1
|
Yang J, Ruan J, Zhou B, Ye S, Gao S, Zheng X. Regulation of STAT5 phosphorylation and interaction with SHP1 by lnc-AC004893, a long non-coding RNA overexpressed in myeloproliferative neoplasms. Hematology 2024; 29:2375045. [PMID: 39012197 DOI: 10.1080/16078454.2024.2375045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVES Constitutive activation of Janus kinase 2 (JAK2)/signal transducer and activator of transcription (STAT) signaling pathway is central to the pathogenesis of myeloproliferative neoplasms (MPNs). Long noncoding RNAs (lncRNAs) regulate diverse biological processes. However, the role of lncRNAs in MPN pathogenesis is not well studied. METHODS The expression of lnc-AC004893 in MPN patients was measured by quantitative real-time PCR (qRT-PCR). Gene-specific short hairpin RNAs (shRNAs) were designed to inhibit the expression of lnc-AC004893, and western blot was performed to explore the role of lnc-AC004893 via regulating the JAK2/STAT5 signaling pathway. Furthermore, co-IP was performed to determine the binding ability of lnc-AC004893 and STAT5 protein. Finally, the BaF3-JAK2V617F-transplanted mouse model was used to assess the biological role of lnc-ac004893 in vivo. RESULTS We report that lnc-AC004893, a poorly conserved pseudogene-209, is substantially upregulated in MPN cells compared with normal controls (NCs). Knockdown of lnc-AC004893 by specific shRNAs suppressed cell proliferation and decreased colony formation. Furthermore, the knockdown of lnc-AC004893 reduced the expression of p-STAT5 but not total STAT5 in HEL and murine IL-3-dependent Ba/F3 cells, which present constitutive and inducible activation of JAK2/STAT5 signaling. In addition, inhibition of murine lnc-ac004893 attenuated BaF3-JAK2V617F-transplanted phenotypes and extended the overall survival. Mechanistically, knockdown of lnc-AC004893 enhanced the binding ability of STAT5 and protein tyrosine phosphatase SHP1. Furthermore, knockdown of lnc-AC004893 decreased STAT5-lnc-AC004893 interaction but not SHP1-lnc-AC004893 interaction. CONCLUSION Lnc-AC004893 regulates STAT5 phosphorylation by affecting the interaction of STAT5 and SHP1. Lnc-AC004893 might be a potential therapeutic target for MPN patients.
Collapse
Affiliation(s)
- Junjun Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jichen Ruan
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Bin Zhou
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Sisi Ye
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Shenmeng Gao
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiaoqun Zheng
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
2
|
Ge P, Xie H, Guo Y, Jin H, Chen L, Chen Z, Liu Y. Linoleyl acetate and mandenol alleviate HUA-induced ED via NLRP3 inflammasome and JAK2/STAT3 signalling conduction in rats. J Cell Mol Med 2024; 28:e70075. [PMID: 39245800 PMCID: PMC11381191 DOI: 10.1111/jcmm.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/17/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
Hyperuricemia (HUA) is characterized by elevated blood uric acid levels, which can increase the risk of erectile dysfunction (ED). Clinical studies have demonstrated satisfactory efficacy of a traditional Chinese medicine formula QYHT decoction in improving ED. Furthermore, the main monomeric components of this formula, linoleyl acetate and mandenol, demonstrate promise in the treatment of ED. This study established an ED rat model induced by HUA and the animals were administered with linoleyl acetate and mandenol. HE and TUNEL were performed to detect tissue changes, ELISA to measure the levels of serum testosterone (T), MDA, NO, CRP, and TNF-α and qPCR and WB to assess the expression levels of NLRP3, ASC, Caspase-1, JAK2, and STAT3 in whole blood. The findings showed that linoleyl acetate and mandenol improved kidney tissue morphology, reduced cell apoptosis in penile tissue, significantly increased T and NO levels, while substantially decreasing levels of MDA, CRP, and TNF-α. Meanwhile, the expression of NLRP3, ASC, and Caspase-1 mRNAs and proteins was markedly reduced, and the phosphorylation of JAK2 and STAT3 was inhibited. These findings were further validated through faecal microbiota transplantation results. Taken together, linoleyl acetate and mandenol could inhibit NLRP3 inflammasome activation, reduce inflammatory and oxidative stress responses, suppress the activity of JAK-STAT signalling pathway, ultimately providing a potential treatment for HUA-induced ED.
Collapse
Affiliation(s)
- Pingyu Ge
- First Clinical College of Guizhou University of Traditional Chinese Medicine, Guizhou Province, China
- Department of Urology Surgery, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guizhou Province, China
| | - Hong Xie
- First Clinical College of Guizhou University of Traditional Chinese Medicine, Guizhou Province, China
| | - Yinxue Guo
- Department of Nephrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guizhou Province, China
| | - Hang Jin
- First Clinical College of Guizhou University of Traditional Chinese Medicine, Guizhou Province, China
| | - Lan Chen
- First Clinical College of Guizhou University of Traditional Chinese Medicine, Guizhou Province, China
| | - Zhichao Chen
- First Clinical College of Guizhou University of Traditional Chinese Medicine, Guizhou Province, China
| | - Yan Liu
- Department of Cardiology, Qilu Hospital of Shandong University, Shandong Province, China
| |
Collapse
|
3
|
Shide K. The role of driver mutations in myeloproliferative neoplasms: insights from mouse models. Int J Hematol 2019; 111:206-216. [PMID: 31865539 DOI: 10.1007/s12185-019-02803-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/11/2023]
Abstract
High frequency of JAK2V617F or CALR exon 9 mutations is a main molecular feature of myeloproliferative neoplasms (MPNs). Analysis of mouse models driven by these mutations suggests that they are a direct cause of MPNs and that the expression levels of the mutated genes define the disease phenotype. The function of MPN-initiating cells has also been elucidated by these mouse models. Such mouse models also play an important role in modeling disease to investigate the effects and action mechanisms of therapeutic drugs, such as JAK2 inhibitors and interferon α, against MPNs. The mutation landscape of hematological tumors has already been clarified by next-generation sequencing technology, and the importance of functional analysis of mutant genes in vivo should increase further in the future.
Collapse
Affiliation(s)
- Kotaro Shide
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| |
Collapse
|
4
|
Egyed A, Bajusz D, Keserű GM. The impact of binding site waters on the activity/selectivity trade-off of Janus kinase 2 (JAK2) inhibitors. Bioorg Med Chem 2019; 27:1497-1508. [PMID: 30833158 DOI: 10.1016/j.bmc.2019.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 01/13/2023]
Abstract
Structure based optimization of B39, an indazole-based low micromolar JAK2 virtual screening hit is reported. Analysing the effect of certain modifications on the activity and selectivity of the analogues suggested that these parameters are influenced by water molecules available in the binding site. Simulation of water networks in combination with docking enabled us to identify the key waters and to optimize our primary hit into a low nanomolar JAK2 lead with promising selectivity over JAK1.
Collapse
Affiliation(s)
- Attila Egyed
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary.
| |
Collapse
|
5
|
Bajusz D, Ferenczy GG, Keserű GM. Discovery of Subtype Selective Janus Kinase (JAK) Inhibitors by Structure-Based Virtual Screening. J Chem Inf Model 2015; 56:234-47. [DOI: 10.1021/acs.jcim.5b00634] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dávid Bajusz
- Medicinal Chemistry Research
Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., Budapest 1117, Hungary
| | - György G. Ferenczy
- Medicinal Chemistry Research
Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., Budapest 1117, Hungary
| | - György M. Keserű
- Medicinal Chemistry Research
Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., Budapest 1117, Hungary
| |
Collapse
|
6
|
Debeurme F, Lacout C, Moratal C, Bagley RG, Vainchenker W, Adrian F, Villeval JL. JAK2 inhibition has different therapeutic effects according to myeloproliferative neoplasm development in mice. J Cell Mol Med 2015; 19:2564-74. [PMID: 26176817 PMCID: PMC4627562 DOI: 10.1111/jcmm.12608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/03/2015] [Indexed: 11/28/2022] Open
Abstract
JAK2 inhibition therapy is used to treat patients suffering from myeloproliferative neoplasms (MPN). Conflicting data on this therapy are reported possibly linked to the types of inhibitors or disease type. Therefore, we decided to compare in mice the effect of a JAK2 inhibitor, Fedratinib, in MPN models of increasing severity: polycythemia vera (PV), post-PV myelofibrosis (PPMF) and rapid post-essential thrombocythemia MF (PTMF). The models were generated through JAK2 activation by the JAK2(V617F) mutation or MPL constant stimulation. JAK2 inhibition induced a correction of splenomegaly, leucocytosis and microcytosis in all three MPN models. However, the effects on fibrosis, osteosclerosis, granulocytosis, erythropoiesis or platelet counts varied according to the disease severity stage. Strikingly, complete blockade of fibrosis and osteosclerosis was observed in the PPMF model, linked to correction of MK hyper/dysplasia, but not in the PTMF model, suggesting that MF development may also become JAK2-independent. Interestingly, we originally found a decreased in the JAK2(V617F) allele burden in progenitor cells from the spleen but not in other cell types. Overall, this study shows that JAK2 inhibition has different effects according to disease phenotypes and can (i) normalize platelet counts, (ii) prevent the development of marrow fibrosis/osteosclerosis at an early stage and (iii) reduce splenomegaly through blockage of stem cell mobilization in the spleen.
Collapse
Affiliation(s)
- Franck Debeurme
- Inserm, U.1009, Institut Gustave Roussy (IGR), Université Paris XI, Villejuif, France
| | - Catherine Lacout
- Inserm, U.1009, Institut Gustave Roussy (IGR), Université Paris XI, Villejuif, France
| | - Claudine Moratal
- iBV, CNRS UMR7277, INSERM U1091, Université Nice-Sophia Antipolis, Nice, France
| | | | - William Vainchenker
- Inserm, U.1009, Institut Gustave Roussy (IGR), Université Paris XI, Villejuif, France
| | | | - Jean-Luc Villeval
- Inserm, U.1009, Institut Gustave Roussy (IGR), Université Paris XI, Villejuif, France
| |
Collapse
|
7
|
Loss of TET2 has dual roles in murine myeloproliferative neoplasms: disease sustainer and disease accelerator. Blood 2015; 125:304-15. [DOI: 10.1182/blood-2014-04-555508] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Key Points
Loss of TET2 accelerates the degree of malignancy of MPNs in combination with JAK2V617F. Loss of TET2 sustains MPNs in combination with JAK2V617F.
Collapse
|
8
|
Partial suppression of M1 microglia by Janus kinase 2 inhibitor does not protect against neurodegeneration in animal models of amyotrophic lateral sclerosis. J Neuroinflammation 2014; 11:179. [PMID: 25326688 PMCID: PMC4213500 DOI: 10.1186/s12974-014-0179-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/06/2014] [Indexed: 12/21/2022] Open
Abstract
Background Accumulating evidence has shown that the inflammatory process participates in the pathogenesis of amyotrophic lateral sclerosis (ALS), suggesting a therapeutic potential of anti-inflammatory agents. Janus kinase 2 (JAK2), one of the key molecules in inflammation, transduces signals downstream of various inflammatory cytokines, and some Janus kinase inhibitors have already been clinically applied to the treatment of inflammatory diseases. However, the efficacy of JAK2 inhibitors in treatment of ALS remains to be demonstrated. In this study, we examined the role of JAK2 in ALS by administering a selective JAK2 inhibitor, R723, to an animal model of ALS (mSOD1G93A mice). Findings Orally administered R723 had sufficient access to spinal cord tissue of mSOD1G93A mice and significantly reduced the number of Ly6c positive blood monocytes, as well as the expression levels of IFN-γ and nitric oxide synthase 2, inducible (iNOS) in the spinal cord tissue. R723 treatment did not alter the expression levels of Il-1β, Il-6, TNF, and NADPH oxidase 2 (NOX2), and suppressed the expression of Retnla, which is one of the markers of neuroprotective M2 microglia. As a result, R723 did not alter disease progression or survival of mSOD1G93A mice. Conclusions JAK2 inhibitor was not effective against ALS symptoms in mSOD1G93A mice, irrespective of suppression in several inflammatory molecules. Simultaneous suppression of anti-inflammatory microglia with a failure to inhibit critical other inflammatory molecules might explain this result. Electronic supplementary material The online version of this article (doi:10.1186/s12974-014-0179-2) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Abstract
Consisting of four members, JAK1, JAK2, JAK3 and TYK2, the JAK kinases have emerged as important targets for proliferative and immune-inflammatory disorders. Recent progress in the discovery of selective inhibitors has been significant, with selective compounds now reported for each isoform. This article summarizes the current state-of-the-art with a discussion of the most recently described selective compounds. X-ray co-crystal structures reveal the molecular reasons for the observed biochemical selectivity. A concluding analysis of JAK inhibitors in the clinic highlights increased clinical trial activity and diversity of indications. Selective JAK inhibitors, as single agents or in combination regimens, have a very promising future in the treatment of oncology, immune and inflammatory diseases.
Collapse
|
10
|
The Multifaceted Roles of STAT3 Signaling in the Progression of Prostate Cancer. Cancers (Basel) 2014; 6:829-59. [PMID: 24722453 PMCID: PMC4074806 DOI: 10.3390/cancers6020829] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 01/09/2023] Open
Abstract
The signal transducer and activator of transcription (STAT)3 governs essential functions of epithelial and hematopoietic cells that are often dysregulated in cancer. While the role for STAT3 in promoting the progression of many solid and hematopoietic malignancies is well established, this review will focus on the importance of STAT3 in prostate cancer progression to the incurable metastatic castration-resistant prostate cancer (mCRPC). Indeed, STAT3 integrates different signaling pathways involved in the reactivation of androgen receptor pathway, stem like cells and the epithelial to mesenchymal transition that drive progression to mCRPC. As equally important, STAT3 regulates interactions between tumor cells and the microenvironment as well as immune cell activation. This makes it a major factor in facilitating prostate cancer escape from detection of the immune response, promoting an immunosuppressive environment that allows growth and metastasis. Based on the multifaceted nature of STAT3 signaling in the progression to mCRPC, the promise of STAT3 as a therapeutic target to prevent prostate cancer progression and the variety of STAT3 inhibitors used in cancer therapies is discussed.
Collapse
|
11
|
Nakaya Y, Shide K, Naito H, Niwa T, Horio T, Miyake J, Shimoda K. Effect of NS-018, a selective JAK2V617F inhibitor, in a murine model of myelofibrosis. Blood Cancer J 2014; 4:e174. [PMID: 24413068 PMCID: PMC3913942 DOI: 10.1038/bcj.2013.73] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/14/2013] [Accepted: 12/05/2013] [Indexed: 12/21/2022] Open
Abstract
A single somatic mutation, V617F, in Janus kinase 2 (JAK2) is one of the causes of myeloproliferative neoplasms (MPNs), including primary myelofibrosis, and the JAK2V617F mutant kinase is a therapeutic target in MPN. However, inhibition of wild-type (WT) JAK2 can decrease the erythrocyte or platelet (PLT) count. Our selective JAK2 inhibitor, NS-018, suppressed the growth of Ba/F3 cells harboring JAK2V617F more strongly than that of cells harboring WT JAK2. The 4.3-fold JAK2V617F selectivity of NS-018 is higher than the 1.0- to 2.9-fold selectivity of seven existing JAK2 inhibitors. NS-018 also inhibited erythroid colony formation in JAK2V617F transgenic mice at significantly lower concentrations than in WT mice. In keeping with the above results, in a JAK2V617F bone marrow transplantation mouse model with a myelofibrosis-like disease, NS-018 reduced leukocytosis and splenomegaly, improved bone marrow fibrosis and prolonged survival without decreasing the erythrocyte or PLT count in the peripheral blood. By exploring the X-ray co-crystal structure of NS-018 bound to JAK2, we identified unique hydrogen-bonding interactions between NS-018 and Gly993 as a plausible explanation for its JAK2V617F selectivity. These results suggest that NS-018 will have therapeutic benefit for MPN patients through both its efficacy and its reduced hematologic adverse effects.
Collapse
Affiliation(s)
- Y Nakaya
- 1] Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan [2] Discovery Research Laboratories, Nippon Shinyaku Co. Ltd, Kyoto, Japan
| | - K Shide
- Department of Gastroenterology and Hematology, Faculty of Medicine, Miyazaki University, Miyazaki, Japan
| | - H Naito
- Discovery Research Laboratories, Nippon Shinyaku Co. Ltd, Kyoto, Japan
| | - T Niwa
- Discovery Research Laboratories, Nippon Shinyaku Co. Ltd, Kyoto, Japan
| | - T Horio
- Discovery Research Laboratories, Nippon Shinyaku Co. Ltd, Kyoto, Japan
| | - J Miyake
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - K Shimoda
- Department of Gastroenterology and Hematology, Faculty of Medicine, Miyazaki University, Miyazaki, Japan
| |
Collapse
|
12
|
KITAMURA T, INOUE D, OKOCHI-WATANABE N, KATO N, KOMENO Y, LU Y, ENOMOTO Y, DOKI N, UCHIDA T, KAGIYAMA Y, TOGAMI K, KAWABATA KC, NAGASE R, HORIKAWA S, HAYASHI Y, SAIKA M, FUKUYAMA T, IZAWA K, OKI T, NAKAHARA F, KITAURA J. The molecular basis of myeloid malignancies. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2014; 90:389-404. [PMID: 25504228 PMCID: PMC4335136 DOI: 10.2183/pjab.90.389] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Myeloid malignancies consist of acute myeloid leukemia (AML), myelodysplastic syndromes (MDS) and myeloproliferative neoplasm (MPN). The latter two diseases have preleukemic features and frequently evolve to AML. As with solid tumors, multiple mutations are required for leukemogenesis. A decade ago, these gene alterations were subdivided into two categories: class I mutations stimulating cell growth or inhibiting apoptosis; and class II mutations that hamper differentiation of hematopoietic cells. In mouse models, class I mutations such as the Bcr-Abl fusion kinase induce MPN by themselves and some class II mutations such as Runx1 mutations induce MDS. Combinations of class I and class II mutations induce AML in a variety of mouse models. Thus, it was postulated that hematopoietic cells whose differentiation is blocked by class II mutations would autonomously proliferate with class I mutations leading to the development of leukemia. Recent progress in high-speed sequencing has enabled efficient identification of novel mutations in a variety of molecules including epigenetic factors, splicing factors, signaling molecules and proteins in the cohesin complex; most of these are not categorized as either class I or class II mutations. The functional consequences of these mutations are now being extensively investigated. In this article, we will review the molecular basis of hematological malignancies, focusing on mouse models and the interfaces between these models and clinical findings, and revisit the classical class I/II hypothesis.
Collapse
Affiliation(s)
- Toshio KITAMURA
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Correspondence should be addressed: T. Kitamura, Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan (e-mail: )
| | - Daichi INOUE
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naoko OKOCHI-WATANABE
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naoko KATO
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yukiko KOMENO
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yang LU
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yutaka ENOMOTO
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Noriko DOKI
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki UCHIDA
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuki KAGIYAMA
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Katsuhiro TOGAMI
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kimihito C. KAWABATA
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Reina NAGASE
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Sayuri HORIKAWA
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasutaka HAYASHI
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Makoto SAIKA
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomofusa FUKUYAMA
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kumi IZAWA
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshihiko OKI
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fumio NAKAHARA
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jiro KITAURA
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNα. Blood 2013; 122:1464-77. [PMID: 23863895 DOI: 10.1182/blood-2013-04-498956] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The acquired gain-of-function V617F mutation in the Janus Kinase 2 (JAK2(V617F)) is the main mutation involved in BCR/ABL-negative myeloproliferative neoplasms (MPNs), but its effect on hematopoietic stem cells as a driver of disease emergence has been questioned. Therefore, we reinvestigated the role of endogenous expression of JAK2(V617F) on early steps of hematopoiesis as well as the effect of interferon-α (IFNα), which may target the JAK2(V617F) clone in humans by using knock-in mice with conditional expression of JAK2(V617F) in hematopoietic cells. These mice develop a MPN mimicking polycythemia vera with large amplification of myeloid mature and precursor cells, displaying erythroid endogenous growth and progressing to myelofibrosis. Interestingly, early hematopoietic compartments [Lin-, LSK, and SLAM (LSK/CD48-/CD150+)] increased with the age. Competitive repopulation assays demonstrated disease appearance and progressive overgrowth of myeloid, Lin-, LSK, and SLAM cells, but not lymphocytes, from a low number of engrafted JAK2(V617F) SLAM cells. Finally, IFNα treatment prevented disease development by specifically inhibiting JAK2(V617F) cells at an early stage of differentiation and eradicating disease-initiating cells. This study shows that JAK2(V617F) in mice amplifies not only late but also early hematopoietic cells, giving them a proliferative advantage through high cell cycling and low apoptosis that may sustain MPN emergence but is lost upon IFNα treatment.
Collapse
|
14
|
Abstract
The JAK family of protein tyrosine kinases are now recognized as important participants in a wide range of pathologies, from cancer to inflammatory diseases. In the last decade, the drive to develop drugs targeting members of this family has begun to deliver a panel of small molecule inhibitors of JAK family members, with a range of potencies and specificities. A number of these compounds have already found widespread use as biochemical tools in the elucidation of JAK activity in specific signaling and disease processes; however, many of the first generation compounds are poorly characterized with suboptimal potencies and selectivities.Herein, we present the data for those small molecule JAK inhibitors that have been described in the peer-reviewed literature and the benefits and potential issues that may be associated with the use of these tool compounds.
Collapse
Affiliation(s)
- Christopher J Burns
- Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | | |
Collapse
|
15
|
Uitdehaag JCM, Verkaar F, Alwan H, de Man J, Buijsman RC, Zaman GJR. A guide to picking the most selective kinase inhibitor tool compounds for pharmacological validation of drug targets. Br J Pharmacol 2012; 166:858-76. [PMID: 22250956 DOI: 10.1111/j.1476-5381.2012.01859.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To establish the druggability of a target, genetic validation needs to be supplemented with pharmacological validation. Pharmacological studies, especially in the kinase field, are hampered by the fact that many reference inhibitors are not fully selective for one target. Fortunately, the initial trickle of selective inhibitors released in the public domain has steadily swelled into a stream. However, rationally picking the most selective tool compound out of the increasing amounts of available inhibitors has become progressively difficult due to the lack of accurate quantitative descriptors of drug selectivity. A recently published approach, termed 'selectivity entropy', is an improved way of expressing selectivity as a single-value parameter and enables rank ordering of inhibitors. We provide a guide to select the best tool compounds for pharmacological validation experiments of candidate drug targets using selectivity entropy. In addition, we recommend which inhibitors to use for studying the biology of the 20 most investigated kinases that are clinically relevant: Abl (ABL1), AKT1, ALK, Aurora A/B, CDKs, MET, CSF1R (FMS), EGFR, FLT3, ERBB2 (HER2), IKBKB (IKK2), JAK2/3, JNK1/2/3 (MAPK8/9/10), MEK1/2, PLK1, PI3Ks, p38α (MAPK14), BRAF, SRC and VEGFR2 (KDR).
Collapse
|
16
|
Tibes R, Bogenberger JM, Geyer HL, Mesa RA. JAK2 inhibitors in the treatment of myeloproliferative neoplasms. Expert Opin Investig Drugs 2012; 21:1755-74. [PMID: 22991927 DOI: 10.1517/13543784.2012.721352] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Dysregulation of JAK-STAT signaling is a pathogenetic hallmark of myeloproliferative neoplasms (MPNs) arising from several distinct molecular aberrations, including mutations in JAK2, the thrombopoietin receptor (MPL), mutations in negative regulators of JAK-STAT signaling, such as lymphocyte-specific adapter protein (SH2B3), and epigenetic dysregulation as seen with Suppressor of Cytokine Signaling (SOCS) proteins. In addition, growth factor/cytokine stimulatory events activate JAK-STAT signaling independent of mutations. AREAS COVERED The various mutations and molecular events activating JAK-STAT signaling in MPNs are reviewed. Detailed inhibitory kinase profiles of the currently developed JAK inhibitors are presented. Clinical trial results for currently developed JAK targeting agents are comprehensively summarized. The limitations of JAK-STAT targeting in MPNs, as well as potential rational combination therapies with JAK2 inhibitors, are discussed. EXPERT OPINION Aberrant JAK-STAT signaling is an underlying theme in the pathogenesis of MPNs. While JAK2 inhibitors are active in JAK2V617F and wild-type JAK2 MPNs, JAK2V617F mutation-specific or JAK2-selective inhibitors may possess unique clinical attributes. Complimentary targeting of parallel pathways operating in MPNs may offer novel therapeutic approaches in combination with JAK inhibition. Understanding the intricacies of JAK-STAT pathway activation, including growth factor/cytokine-driven signaling, will open new avenues for therapeutic intervention at known and novel molecular vulnerabilities of MPNs.
Collapse
Affiliation(s)
- Raoul Tibes
- Mayo Clinic, Hematology, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
17
|
|
18
|
|
19
|
Kontzias A, Laurence A, Gadina M, O’Shea JJ. Kinase inhibitors in the treatment of immune-mediated disease. F1000 MEDICINE REPORTS 2012; 4:5. [PMID: 22403586 PMCID: PMC3297200 DOI: 10.3410/m4-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein kinases are fundamental components of diverse signaling pathways, including immune cells. Their essential functions have made them effective therapeutic targets. Initially, the expectation was that a high degree of selectivity would be critical; however, with time, the use of "multikinase" inhibitors has expanded. Moreover, the spectrum of diseases in which kinase inhibitors are used has also expanded to include not only malignancies but also immune-mediated diseases. At present, thirteen kinase inhibitors have been approved in the United States, all for oncologic indications. However, there are a growing number of molecules, including several Janus kinase inhibitors, that are being tested in clinical trials for autoimmune diseases such as rheumatoid arthritis, psoriasis and inflammatory bowel diseases. It appears likely that this new class of immunomodulatory drugs will have a major impact on the treatment of immune-mediated diseases in the near future.
Collapse
Affiliation(s)
- Apostolos Kontzias
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of HealthBethesda, MD 20892USA
| | - Arian Laurence
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of HealthBethesda, MD 20892USA
| | - Massimo Gadina
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of HealthBethesda, MD 20892USA
| | - John J. O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of HealthBethesda, MD 20892USA
| |
Collapse
|
20
|
Laurence A, Ghoreschi K, Hirahara K, Yang X, O'Shea JJ. Therapeutic inhibition of the Janus kinases. Inflamm Regen 2012. [DOI: 10.2492/inflammregen.32.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
21
|
JAK2 inhibitors in the treatment of myeloproliferative neoplasms: rationale and clinical data. ACTA ACUST UNITED AC 2011. [DOI: 10.4155/cli.11.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Ruxolitinib, a selective JAK1 and JAK2 inhibitor for the treatment of myeloproliferative neoplasms and psoriasis. Blood 2010; 119:2721-30. [PMID: 22279053 DOI: 10.1182/blood-2011-11-395228] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ruxolitinib (INCB-018424) is a potent, orally available, selective inhibitor of both JAK1 and JAK2 of the JAK-STAT signaling pathway, being developed by Incyte Corp and Novartis AG. Ruxolitinib was initially developed to target the constitutive activation of the JAK-STAT pathway in patients with myeloproliferative neoplasms (MPNs). Meaningful reductions in spleen size and constitutional symptoms have been noted in patients with myelofibrosis (both primary and post-essential thrombocythemia/polycythemia vera). Data from a phase I/II clinical trial led to ongoing registration trials in the US and Europe. Toxicity (primarily decreased erythropoiesis and thrombocytopoiesis) has been managed by close control of dosing. The inhibition of inflammatory cytokine signaling through JAK1 inhibition has led to intriguing results in patients with rheumatoid arthritis and psoriasis (using a topical cream formulation). Ruxolitinib is a well tolerated, first-in-class JAK2 inhibitor with various potential clinical indications.
Collapse
|