transcription, DNA replication and chromatin remodelling, and highlight the recent progress made in understanding TOP3A and TOP3B. Because of recent advances in elucidating the high-order organization of the genome through chromatin loops and topologically associating domains (TADs), we integrate the functions of topoisomerases with genome organization. We also discuss the physiological and pathological formation of irreversible topoisomerase cleavage complexes (TOPccs) as they generate topoisomerase DNA–protein crosslinks (TOP-DPCs) coupled with DNA breaks. We discuss the expanding number of redundant pathways that repair TOP-DPCs, and the defects in those pathways, which are increasingly recognized as source of genomic damage leading to neurological diseases and cancer. Topoisomerases have essential roles in transcription, DNA replication, chromatin remodelling and, as recently revealed, 3D genome organization. However, topoisomerases also generate DNA–protein crosslinks coupled with DNA breaks, which are increasingly recognized as a source of disease-causing genomic damage.
Collapse
|
3
|
Liu D, Lieber MR. The mechanisms of human lymphoid chromosomal translocations and their medical relevance. Crit Rev Biochem Mol Biol 2021; 57:227-243. [PMID: 34875186 DOI: 10.1080/10409238.2021.2004576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The most common human lymphoid chromosomal translocations involve concurrent failures of the recombination activating gene (RAG) complex and Activation-Induced Deaminase (AID). These are two enzymes that are normally expressed for purposes of the two site-specific DNA recombination processes: V(D)J recombination and class switch recombination (CSR). First, though it is rare, a low level of expression of AID can introduce long-lived T:G mismatch lesions at 20-600 bp fragile zones. Second, the V(D)J recombination process can occasionally fail to rejoin coding ends, and this failure may permit an opportunity for Artemis:DNA-dependent kinase catalytic subunit (DNA-PKcs) to convert the T:G mismatch sites at the fragile zones into double-strand breaks. The 20-600 bp fragile zones must be, at least transiently, in a single-stranded DNA (ssDNA) state for the first step to occur, because AID only acts on ssDNA. Here we discuss the key DNA sequence features that lead to AID action at a fragile zone, which are (a) the proximity and density of strings of cytosine nucleotides (C-strings) that cause a B/A-intermediate DNA conformation; (b) overlapping AID hotspots that contain a methyl CpG (WRCG), which AID converts to a long-lived T:G mismatch; and (c) transcription, which, though not essential, favors increased ssDNA in the fragile zone. We also summarize chromosomal features of the focal fragile zones in lymphoid malignancies and discuss the clinical relevance of understanding the translocation mechanisms. Many of the key principles covered here are also relevant to chromosomal translocations in non-lymphoid somatic cells as well.
Collapse
Affiliation(s)
- Di Liu
- Department of Pathology & Laboratory Medicine, Department of Biochemistry & Molecular Biology, Department of Molecular Microbiology and Immunology, and Section of Computational Biology in the Department of Biological Sciences, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael R Lieber
- Department of Pathology & Laboratory Medicine, Department of Biochemistry & Molecular Biology, Department of Molecular Microbiology and Immunology, and Section of Computational Biology in the Department of Biological Sciences, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Edis Z, Wang J, Waqas MK, Ijaz M, Ijaz M. Nanocarriers-Mediated Drug Delivery Systems for Anticancer Agents: An Overview and Perspectives. Int J Nanomedicine 2021; 16:1313-1330. [PMID: 33628022 PMCID: PMC7898224 DOI: 10.2147/ijn.s289443] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology has been actively integrated as drug carriers over the last few years to treat various cancers. The main hurdle in the clinical management of cancer is the development of multidrug resistance against chemotherapeutic agents. To overcome the limitations of chemotherapy, the researchers have been developing technological advances for significant progress in the oncotherapy by enabling the delivery of chemotherapeutic agents at increased drug content levels to the targeted spots. Several nano-drug delivery systems designed for tumor-targeting are evaluated in preclinical and clinical trials and showed promising outcomes in cancerous tumors' clinical management. This review describes nanocarrier's importance in managing different types of cancers and emphasizing nanocarriers for drug delivery and cancer nanotherapeutics. It also highlights the recent advances in nanocarriers-based delivery systems, including polymeric nanocarriers, micelles, nanotubes, dendrimers, magnetic nanoparticles, solid lipid nanoparticles, and quantum dots (QDs). The nanocarrier-based composites are discussed in terms of their structure, characteristics, and therapeutic applications in oncology. To conclude, the challenges and future exploration opportunities of nanocarriers in chemotherapeutics are also presented.
Collapse
Affiliation(s)
- Zehra Edis
- Department of Pharmaceutical Sciences,College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Junli Wang
- Laboratory of Reproduction and Genetics, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Muhammad Khurram Waqas
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Munazza Ijaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defense Road Campus, Lahore, Pakistan
| |
Collapse
|
5
|
Dillon R, Ahearne MJ, Quek L, Potter N, Jovanovic J, Foot N, Valganon M, Jayne S, Dennis M, Raj K, Tauro S, Dyer MJS, Russell N, Solomon E, Grimwade D. Therapy-related leukaemias with balanced translocations can arise from pre-existing clonal haematopoiesis. Leukemia 2021; 35:2407-2411. [PMID: 33547376 PMCID: PMC8324469 DOI: 10.1038/s41375-021-01150-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Richard Dillon
- grid.13097.3c0000 0001 2322 6764Department of Medical and Molecular Genetics, King’s College, London, UK ,grid.451052.70000 0004 0581 2008Department of Haematology, Guy’s and St Thomas’ Hospitals NHS Trust, London, UK ,grid.239826.40000 0004 0391 895XCancer Genetics Service, Viapath, Guy’s Hospital, London, UK
| | - Matthew J. Ahearne
- grid.9918.90000 0004 1936 8411The Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, UK
| | - Lynn Quek
- grid.421962.a0000 0004 0641 4431Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford, UK ,grid.13097.3c0000 0001 2322 6764Department of Haematology, King’s College, London, UK
| | - Nicola Potter
- grid.13097.3c0000 0001 2322 6764Department of Medical and Molecular Genetics, King’s College, London, UK
| | - Jelena Jovanovic
- grid.13097.3c0000 0001 2322 6764Department of Medical and Molecular Genetics, King’s College, London, UK
| | - Nicola Foot
- grid.239826.40000 0004 0391 895XCancer Genetics Service, Viapath, Guy’s Hospital, London, UK
| | - Mikel Valganon
- grid.239826.40000 0004 0391 895XCancer Genetics Service, Viapath, Guy’s Hospital, London, UK
| | - Sandrine Jayne
- grid.9918.90000 0004 1936 8411The Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, UK
| | - Mike Dennis
- grid.415720.50000 0004 0399 8363Department of Haematology, The Christie Hospital, Manchester, UK
| | - Kavita Raj
- grid.451052.70000 0004 0581 2008Department of Haematology, Guy’s and St Thomas’ Hospitals NHS Trust, London, UK
| | - Sudhir Tauro
- grid.416266.10000 0000 9009 9462Department of Haematology, Ninewells Hospital and Medical School, Dundee, UK
| | - Martin J. S. Dyer
- grid.9918.90000 0004 1936 8411The Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, UK
| | - Nigel Russell
- grid.451052.70000 0004 0581 2008Department of Haematology, Guy’s and St Thomas’ Hospitals NHS Trust, London, UK
| | - Ellen Solomon
- grid.13097.3c0000 0001 2322 6764Department of Medical and Molecular Genetics, King’s College, London, UK
| | - David Grimwade
- grid.13097.3c0000 0001 2322 6764Department of Medical and Molecular Genetics, King’s College, London, UK
| |
Collapse
|
6
|
van der Zanden SY, Qiao X, Neefjes J. New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J 2020; 288:6095-6111. [PMID: 33022843 PMCID: PMC8597086 DOI: 10.1111/febs.15583] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/10/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022]
Abstract
The anthracycline drug doxorubicin is among the most used—and useful—chemotherapeutics. While doxorubicin is highly effective in the treatment of various hematopoietic malignancies and solid tumours, its application is limited by severe adverse effects, including irreversible cardiotoxicity, therapy‐related malignancies and gonadotoxicity. This continues to motivate investigation into the mechanisms of anthracycline activities and toxicities, with the aim to overcome the latter without sacrificing the former. It has long been appreciated that doxorubicin causes DNA double‐strand breaks due to poisoning topoisomerase II. More recently, it became clear that doxorubicin also leads to chromatin damage achieved through eviction of histones from select sites in the genome. Evaluation of these activities in various anthracycline analogues has revealed that chromatin damage makes a major contribution to the efficacy of anthracycline drugs. Furthermore, the DNA‐damaging effect conspires with chromatin damage to cause a number of adverse effects. Structure–activity relationships within the anthracycline family offer opportunities for chemical separation of these activities towards development of effective analogues with limited adverse effects. In this review, we elaborate on our current understanding of the different activities of doxorubicin and their contributions to drug efficacy and side effects. We then offer our perspective on how the activities of this old anticancer drug can be amended in new ways to benefit cancer patients, by providing effective treatment with improved quality of life.
Collapse
Affiliation(s)
- Sabina Y van der Zanden
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Centre LUMC, The Netherlands
| | - Xiaohang Qiao
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Centre LUMC, The Netherlands
| |
Collapse
|
7
|
Acute Promyelocytic Leukemia After Radium-223 Exposure for Prostate Cancer in a Chemotherapy-Naïve Patient. Nucl Med Mol Imaging 2020; 54:256-260. [DOI: 10.1007/s13139-020-00652-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
|
8
|
Brodaczewska KK, Bielecka ZF, Maliszewska-Olejniczak K, Szczylik C, Porta C, Bartnik E, Czarnecka AM. Metastatic renal cell carcinoma cells growing in 3D on poly‑D‑lysine or laminin present a stem‑like phenotype and drug resistance. Oncol Rep 2019; 42:1878-1892. [PMID: 31545459 PMCID: PMC6788014 DOI: 10.3892/or.2019.7321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
3D spheroids are built by heterogeneous cell types in different proliferative and metabolic states and are enriched in cancer stem cells. The main aim of the study was to investigate the usefulness of a novel metastatic renal cell carcinoma (RCC) 3D spheroid culture for in vitro cancer stem cell physiology research and drug toxicity screening. RCC cell lines, Caki-1 (skin metastasis derived) and ACHN (pleural effusion derived), were efficiently cultured in growth-factor/serum deprived, defined, StemXvivo and Nutristem medium on laminin-coated or poly-D-lysine-coated plates. In optimal 3D culture conditions, ACHN cells (StemXVivo/poly-D-lysine) formed small spheroids with remaining adherent cells of an epithelial phenotype, while Caki-1 cells (StemXVivo/laminin) formed large dark spheroids with significantly reduced cell viability in the center. In the 3D structures, expression levels of genes encoding stem transcription factors (OCT4, SOX2, NES) and RCC stem cell markers (CD105, CD133) were deregulated in comparison to these expression levels in traditional 2D culture. Sunitinib, epirubicin and doxycycline were more toxic to cells cultured in monolayers than for cells in 3D spheroids. High numbers of cells arrested in the G0/G1 phase of the cell cycle were found in spheroids under sunitinib treatment. We showed that metastatic RCC 3D spheroids supported with ECM are a useful model to determine the cancer cell growth characteristics that are not found in adherent 2D cultures. Due to the more complex architecture, spheroids may mimic in vivo micrometastases and may be more appropriate to investigate novel drug candidate responses, including the direct effects of tyrosine kinase inhibitor activity against RCC cells.
Collapse
Affiliation(s)
- Klaudia K Brodaczewska
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, 04‑141 Warsaw, Poland
| | - Zofia F Bielecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, 04‑141 Warsaw, Poland
| | | | - Cezary Szczylik
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, 04‑141 Warsaw, Poland
| | - Camillo Porta
- Department of Internal Medicine and Therapeutics, University of Pavia, I‑27100 Pavia, Italy
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | - Anna M Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, 04‑141 Warsaw, Poland
| |
Collapse
|
9
|
Pannunzio NR, Lieber MR. Constitutively active Artemis nuclease recognizes structures containing single-stranded DNA configurations. DNA Repair (Amst) 2019; 83:102676. [PMID: 31377101 DOI: 10.1016/j.dnarep.2019.102676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/03/2023]
Abstract
The Artemis nuclease recognizes and endonucleolytically cleaves at single-stranded to double-stranded DNA (ss/dsDNA) boundaries. It is also a key enzyme in the non-homologous end joining (NHEJ) DNA double-strand break repair pathway. Previously, a truncated form, Artemis-413, was developed that is constitutively active both in vitro and in vivo. Here, we use this constitutively active form of Artemis to detect DNA structures with ss/dsDNA boundaries that arise under topological stress. Topoisomerases prevent abnormal levels of torsional stress through modulation of positive and negative supercoiling. We show that overexpression of Artemis-413 in yeast cells carrying genetic mutations that ablate topoisomerase activity have an increased frequency of DNA double-strand breaks (DSBs). Based on the biochemical activity of Artemis, this suggests an increase in ss/dsDNA-containing structures upon increased torsional stress, with DSBs arising due to Artemis cutting at these ss/dsDNA structures. Camptothecin targets topoisomerase IB (Top1), and cells treated with camptothecin show increased DSBs. We find that expression of Artemis-413 in camptothecin-treated cells leads to a reduction in DSBs, the opposite of what we find with topoisomerase genetic mutations. This contrast between outcomes not only confirms that topoisomerase mutation and topoisomerase poisoning have distinct effects on cells, but also demonstrates the usefulness of Artemis-413 to study changes in DNA structure.
Collapse
Affiliation(s)
- Nicholas R Pannunzio
- Department of Pathology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90089, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90089, USA.
| | - Michael R Lieber
- Department of Pathology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90089, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90089, USA; Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
10
|
Kamath GR, Tremblay D, Coltoff A, Caro J, Lancman G, Bhalla S, Najfeld V, Mascarenhas J, Taioli E. Comparing the epidemiology, clinical characteristics and prognostic factors of acute myeloid leukemia with and without acute promyelocytic leukemia. Carcinogenesis 2019; 40:651-660. [PMID: 30715157 DOI: 10.1093/carcin/bgz014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/13/2018] [Accepted: 01/23/2019] [Indexed: 11/13/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is a particularly aggressive subtype of acute myeloid leukemia (AML), with high rates of early death. It is important to examine how epidemiological characteristics, clinical and treatment factors, cytogenetic and genetic data affect survival and differ between APL and non-APL AML patients. We analyzed population data from the New York State Cancer Registry to characterize AML including APL incidence rates by demographics. APL incidence rates were higher among Hispanics than non-Hispanics [incidence rate ratio = 1.22; 95% confidence interval (CI) = 1.02-1.43]; and among foreign-born than USA-born persons. APL incidence rates increased more rapidly through 1995-2014 than non-APL AML; and its frequency increased faster among foreign-born persons. In a hospital cohort of 390 AML patients, the risk of death was significantly higher among APL patients with FLT3-internal tandem duplications than those without [hazard ratio (HR) = 11.74; 95% CI = 1.03-134.5]; and among APL patients with secondary versus de novo disease (HR = 17.32; 95% CI = 1.56-192.1). Among non-APL AML patients, risk of death was significantly associated with prior chemotherapy with antitubulin agents after adjusting for age, gender and ethnicity (adjusted HR = 3.30; 95% CI = 1.49-7.32); and separately with older age, unfavorable cytogenetics and complex karyotype. This study highlights FLT3-internal tandem duplications as a prognostic factor in APL and proposes consideration of prior antitubulin therapy as a prognostic factor in non-APL AML.
Collapse
Affiliation(s)
- Geetanjali R Kamath
- The Tisch Cancer Institute, New York, NY, USA.,Institute for Translational Epidemiology and Department of Population Health Science and Policy, New York, NY, USA
| | | | | | | | | | | | - Vesna Najfeld
- The Tisch Cancer Institute, New York, NY, USA.,Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Emanuela Taioli
- The Tisch Cancer Institute, New York, NY, USA.,Institute for Translational Epidemiology and Department of Population Health Science and Policy, New York, NY, USA
| |
Collapse
|
11
|
Infante Lara L, Fenner S, Ratcliffe S, Isidro-Llobet A, Hann M, Bax B, Osheroff N. Coupling the core of the anticancer drug etoposide to an oligonucleotide induces topoisomerase II-mediated cleavage at specific DNA sequences. Nucleic Acids Res 2018; 46:2218-2233. [PMID: 29447373 PMCID: PMC5861436 DOI: 10.1093/nar/gky072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/18/2018] [Accepted: 02/06/2018] [Indexed: 12/13/2022] Open
Abstract
Etoposide and other topoisomerase II-targeted drugs are important anticancer therapeutics. Unfortunately, the safe usage of these agents is limited by their indiscriminate induction of topoisomerase II-mediated DNA cleavage throughout the genome and by a lack of specificity toward cancer cells. Therefore, as a first step toward constraining the distribution of etoposide-induced DNA cleavage sites and developing sequence-specific topoisomerase II-targeted anticancer agents, we covalently coupled the core of etoposide to oligonucleotides centered on a topoisomerase II cleavage site in the PML gene. The initial sequence used for this 'oligonucleotide-linked topoisomerase inhibitor' (OTI) was identified as part of the translocation breakpoint of a patient with acute promyelocytic leukemia (APL). Subsequent OTI sequences were derived from the observed APL breakpoint between PML and RARA. Results indicate that OTIs can be used to direct the sites of etoposide-induced DNA cleavage mediated by topoisomerase IIα and topoisomerase IIβ. OTIs increased levels of enzyme-mediated cleavage by inhibiting DNA ligation, and cleavage complexes induced by OTIs were as stable as those induced by free etoposide. Finally, OTIs directed against the PML-RARA breakpoint displayed cleavage specificity for oligonucleotides with the translocation sequence over those with sequences matching either parental gene. These studies demonstrate the feasibility of using oligonucleotides to direct topoisomerase II-mediated DNA cleavage to specific sites in the genome.
Collapse
MESH Headings
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Base Sequence
- DNA Cleavage/drug effects
- DNA Topoisomerases, Type II/metabolism
- Etoposide/chemistry
- Etoposide/pharmacology
- Feasibility Studies
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Oligonucleotides/chemistry
- Oligonucleotides/pharmacology
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Topoisomerase II Inhibitors/chemistry
- Topoisomerase II Inhibitors/pharmacology
Collapse
Affiliation(s)
- Lorena Infante Lara
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Sabine Fenner
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Steven Ratcliffe
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Albert Isidro-Llobet
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Michael Hann
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Ben Bax
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
12
|
Kayser S, Krzykalla J, Elliott MA, Norsworthy K, Gonzales P, Hills RK, Baer MR, Ráčil Z, Mayer J, Novak J, Žák P, Szotkowski T, Grimwade D, Russell NH, Walter RB, Estey EH, Westermann J, Görner M, Benner A, Krämer A, Smith BD, Burnett AK, Thiede C, Röllig C, Ho AD, Ehninger G, Schlenk RF, Tallman MS, Levis MJ, Platzbecker U. Characteristics and outcome of patients with therapy-related acute promyelocytic leukemia front-line treated with or without arsenic trioxide. Leukemia 2017; 31:2347-2354. [PMID: 28322237 PMCID: PMC6037311 DOI: 10.1038/leu.2017.92] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 02/08/2023]
Abstract
Therapy-related acute promyelocytic leukemia (t-APL) is relatively rare, with limited data on outcome after treatment with arsenic trioxide (ATO) compared to standard intensive chemotherapy (CTX). We evaluated 103 adult t-APL patients undergoing treatment with all-trans retinoic acid (ATRA) alone (n=7) or in combination with ATO (n=24), CTX (n=53), or both (n=19). Complete remissions were achieved after induction therapy in 57% with ATRA, 100% with ATO/ATRA, 78% with CTX/ATRA, and 95% with CTX/ATO/ATRA. Early death rates were 43% for ATRA, 0% for ATO/ATRA, 12% for CTX/ATRA and 5% for CTX/ATO/ATRA. Three patients relapsed, two developed therapy-related acute myeloid leukemia and 13 died in remission including seven patients with recurrence of the prior malignancy. Median follow-up for survival was 3.7 years. None of the patients treated with ATRA alone survived beyond one year. Event-free survival was significantly higher after ATO-based therapy (95%, 95% CI, 82-99%) as compared to CTX/ATRA (78%, 95% CI, 64-87%; P=0.042), if deaths due to recurrence of the prior malignancy were censored. The estimated 2-year overall survival in intensively treated patients was 88% (95% CI, 80-93%) without difference according to treatment (P=0.47). ATO when added to ATRA or CTX/ATRA is feasible and leads to better outcomes as compared to CTX/ATRA in t-APL.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Arsenic Trioxide
- Arsenicals/therapeutic use
- Female
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/etiology
- Leukemia, Promyelocytic, Acute/genetics
- Male
- Middle Aged
- Neoplasms, Second Primary/drug therapy
- Neoplasms, Second Primary/etiology
- Neoplasms, Second Primary/genetics
- Oxides/therapeutic use
- Remission Induction
- Survival Analysis
- Treatment Outcome
- Young Adult
Collapse
Affiliation(s)
- S Kayser
- Department of Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine V, Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), University of Heidelberg, Heidelberg, Germany
| | - J Krzykalla
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - MA Elliott
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - K Norsworthy
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - P Gonzales
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - RK Hills
- Cardiff University School of Medicine, Cardiff, UK
| | - MR Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Z Ráčil
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - J Mayer
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - J Novak
- 3rd Faculty of Medicine, Department of Internal Medicine and Haematology, Charles University and Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - P Žák
- Faculty of Medicine, 4th Department of Internal Medicine-Hematology, Charles University and University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - T Szotkowski
- Faculty of Medicine and Dentistry, Department of Hemato-Oncology, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - D Grimwade
- Faculty of Life Sciences and Medicine, Department of Medical & Molecular Genetics, King’s College London, London, UK
| | - NH Russell
- Department of Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - RB Walter
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Hematology/Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - EH Estey
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Hematology/Department of Medicine, University of Washington, Seattle, WA, USA
| | - J Westermann
- Department of Hematology, Oncology and Tumor Immunology, Charité-University Medical Center, Campus Virchow Clinic, Berlin, Germany
| | - M Görner
- Klinik für Hämatologie, Onkologie und Palliativmedizin, Klinikum Bielefeld Mitte, Bielefeld, Germany
| | - A Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - A Krämer
- Department of Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine V, Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), University of Heidelberg, Heidelberg, Germany
| | - BD Smith
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - AK Burnett
- Department of Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - C Thiede
- Department of Internal Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - C Röllig
- Department of Internal Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - AD Ho
- Department of Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
| | - G Ehninger
- Department of Internal Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - RF Schlenk
- National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - MS Tallman
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - MJ Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - U Platzbecker
- Department of Internal Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| |
Collapse
|
13
|
Vitale C, Jabbour E, Lu X, Yabe M, Kanagal Shamanna R, Daver N, Pemmaraju N, Bueso-Ramos CE, Takahashi K. Acute promyelocytic leukemia presented as a relapse of acute myeloid leukemia. Am J Hematol 2016; 91:E274-6. [PMID: 26798971 DOI: 10.1002/ajh.24302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/29/2015] [Accepted: 01/11/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Candida Vitale
- Department of Leukemia, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elias Jabbour
- Department of Leukemia, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xinyan Lu
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mariko Yabe
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rashmi Kanagal Shamanna
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naval Daver
- Department of Leukemia, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naveen Pemmaraju
- Department of Leukemia, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlos E Bueso-Ramos
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Koichi Takahashi
- Department of Leukemia, the University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
14
|
Di-Wen S, Pan GZ, Hao L, Zhang J, Xue QZ, Wang P, Yuan QZ. Improved antitumor activity of epirubicin-loaded CXCR4-targeted polymeric nanoparticles in liver cancers. Int J Pharm 2015; 500:54-61. [PMID: 26748365 DOI: 10.1016/j.ijpharm.2015.12.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/15/2015] [Accepted: 12/27/2015] [Indexed: 10/22/2022]
Abstract
A liver-targeted drug delivery system (CX-EPNP) composed of PLGA/TPGS was prepared and characterized. The surface of nanoparticle was conjugated with LFC131 peptide to increase the specific interaction of carrier with CXCR4 overexpressing liver cancers to enhance the Epirubicin (EPI) delivery to tumors. The particles were nanosized with size than 150 nm and portrayed a sustained release kinetics suggesting its suitability for cancer targeting. The in vitro cell uptake results showed that the introduction of LFC131 to the nanoparticles could increase significantly the affinity to human hepatic carcinoma cells (HepG2) with approximately a 3-fold improvement in cellular uptake than non-targeted one. A specific receptor-mediated uptake was observed by confocal laser scanning microscopy. In addition, CX-EPNP showed remarkable cytotoxicity towards HepG2 cells, and could effectively inhibit tumor growth. The more significant EPI accumulation from CX-EPNP in the cancer cells gave rise to the enhanced EPI cytotoxicity and cell apoptosis. The CX-EPNP distributed mostly in the xenograft tumor after intravenous administration to mice and adequately remained in the blood for at least 24h. It seemed that CX-EPNP upon intravenous injection avoided rapid recognition by Kupffer cells and adequately remained in the blood. These findings suggest that CX-EPNP could effectively inhibit the growth of liver tumors in situ and could potentially reduce the systemic side effects. However, extensive investigation is still needed to assess the possible applications of the CX-EPNP in humans.
Collapse
Affiliation(s)
- Sun Di-Wen
- Department of Hepatobiliary Surgery, Shengli Oilfield Central Hospitial, 31 Jinan Road, Dongying, Shandong Province 257000, PR China
| | - Guo-Zheng Pan
- Department of Hepatobiliary Surgery, Shengli Oilfield Central Hospitial, 31 Jinan Road, Dongying, Shandong Province 257000, PR China
| | - Long Hao
- Department of Hepatobiliary Surgery, Shengli Oilfield Central Hospitial, 31 Jinan Road, Dongying, Shandong Province 257000, PR China
| | - Jian Zhang
- Department of Hepatobiliary Surgery, Shengli Oilfield Central Hospitial, 31 Jinan Road, Dongying, Shandong Province 257000, PR China
| | - Qing-Ze Xue
- Department of Hepatobiliary Surgery, Shengli Oilfield Central Hospitial, 31 Jinan Road, Dongying, Shandong Province 257000, PR China
| | - Peng Wang
- Department of Hepatobiliary Surgery, Shengli Oilfield Central Hospitial, 31 Jinan Road, Dongying, Shandong Province 257000, PR China
| | - Qing-Zhong Yuan
- Department of Hepatobiliary Surgery, Shengli Oilfield Central Hospitial, 31 Jinan Road, Dongying, Shandong Province 257000, PR China.
| |
Collapse
|
15
|
Giri S, Pathak R, Martin MG, Bhatt VR. Survival of de novo and secondary acute promyelocytic leukemia: a propensity-matched analysis of the SEER database. Leuk Lymphoma 2015; 57:385-391. [PMID: 26084205 DOI: 10.3109/10428194.2015.1063142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prior studies demonstrated that secondary acute promyelocytic leukemia (sAPL) and de novo APL may but not consistently have similar overall survival (OS). We used the Surveillance, Epidemiology, and End Results (SEER) 13 database to compare their OS. Patients with sAPL (n = 90), compared to de novo APL (n = 1600), were more likely to be older, White and diagnosed after year 2005. Mortality rate at 1 month (28.9% vs. 23.0%, p = 0.20) and 5-year OS (42% vs. 50%, p = 0.24) was similar between sAPL and de novo APL. In a multivariate analysis, sAPL was associated with similar OS as de novo APL (hazard ratio, HR 1.11; 95% confidence interval, CI 0.78-1.58; p = 0.546). This population-based study demonstrated no difference in OS or early mortality rate between sAPL and de novo APL. sAPL can be managed very similarly to de novo APL and does not need to be excluded from clinical trials of APL.
Collapse
Affiliation(s)
- Smith Giri
- a Department of Medicine , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Ranjan Pathak
- b Department of Medicine , Reading Health System , Reading , PA , USA
| | - Mike G Martin
- a Department of Medicine , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Vijaya Raj Bhatt
- c University of Nebraska Medical Center , Department of Internal Medicine, Division of Hematology-Oncology , Omaha, Nebraska , USA
| |
Collapse
|
16
|
Affiliation(s)
- Preeti Kumari
- Department of Pharmacy, Birla Institute of Technology and Science – Pilani, Hyderabad Campus, Hyderabad, Andhra Pradesh, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology and Science – Pilani, Hyderabad Campus, Hyderabad, Andhra Pradesh, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology and Science – Pilani, Hyderabad Campus, Hyderabad, Andhra Pradesh, India
| |
Collapse
|
17
|
Chanet R, Kienda G, Heneman-Masurel A, Vernis L, Cassinat B, Guardiola P, Fenaux P, Chomienne C, Huang ME. Yeast Assay Highlights the Intrinsic Genomic Instability of Human PML Intron 6 over Intron 3 and the Role of Replication Fork Proteins. PLoS One 2015; 10:e0129222. [PMID: 26053431 PMCID: PMC4460018 DOI: 10.1371/journal.pone.0129222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/06/2015] [Indexed: 12/03/2022] Open
Abstract
Human acute promyelocytic leukemia (APL) is characterized by a specific balanced translocation t(15;17)(q22;q21) involving the PML and RARA genes. In both de novo and therapy-related APL, the most frequent PML breakpoints are located within intron 6, and less frequently in intron 3; the precise mechanisms by which these breakpoints arise and preferentially in PML intron 6 remain unsolved. To investigate the intrinsic properties of the PML intron sequences in vivo, we designed Saccharomyces cerevisiae strains containing human PML intron 6 or intron 3 sequences inserted in yeast chromosome V and measured gross chromosomal rearrangements (GCR). This approach provided evidence that intron 6 had a superior instability over intron 3 due to an intrinsic property of the sequence and identified the 3’ end of intron 6 as the most susceptible to break. Using yeast strains invalidated for genes that control DNA replication, we show that this differential instability depended at least upon Rrm3, a DNA helicase, and Mrc1, the human claspin homolog. GCR induction by hydrogen peroxide, a general genotoxic agent, was also dependent on genetic context. We conclude that: 1) this yeast system provides an alternative approach to study in detail the properties of human sequences in a genetically controlled situation and 2) the different susceptibility to produce DNA breaks in intron 6 versus intron 3 of the human PML gene is likely due to an intrinsic property of the sequence and is under replication fork genetic control.
Collapse
Affiliation(s)
- Roland Chanet
- UMR3348 "Genotoxic Stress and Cancer", Centre National de la Recherche Scientifique, Orsay, France; Institut Curie, Centre de Recherche, Orsay, France
| | - Guy Kienda
- UMR3348 "Genotoxic Stress and Cancer", Centre National de la Recherche Scientifique, Orsay, France; Institut Curie, Centre de Recherche, Orsay, France
| | - Amélie Heneman-Masurel
- UMR3348 "Genotoxic Stress and Cancer", Centre National de la Recherche Scientifique, Orsay, France; Institut Curie, Centre de Recherche, Orsay, France
| | - Laurence Vernis
- UMR3348 "Genotoxic Stress and Cancer", Centre National de la Recherche Scientifique, Orsay, France; Institut Curie, Centre de Recherche, Orsay, France
| | - Bruno Cassinat
- AP-HP, Hôpital Saint-Louis, Paris, France; Inserm UMRS-1131, Hôpital Saint-Louis, Université Paris Diderot, Paris, France
| | - Philippe Guardiola
- Plateforme SNP, Transcriptome & Epigénomique, Centre Hospitalier Universitaire, Angers, France
| | - Pierre Fenaux
- AP-HP, Hôpital Saint-Louis, Paris, France; Inserm UMRS-1131, Hôpital Saint-Louis, Université Paris Diderot, Paris, France
| | - Christine Chomienne
- AP-HP, Hôpital Saint-Louis, Paris, France; Inserm UMRS-1131, Hôpital Saint-Louis, Université Paris Diderot, Paris, France
| | - Meng-Er Huang
- UMR3348 "Genotoxic Stress and Cancer", Centre National de la Recherche Scientifique, Orsay, France; Institut Curie, Centre de Recherche, Orsay, France
| |
Collapse
|
18
|
Nafee N, Hirosue M, Loretz B, Wenz G, Lehr CM. Cyclodextrin-based star polymers as a versatile platform for nanochemotherapeutics: Enhanced entrapment and uptake of idarubicin. Colloids Surf B Biointerfaces 2015; 129:30-8. [DOI: 10.1016/j.colsurfb.2015.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/22/2015] [Accepted: 03/03/2015] [Indexed: 12/20/2022]
|
19
|
Zhang L, Samad A, Pombo-de-Oliveira MS, Scelo G, Smith MT, Feusner J, Wiemels JL, Metayer C. Global characteristics of childhood acute promyelocytic leukemia. Blood Rev 2015; 29:101-25. [PMID: 25445717 PMCID: PMC4379131 DOI: 10.1016/j.blre.2014.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/21/2014] [Accepted: 09/23/2014] [Indexed: 12/29/2022]
Abstract
Acute promyelocytic leukemia (APL) comprises approximately 5-10% of childhood acute myeloid leukemia (AML) cases in the US. While variation in this percentage among other populations was noted previously, global patterns of childhood APL have not been thoroughly characterized. In this comprehensive review of childhood APL, we examined its geographic pattern and the potential contribution of environmental factors to observed variation. In 142 studies (spanning >60 countries) identified, variation was apparent-de novo APL represented from 2% (Switzerland) to >50% (Nicaragua) of childhood AML in different geographic regions. Because a limited number of previous studies addressed specific environmental exposures that potentially underlie childhood APL development, we gathered 28 childhood cases of therapy-related APL, which exemplified associations between prior exposures to chemotherapeutic drugs/radiation and APL diagnosis. Future population-based studies examining childhood APL patterns and the potential association with specific environmental exposures and other risk factors are needed.
Collapse
Affiliation(s)
- L Zhang
- School of Public Health, University of California, Berkeley, USA.
| | - A Samad
- School of Public Health, University of California, Berkeley, USA.
| | - M S Pombo-de-Oliveira
- Pediatric Hematology-Oncology Program, Research Center-National Institute of Cancer, Rio de Janeiro, Brazil.
| | - G Scelo
- International Agency for Research on Cancer (IARC), Lyon, France.
| | - M T Smith
- School of Public Health, University of California, Berkeley, USA.
| | - J Feusner
- Department of Hematology, Children's Hospital and Research Center Oakland, Oakland, USA.
| | - J L Wiemels
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA.
| | - C Metayer
- School of Public Health, University of California, Berkeley, USA.
| |
Collapse
|
20
|
Ashour ME, Atteya R, El-Khamisy SF. Topoisomerase-mediated chromosomal break repair: an emerging player in many games. Nat Rev Cancer 2015; 15:137-51. [PMID: 25693836 DOI: 10.1038/nrc3892] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mammalian genome is constantly challenged by exogenous and endogenous threats. Although much is known about the mechanisms that maintain DNA and RNA integrity, we know surprisingly little about the mechanisms that underpin the pathology and tissue specificity of many disorders caused by defective responses to DNA or RNA damage. Of the different types of endogenous damage, protein-linked DNA breaks (PDBs) are emerging as an important player in cancer development and therapy. PDBs can arise during the abortive activity of DNA topoisomerases, a class of enzymes that modulate DNA topology during several chromosomal transactions, such as gene transcription and DNA replication, recombination and repair. In this Review, we discuss the mechanisms underpinning topoisomerase-induced PDB formation and repair with a focus on their role during gene transcription and the development of tissue-specific cancers.
Collapse
Affiliation(s)
- Mohamed E Ashour
- 1] Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK. [2] Center for Genomics, Helmy Institute, Zewail City of Science and Technology, Giza 12588, Egypt
| | - Reham Atteya
- Center for Genomics, Helmy Institute, Zewail City of Science and Technology, Giza 12588, Egypt
| | - Sherif F El-Khamisy
- 1] Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK. [2] Center for Genomics, Helmy Institute, Zewail City of Science and Technology, Giza 12588, Egypt
| |
Collapse
|
21
|
Watts JM, Tallman MS. Acute promyelocytic leukemia: what is the new standard of care? Blood Rev 2014; 28:205-12. [PMID: 25107311 DOI: 10.1016/j.blre.2014.07.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/19/2014] [Accepted: 07/04/2014] [Indexed: 11/30/2022]
Abstract
Acute promyelocytic leukemia (APL) is one of the most exciting stories of modern medicine. Once a disease that was highly lethal, the majority of patients are now cured with the advent of molecularly targeted therapy with all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). In many patients, chemotherapy can be omitted completely, particularly in patients with low- or intermediate-risk disease (white blood cell count ≤ 10,000/μl). Recent data show overall survival exceeding 90% with ATRA and ATO-based induction and consolidation strategies. In the uncommon patient in whom relapse does occur, most can still be cured with ATO and autologous hematopoietic cell transplantation. Remaining challenges in APL management include the rapid identification and treatment of newly diagnosed patients to decrease the early death rate, optimizing treatment strategies in high-risk patients (white blood cell count>10,000/μl), and the role of maintenance therapy in lower risk patients.
Collapse
Affiliation(s)
- Justin M Watts
- Leukemia Service, Memorial Sloan Kettering Cancer Center, USA.
| | | |
Collapse
|
22
|
Nasr M, Nafee N, Saad H, Kazem A. Improved antitumor activity and reduced cardiotoxicity of epirubicin using hepatocyte-targeted nanoparticles combined with tocotrienols against hepatocellular carcinoma in mice. Eur J Pharm Biopharm 2014; 88:216-25. [PMID: 24813390 DOI: 10.1016/j.ejpb.2014.04.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 12/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer death worldwide. Epirubicin (EPI), an anthracycline derivative, is one of the main line treatments for HCC. However, serious side effects including cardiomyopathy and congestive heart failure limit its long term administration. Our main goal is to develop a delivery strategy that ensures improved efficacy of the chemotherapeutic agent together with reduced cardiotoxicity. In this context, EPI was loaded in chitosan-PLGA nanoparticles linked with asialofetuin (EPI-NPs) selectively targeting hepatocytes. In an attempt to reduce cardiotoxicity, targeted EPI-NPs were coadministered with tocotrienols. EPI-NPs significantly enhanced the antiproliferative effect compared to free EPI as studied on Hep G2 cell line. Nanoencapsulated EPI injected in HCC mouse model revealed higher p53-mediated apoptosis and reduced angiogenesis in the tumor. Combined therapy of EPI-NPs with tocotrienols further enhanced apoptosis and reduced VEGF level in a dose dependent manner. Assessment of cardiotoxicity indicated that EPI-NPs diminished the high level of proinflammatory cytokine tumor necrosis factor-α (TNF-α) as well as oxidative stress-induced cardiotoxicity as manifested by reduced level of lipid peroxidation products (TBARS) and nitric oxide (NO). EPI-NPs additionally restored the diminished level of superoxide dismutase (SOD) and reduced glutathione (GSH) in the heart. Interestingly, tocotrienols provided both antitumor activity and higher protection against oxidative stress and inflammation induced by EPI in the heart. This hepatocyte-targeted biodegradable nanoparticle/tocotrienol combined therapy represents intriguing therapeutic strategy for EPI providing not only superior efficacy but also higher safety levels.
Collapse
Affiliation(s)
- Magda Nasr
- Department of Pharmacology and Experimental Therapeutics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Noha Nafee
- Department of Pharmaceutics, Alexandria University, Alexandria, Egypt.
| | - Hoda Saad
- Department of Pharmacology and Experimental Therapeutics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amani Kazem
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
23
|
Lymphohematopoietic cancers induced by chemicals and other agents and their implications for risk evaluation: An overview. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 761:40-64. [PMID: 24731989 DOI: 10.1016/j.mrrev.2014.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/13/2022]
Abstract
Lymphohematopoietic neoplasia are one of the most common types of cancer induced by therapeutic and environmental agents. Of the more than 100 human carcinogens identified by the International Agency for Research on Cancer, approximately 25% induce leukemias or lymphomas. The objective of this review is to provide an introduction into the origins and mechanisms underlying lymphohematopoietic cancers induced by xenobiotics in humans with an emphasis on acute myeloid leukemia, and discuss the implications of this information for risk assessment. Among the agents causing lymphohematopoietic cancers, a number of patterns were observed. Most physical and chemical leukemia-inducing agents such as the therapeutic alkylating agents, topoisomerase II inhibitors, and ionizing radiation induce mainly acute myeloid leukemia through DNA-damaging mechanisms that result in either gene or chromosomal mutations. In contrast, biological agents and a few immunosuppressive chemicals induce primarily lymphoid neoplasms through mechanisms that involve alterations in immune response. Among the environmental agents examined, benzene was clearly associated with acute myeloid leukemia in humans, with increasing but still limited evidence for an association with lymphoid neoplasms. Ethylene oxide and 1,3-butadiene were linked primarily to lymphoid cancers. Although the association between formaldehyde and leukemia remains controversial, several recent evaluations have indicated a potential link between formaldehyde and acute myeloid leukemia. The four environmental agents examined in detail were all genotoxic, inducing gene mutations, chromosomal alterations, and/or micronuclei in vivo. Although it is clear that rapid progress has been made in recent years in our understanding of leukemogenesis, many questions remain for future research regarding chemically induced leukemias and lymphomas, including the mechanisms by which the environmental agents reviewed here induce these diseases and the risks associated with exposures to such agents.
Collapse
|
24
|
Lo-Coco F, Hasan SK. Understanding the molecular pathogenesis of acute promyelocytic leukemia. Best Pract Res Clin Haematol 2014; 27:3-9. [DOI: 10.1016/j.beha.2014.04.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Iland HJ, Wei A, Seymour JF. Have all-trans retinoic acid and arsenic trioxide replaced all-trans retinoic acid and anthracyclines in APL as standard of care. Best Pract Res Clin Haematol 2014; 27:39-52. [DOI: 10.1016/j.beha.2014.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Pendleton M, Lindsey RH, Felix CA, Grimwade D, Osheroff N. Topoisomerase II and leukemia. Ann N Y Acad Sci 2014; 1310:98-110. [PMID: 24495080 DOI: 10.1111/nyas.12358] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type II topoisomerases are essential enzymes that modulate DNA under- and overwinding, knotting, and tangling. Beyond their critical physiological functions, these enzymes are the targets for some of the most widely prescribed anticancer drugs (topoisomerase II poisons) in clinical use. Topoisomerase II poisons kill cells by increasing levels of covalent enzyme-cleaved DNA complexes that are normal reaction intermediates. Drugs such as etoposide, doxorubicin, and mitoxantrone are frontline therapies for a variety of solid tumors and hematological malignancies. Unfortunately, their use also is associated with the development of specific leukemias. Regimens that include etoposide or doxorubicin are linked to the occurrence of acute myeloid leukemias that feature rearrangements at chromosomal band 11q23. Similar rearrangements are seen in infant leukemias and are associated with gestational diets that are high in naturally occurring topoisomerase II-active compounds. Finally, regimens that include mitoxantrone and epirubicin are linked to acute promyelocytic leukemias that feature t(15;17) rearrangements. The first part of this article will focus on type II topoisomerases and describe the mechanism of enzyme and drug action. The second part will discuss how topoisomerase II poisons trigger chromosomal breaks that lead to leukemia and potential approaches for dissociating the actions of drugs from their leukemogenic potential.
Collapse
Affiliation(s)
- Maryjean Pendleton
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Rashidi A, Fisher SI. Therapy-related acute promyelocytic leukemia: a systematic review. Med Oncol 2013; 30:625. [DOI: 10.1007/s12032-013-0625-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/03/2013] [Indexed: 12/20/2022]
|
29
|
Roukos V, Burman B, Misteli T. The cellular etiology of chromosome translocations. Curr Opin Cell Biol 2013; 25:357-64. [PMID: 23498663 DOI: 10.1016/j.ceb.2013.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 01/26/2023]
Abstract
Chromosome translocations are the most severe form of genome defect. Translocations represent the end product of a series of cellular mistakes and they form after cells suffer multiple DNA double strand breaks (DSBs), which evade the surveillance mechanisms that usually eliminate them. Rather than being accurately repaired, translocating DSBs are misjoined to form aberrant fusion chromosomes. Although translocations have been extensively characterized using cytological methods and their pathological relevance in cancer and numerous other diseases is well established, how translocations form in the context of the intact cell nucleus is poorly understood. A combination of imaging approaches and biochemical methods to probe genome architecture and chromatin structure suggest that the spatial organization of the genome and features of chromatin, including sequence properties, higher order chromatin structure and histone modifications, are key determinants of translocation formation.
Collapse
|
30
|
Muggia F. Squamous cell carcinomas of the tongue and oral cavity as secondary malignancies: what factors are implicated? Oncologist 2013; 18:245-7. [PMID: 23485623 DOI: 10.1634/theoncologist.2013-0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Franco Muggia
- New York University Cancer Institute, New York, New York 10016, USA, USA.
| |
Collapse
|
31
|
Vuong MC, Hasegawa LS, Eastmond DA. A comparative study of the cytotoxic and genotoxic effects of ICRF-154 and bimolane, two catalytic inhibitors of topoisomerase II. Mutat Res 2012; 750:63-71. [PMID: 23000430 DOI: 10.1016/j.mrgentox.2012.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 09/11/2012] [Accepted: 09/13/2012] [Indexed: 11/16/2022]
Abstract
ICRF-154 and bimolane have been used for the treatment of cancer, psoriasis, and uveitis in humans. Previous reports have revealed that the two drugs are topoisomerase II catalytic inhibitors, and patients treated with these agents have developed unique types of secondary leukemia. A study published in 1984 by Camerman and colleagues proposed that the therapeutic effects of bimolane could be due to ICRF-154, an impurity present within the bimolane samples that may also be responsible for the toxic effects attributed to bimolane. To date, this hypothesis has not been evaluated. In addition, little is known about the potential cytotoxic and genotoxic effects of ICRF-154. In this study, a combination of in vitro tests in human TK6 lymphoblastoid cells has been used to characterize the cytotoxic and genotoxic effects of ICRF-154 and bimolane as well as to compare the results for the two chemicals. ICRF-154 and bimolane were both cytotoxic, exhibiting very similar effects in three measures of cytotoxicity and cell proliferation. In the cytokinesis-block micronucleus assay with CREST-antibody staining, the two agents similarly induced chromosome breakage and, to a lesser extent, chromosome loss. Intriguingly, both drugs resulted in the formation of binucleated cells, perhaps as a consequence of an interference with cytokinesis. To further investigate their aneugenic effects, flow cytometry and fluorescence in situ hybridization analyses revealed that both compounds also produced similar levels of non-disjunction and polyploidy. In each of the cellular and cytogenetic assays employed, the responses of the ICRF-154-treated cells were very similar to those observed with the bimolane, and generally occurred at equimolar test concentrations. Our results, combined with those from previous studies, strongly suggest that bimolane degrades to ICRF-154, and that ICRF-154 is most likely the chemical species responsible for the cytotoxic, genotoxic, and leukemogenic effects exerted by bimolane.
Collapse
Affiliation(s)
- Minh C Vuong
- Environmental Toxicology Graduate Program and Department of Cell Biology & Neuroscience, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
32
|
Casorelli I, Bossa C, Bignami M. DNA damage and repair in human cancer: molecular mechanisms and contribution to therapy-related leukemias. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:2636-57. [PMID: 23066388 PMCID: PMC3447578 DOI: 10.3390/ijerph9082636] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/12/2012] [Accepted: 07/02/2012] [Indexed: 12/12/2022]
Abstract
Most antitumour therapies damage tumour cell DNA either directly or indirectly. Without repair, damage can result in genetic instability and eventually cancer. The strong association between the lack of DNA damage repair, mutations and cancer is dramatically demonstrated by a number of cancer-prone human syndromes, such as xeroderma pigmentosum, ataxia-telangiectasia and Fanconi anemia. Notably, DNA damage responses, and particularly DNA repair, influence the outcome of therapy. Because DNA repair normally excises lethal DNA lesions, it is intuitive that efficient repair will contribute to intrinsic drug resistance. Unexpectedly, a paradoxical relationship between DNA mismatch repair and drug sensitivity has been revealed by model studies in cell lines. This suggests that connections between DNA repair mechanism efficiency and tumour therapy might be more complex. Here, we review the evidence for the contribution of carcinogenic properties of several drugs as well as of alterations in specific mechanisms involved in drug-induced DNA damage response and repair in the pathogenesis of therapy-related cancers.
Collapse
Affiliation(s)
- Ida Casorelli
- Azienda Ospedaliera Sant’Andrea, Via di Grottarossa 1035-1039, Roma 00189, Italy;
| | - Cecilia Bossa
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma 00161, Italy;
| | - Margherita Bignami
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma 00161, Italy;
- Author to whom correspondence should be addressed; ; Tel.: +39-6-49901-2355; Fax: +39-6-49901-3650
| |
Collapse
|
33
|
Mechanism of generation of therapy related leukemia in response to anti-topoisomerase II agents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:2075-91. [PMID: 22829791 PMCID: PMC3397365 DOI: 10.3390/ijerph9062075] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 05/23/2012] [Accepted: 05/29/2012] [Indexed: 01/18/2023]
Abstract
Type II DNA topoisomerases have the ability to generate a transient DNA double-strand break through which a second duplex can be passed; an activity essential for DNA decatenation and unknotting. Topoisomerase poisons stabilize the normally transient topoisomerase-induced DSBs and are potent and widely used anticancer drugs. However, their use is associated with therapy-related secondary leukemia, often bearing 11q23 translocations involving the MLL gene. We will explain recent discoveries in the fields of topoisomerase biology and transcription that have consequences for our understanding of the etiology of leukemia, especially therapy-related secondary leukemia and describe how these findings may help minimize the occurrence of these neoplasias.
Collapse
|
34
|
Grimwade D, Mrózek K. Diagnostic and prognostic value of cytogenetics in acute myeloid leukemia. Hematol Oncol Clin North Am 2012; 25:1135-61, vii. [PMID: 22093581 DOI: 10.1016/j.hoc.2011.09.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The last 4 decades have seen major advances in understanding the genetic basis of acute myeloid leukemia (AML), and substantial improvements in survival of children and young adults with the disease. A key step forward was the discovery that AML cells harbor recurring cytogenetic abnormalities. The identification of the genes involved in chromosomal rearrangements has provided insights into the regulation of normal hematopoiesis and how disruption of key transcription factors and epigenetic modulators promote leukemic transformation. Cytogenetics has been widely adopted to provide the framework for development of risk-stratified treatment approaches to patient management.
Collapse
Affiliation(s)
- David Grimwade
- Cancer Genetics Laboratory, Department of Medical & Molecular Genetics, Guy's Hospital, King's College London School of Medicine, 8th Floor, Guy's Tower, London SE1 9RT, UK.
| | | |
Collapse
|
35
|
Bailly C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem Rev 2012; 112:3611-40. [PMID: 22397403 DOI: 10.1021/cr200325f] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christian Bailly
- Centre de Recherche et Développement, Institut de Recherche Pierre Fabre, Toulouse, France.
| |
Collapse
|
36
|
|
37
|
So CC, Wan TS, Chow JL, Hui KC, Choi WW, Lam CC, Chan LC. A single-center cytogenetic study of 629 Chinese patients with de novo acute myeloid leukemia--evidence of major ethnic differences and a high prevalence of acute promyelocytic leukemia in Chinese patients. Cancer Genet 2011; 204:430-8. [PMID: 21962893 DOI: 10.1016/j.cancergen.2011.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 11/20/2022]
Abstract
Cytogenetic information is important in the diagnosis, classification, and prognostication of acute myeloid leukemia (AML). Data obtained from multicenter treatment trials are well published. In this study, we contribute cytogenetic data from a large series of 629 Chinese patients with de novo AML that were karyotyped in a single laboratory. A higher prevalence of acute promyelocytic leukemia was observed when compared with non-Chinese series. The difference was most prominent in the younger age group. Abnormalities at chromosomal region 11q23 and inv(16) seemed uncommon. These ethnic differences may indicate underlying genetic susceptibility to AML development and/or environmental differences. More comprehensive data on AML in the elder population are needed to assess the role of cytogenetics in predicting prognosis and guiding treatment in this large subgroup of patients.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Asian People/genetics
- Child
- Child, Preschool
- China/epidemiology
- Ethnicity/genetics
- Female
- Humans
- Infant
- Karyotyping
- Leukemia, Myeloid, Acute/epidemiology
- Leukemia, Myeloid, Acute/ethnology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Promyelocytic, Acute/epidemiology
- Leukemia, Promyelocytic, Acute/ethnology
- Leukemia, Promyelocytic, Acute/genetics
- Male
- Middle Aged
- Neoplasms, Second Primary/epidemiology
- Neoplasms, Second Primary/ethnology
- Neoplasms, Second Primary/genetics
- Prevalence
- Prognosis
- Young Adult
Collapse
Affiliation(s)
- Chi-Chiu So
- Department of Pathology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Acute promyelocytic leukemia: an experience on 95 greek patients treated in the all-trans-retinoic Acid era. Mediterr J Hematol Infect Dis 2011; 3:e2011053. [PMID: 22220250 PMCID: PMC3248330 DOI: 10.4084/mjhid.2011.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 10/04/2011] [Indexed: 11/08/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is highly curable with the combination of all-transretinoic acid (ATRA) and anthracycline based chemotherapy, but the percentage of early deaths remains high. In the present study, we report the clinical, immunophenotypic, cytogenetic and molecular characteristics and outcome of APL patients diagnosed and treated in various Hospitals of Greece and Cyprus.We describe the data of ninety-five APL patients who were diagnosed during the last 15 years. Seven (7.4%) newly diagnosed APL patients died due to intracranial hemorrhage within 72 hours of presentation. All but two patients were induced with ATRA alone or ATRA plus chemotherapy. The early death rate was 14.9%. After induction all 80 evaluable patients achieved complete hematologic remission. The cumulative incidence of relapse was 18.3%. Eight of the ten relapsed patients were successfully salvaged, while both patients with molecularly resistant disease died during salvage treatment. Overall survival (OS) at 5 years was 78.4% and disease free survival (DFS) 73.6%. In multivariate analysis of OS age over 60 years, DIC at diagnosis and marginally major hemorrhage at presentation were identified as adverse prognostic factors. In the subgroup of patients with available data on FLT3 mutation status (49 out of 94), ITD positivity also remained as an independent prognostic factor in the final model of OS, together with major hemorrhage and marginally high Sanz score. We found a close correlation between the CD2 expression and the development of the differentiation syndrome (DS). In conclusion, the main problem in managing patients with APL is still the high early death rate.
Collapse
|
39
|
Elliott MA, Letendre L, Tefferi A, Hogan WJ, Hook C, Kaufmann SH, Pruthi RK, Pardanani A, Begna KH, Ashrani AA, Wolanskyj AP, Al-Kali A, Litzow MR. Therapy-related acute promyelocytic leukemia: observations relating to APL pathogenesis and therapy. Eur J Haematol 2011; 88:237-43. [PMID: 22023492 DOI: 10.1111/j.1600-0609.2011.01727.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Therapy-related acute promyelocytic leukemia (t-APL) is a well-recognized form of APL for which the underlying etiology has been well characterized. The pathogenesis of de novo (dn-APL) remains unknown; but epidemiologic studies have consistently identified increased body mass index (BMI), younger age, and ethnicity as possible risk factors. We analyzed demographics, clinical features, and treatment responses in a contemporary series of 64 patients treated with all-trans-retinoic acid and anthracycline-based therapy to assess for differences in these two etiologically distinct patient groups. Compared with patients with t-APL (n = 11), those with dn-APL (n = 53) had a greater median BMI (31.33 vs. 28.48), incidence of obesity (60.4% vs. 27.3%) (P = 0.04), and history of hyperlipidemia (45.3% vs. 18.2%) (P = 0.01). Fewer t-APL than dn-APL patients achieved complete remission at 63.6% vs. 92.5% respectively (P = 0.008). This was the result of a higher induction mortality rate of 36.4% vs. 7.5% respectively (P = 0.008). No cases of leukemic resistance were seen in either group. Overall survival (OS) was inferior in t-APL compared with dn-APL at 51% vs. 84%, respectively (P < 0.005), primarily as a result of higher induction mortality. Relapse occurred in nine patients (16.1%) overall, but no relapses occurred in the t-APL cohort. Our observations provide further support for the hypothesis that abnormalities in lipid homeostasis may in some way be of pathogenic importance in dn-APL. Therapy-related APL is sensitive to standard therapy with no cases of resistance or relapse seen. The inferior OS of the t-APL was due to induction mortality, possibly reflecting prior therapy.
Collapse
Affiliation(s)
- Michelle A Elliott
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Molecular pathogenesis of secondary acute promyelocytic leukemia. Mediterr J Hematol Infect Dis 2011; 3:e2011045. [PMID: 22110895 PMCID: PMC3219647 DOI: 10.4084/mjhid.2011.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 09/20/2011] [Indexed: 12/23/2022] Open
Abstract
Balanced chromosomal translocations that generate chimeric oncoproteins are considered to be initiating lesions in the pathogenesis of acute myeloid leukemia. The most frequent is the t(15;17)(q22;q21), which fuses the PML and RARA genes, giving rise to acute promyelocytic leukemia (APL). An increasing proportion of APL cases are therapy-related (t-APL), which develop following exposure to radiotherapy and/or chemotherapeutic agents that target DNA topoisomerase II (topoII), particularly mitoxantrone and epirubicin. To gain insights into molecular mechanisms underlying the formation of the t(15;17) we mapped the translocation breakpoints in a series of t-APLs, which revealed significant clustering according to the nature of the drug exposure. Remarkably, in approximately half of t-APL cases arising following mitoxantrone treatment for breast cancer or multiple sclerosis, the chromosome 15 breakpoint fell within an 8-bp “hotspot” region in PML intron 6, which was confirmed to be a preferential site of topoII-mediated DNA cleavage induced by mitoxantrone. Chromosome 15 breakpoints falling outside the “hotspot”, and the corresponding RARA breakpoints were also shown to be functional topoII cleavage sites. The observation that particular regions of the PML and RARA loci are susceptible to topoII-mediated DNA damage induced by epirubicin and mitoxantrone may underlie the propensity of these agents to cause APL.
Collapse
|
41
|
Motlló C, Manuel Sancho J, García O, Granada I, Millá F, Ribera JM. Leucemias agudas secundarias a tratamiento con quimioterapia y/o radioterapia: estudio de 23 pacientes. Med Clin (Barc) 2011; 137:449-52. [DOI: 10.1016/j.medcli.2010.09.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 09/10/2010] [Accepted: 09/14/2010] [Indexed: 10/18/2022]
|
42
|
Sill H, Olipitz W, Zebisch A, Schulz E, Wölfler A. Therapy-related myeloid neoplasms: pathobiology and clinical characteristics. Br J Pharmacol 2011; 162:792-805. [PMID: 21039422 DOI: 10.1111/j.1476-5381.2010.01100.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Therapy-related myeloid neoplasms (t-MNs) are serious long-term consequences of cytotoxic treatments for an antecedent disorder. t-MNs are observed after ionizing radiation as well as conventional chemotherapy including alkylating agents, topoisomerase-II-inhibitors and antimetabolites. In addition, adjuvant use of recombinant human granulocyte-colony stimulating factor may also increase the risk of t-MNs. There is clinical and biological overlap between t-MNs and high-risk de novo myelodysplastic syndromes and acute myeloid leukaemia suggesting similar mechanisms of leukaemogenesis. Human studies and animal models point to a prominent role of genetic susceptibilty in the pathogenesis of t-MNs. Common genetic variants have been identified that modulate t-MN risk, and t-MNs have been observed in some cancer predisposition syndromes. In either case, establishing a leukaemic phenotype requires acquisition of somatic mutations - most likely induced by the cytotoxic treatment. Knowledge of the specific nature of the initiating exposure has allowed the identification of crucial pathogenetic mechanisms and for these to be modelled in vitro and in vivo. Prognosis of patients with t-MNs is dismal and at present, the only curative approach for the majority of these individuals is haematopoietic stem cell transplantation, which is characterized by high transplant-related mortality rates. Novel transplantation strategies using reduced intensity conditioning regimens as well as novel drugs - demethylating agents and targeted therapies - await clinical testing and may improve outcome. Ultimately, individual assessment of genetic risk factors may translate into tailored therapies and establish a strategy for reducing t-MN incidences without jeopardizing therapeutic success rates for the primary disorders.
Collapse
Affiliation(s)
- H Sill
- Department of Internal Medicine, Division of Haematology, Medical University of Graz, Graz, Austria.
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Leucémies aiguës myéloïdes secondaires aux traitements : implication des mécanismes de réparation de l'ADN. Bull Cancer 2011; 98:247-55. [DOI: 10.1684/bdc.2011.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Hasan SK, Ottone T, Schlenk RF, Xiao Y, Wiemels JL, Mitra ME, Bernasconi P, Di Raimondo F, Stanghellini MTL, Marco P, Mays AN, Döhner H, Sanz MA, Amadori S, Grimwade D, Lo-Coco F. Analysis of t(15;17) chromosomal breakpoint sequences in therapy-related versus de novo acute promyelocytic leukemia: association of DNA breaks with specific DNA motifs at PML and RARA loci. Genes Chromosomes Cancer 2010; 49:726-32. [PMID: 20544846 DOI: 10.1002/gcc.20783] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We compared genomic breakpoints at the PML and RARA loci in 23 patients with therapy-related acute promyelocytic leukemia (t-APL) and 25 de novo APL cases.Eighteen of 23 t-APL cases received the topoisomerase II poison mitoxantrone for their primary disorder. DNA breaks were clustered in a previously reported 8 bp "hot spot" region of PML corresponding to a preferred site of mitoxantrone-induced DNA topoisomerase II-mediated cleavage in 39% of t-APL occurring in patients exposed to this agent and in none of the cases arising de novo (P = 0.007). As to RARA breakpoints, clustering in a 3' region of intron 2 (region B) was found in 65% of t-APL and 28% of de novo APL patients, respectively. Scan statistics revealed significant clustering of RARA breakpoints in region B in t-APL cases (P = 0.001) as compared to de novo APL (P = 1). Furthermore, approximately 300 bp downstream of RARA region B contained a sequence highly homologous to a topoisomerase II consensus sequence. Biased distribution of DNA breakpoints at both PML and RARA loci suggest the existence of different pathogenetic mechanisms in t-APL as compared with de novo APL.
Collapse
Affiliation(s)
- Syed Khizer Hasan
- Department of Biopathology, University of 'Rome Tor Vergata', Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dayyani F, Kantarjian H, O'Brien S, Pierce S, Jones D, Faderl S, Garcia-Manero G, Cortes J, Ravandi F. Outcome of therapy-related acute promyelocytic leukemia with or without arsenic trioxide as a component of frontline therapy. Cancer 2010; 117:110-5. [PMID: 20803607 DOI: 10.1002/cncr.25585] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/15/2010] [Accepted: 07/20/2010] [Indexed: 01/10/2023]
Abstract
BACKGROUND Patients with therapy-related acute promyelocytic leukemia (t-APL) have been commonly exposed to topoisomerase inhibitors and may potentially benefit from induction regimens omitting anthracyclines. METHODS Retrospective analysis of the outcomes of 29 patients with t-APL who were either treated with arsenic trioxide (ATO) and all-trans-retinoic acid (ATRA) or with standard ATRA plus anthracycline-based chemotherapy was performed. RESULTS Prior therapy included chemotherapy alone, radiation alone, or a combination of the 2 in 19%, 33%, and 47% of patients, respectively. The combination of ATO and ATRA (n = 19) for induction resulted in a similar remission rate compared with ATRA plus chemotherapy (n = 10) (89% vs 70%; P = .35). The median overall survival for the patients treated with ATRA plus ATO was not reached compared with that for patients treated with ATRA plus chemotherapy (161 weeks; P = .79). CONCLUSIONS In this cohort of t-APL patients, outcomes with ATO and ATRA appeared to be comparable to anthracycline-containing induction regimens. This combination may be preferable in t-APL patients to avoid any risk of anthracycline-induced toxicities.
Collapse
Affiliation(s)
- Farshid Dayyani
- Department of Cancer Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Malhotra P, Varma N, Arora N, Das R, Nath A, Patel FD, Varma S. Treatment of therapy related acute promyelocytic leukemia with the combination of all trans retinoic acid and arsenic trioxide without chemotherapy: a series of three patients. Leuk Lymphoma 2010; 51:933-6. [PMID: 20350274 DOI: 10.3109/10428191003697484] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Tallman MS. All-trans retinoic acid and arsenic rescue patients with acute promyelocytic leukemia from a potential 'perfect storm'. Leuk Lymphoma 2010; 51:745-6. [PMID: 20423285 DOI: 10.3109/10428191003717753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Martin S Tallman
- Northwestern University Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA.
| |
Collapse
|
49
|
Abstract
Therapy-related leukaemias are becoming an increasing healthcare problem as more patients survive their primary cancers. The nature of the causative agent has an important bearing upon the characteristics, biology, time to onset and prognosis of the resultant leukaemia. Agents targeting topoisomerase II induce acute leukaemias with balanced translocations that generally arise within 3 years, often involving the MLL, RUNX1 and RARA loci at 11q23, 21q22 and 17q21 respectively. Chromosomal breakpoints have been found to be preferential sites of topoisomerase II cleavage, which are believed to be repaired by the nonhomologous end-joining DNA repair pathway to generate chimaeric oncoproteins that underlie the resultant leukaemias. Therapy-related acute myeloid leukaemias occurring after exposure to antimetabolites and/or alkylating agents are biologically distinct with a longer latency period, being characterised by more complex karyotypes and loss of p53. Although treatment of therapy-related leukaemias represents a considerable challenge due to prior therapy and comorbidities, curative therapy is possible, particularly in those with favourable karyotypic features.
Collapse
Affiliation(s)
- Melanie Joannides
- Department of Medical & Molecular Genetics, King's College London School of Medicine, Guy's Hospital, London, UK
| | | |
Collapse
|