1
|
Stevenson FK, Forconi F. The essential microenvironmental role of oligomannoses specifically inserted into the antigen-binding sites of lymphoma cells. Blood 2024; 143:1091-1100. [PMID: 37992212 DOI: 10.1182/blood.2023022703] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT There are 2 mandatory features added sequentially en route to classical follicular lymphoma (FL): first, the t(14;18) translocation, which upregulates BCL2, and second, the introduction of sequence motifs into the antigen-binding sites of the B-cell receptor (BCR), to which oligomannose-type glycan is added. Further processing of the glycan is blocked by complementarity-determining region-specific steric hindrance, leading to exposure of mannosylated immunoglobulin (Ig) to the microenvironment. This allows for interaction with the local lectin, dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN), expressed by tissue macrophages and follicular dendritic cells. The major function of DC-SIGN is to engage pathogens, but this is subverted by FL cells. DC-SIGN induces tumor-specific low-level BCR signaling in FL cells and promotes membrane changes with increased adhesion to VCAM-1 via proximal kinases and actin regulators but, in contrast to engagement by anti-Ig, avoids endocytosis and apoptosis. These interactions appear mandatory for the early development of FL, before the acquisition of other accelerating mutations. BCR-associated mannosylation can be found in a subset of germinal center B-cell-like diffuse large B-cell lymphoma with t(14;18), tracking these cases back to FL. This category was associated with more aggressive behavior: both FL and transformed cases and, potentially, a significant number of cases of Burkitt lymphoma, which also has sites for N-glycan addition, could benefit from antibody-mediated blockade of the interaction with DC-SIGN.
Collapse
Affiliation(s)
- Freda K Stevenson
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Francesco Forconi
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
2
|
Systems Analysis Reveals High Genetic and Antigen-Driven Predetermination of Antibody Repertoires throughout B Cell Development. Cell Rep 2017; 19:1467-1478. [DOI: 10.1016/j.celrep.2017.04.054] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 03/21/2017] [Accepted: 04/19/2017] [Indexed: 12/29/2022] Open
|
3
|
Chotprakaikiat W, Allen A, Bui-Minh D, Harden E, Jobsri J, Cavallo F, Gleba Y, Stevenson FK, Ottensmeier C, Klimyuk V, Savelyeva N. A plant-expressed conjugate vaccine breaks CD4(+) tolerance and induces potent immunity against metastatic Her2(+) breast cancer. Oncoimmunology 2016; 5:e1166323. [PMID: 27471642 PMCID: PMC4938312 DOI: 10.1080/2162402x.2016.1166323] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/29/2016] [Accepted: 03/11/2016] [Indexed: 02/06/2023] Open
Abstract
Passive antibody therapy for cancer is an effective but costly treatment modality. Induction of therapeutically potent anticancer antibodies by active vaccination is an attractive alternative but has proven challenging in cancer due to tolerogenic pressure in patients. Here, we used the clinically relevant cancer target Her2, known to be susceptible to targeting by antibody therapy, to demonstrate how potent antibody can be induced by vaccination. A novel 44kD Her2 protein fragment was generated and found to be highly effective at inducing anti-Her2 antibody including trastuzumab-like reactivities. In the tolerant and spontaneous BALB-neuT mouse model of metastatic breast cancer this Her2-targeting vaccine was only effective if the fragment was conjugated to a foreign immunogenic carrier; Fragment C of tetanus toxin. Only the conjugate vaccine induced high affinity anti-Her2 antibody of multiple isotypes and suppressed tumor development. The magnitude of CD4(+) T-cell help and breadth of cytokines secreted by the CD4(+) T helper (Th) cells induced to the foreign antigen was critical. We used a highly efficient plant-based bio-manufacturing process for protein antigens, magnICON, for vaccine expression, to underpin feasibility of future clinical testing. Hence, our novel Her2-targeting conjugate vaccine combines preclinical efficacy with clinical deliverability, thus setting the scene for therapeutic testing.
Collapse
Affiliation(s)
| | - Alex Allen
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Elena Harden
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jantipa Jobsri
- Oral Biology Department, Naresuan University, Phitsanulok, Thailand
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | | | - Freda K. Stevenson
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Christian Ottensmeier
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Natalia Savelyeva
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
4
|
Jobsri J, Allen A, Rajagopal D, Shipton M, Kanyuka K, Lomonossoff GP, Ottensmeier C, Diebold SS, Stevenson FK, Savelyeva N. Plant virus particles carrying tumour antigen activate TLR7 and Induce high levels of protective antibody. PLoS One 2015; 10:e0118096. [PMID: 25692288 PMCID: PMC4332868 DOI: 10.1371/journal.pone.0118096] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/06/2015] [Indexed: 12/20/2022] Open
Abstract
Induction of potent antibody is the goal of many vaccines targeted against infections or cancer. Modern vaccine designs that use virus-like particles (VLP) have shown efficacy for prophylactic vaccination against virus-associated cancer in the clinic. Here we used plant viral particles (PVP), which are structurally analogous to VLP, coupled to a weak idiotypic (Id) tumour antigen, as a conjugate vaccine to induce antibody against a murine B-cell malignancy. The Id-PVP vaccine incorporates a natural adjuvant, the viral ssRNA, which acts via TLR7. It induced potent protective anti-Id antibody responses in an in vivo mouse model, superior to the "gold standard" Id vaccine, with prevalence of the IgG2a isotype. Combination with alum further increased antibody levels and maintained the IgG2a bias. Engagement of TLR7 in vivo was followed by secretion of IFN-α by plasmacytoid dendritic cells and by activation of splenic CD11chi conventional dendritic cells. The latter was apparent from up-regulation of co-stimulatory molecules and from secretion of a wide range of inflammatory cytokines and chemokines including the Th1-governing cytokine IL-12, in keeping with the IgG2a antibody isotype distribution. PVP conjugates are a novel cancer vaccine design, offering an attractive molecular form, similar to VLP, and providing T-cell help. In contrast to VLP, they also incorporate a safe "in-built" ssRNA adjuvant.
Collapse
Affiliation(s)
- Jantipa Jobsri
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Alex Allen
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Deepa Rajagopal
- King’s College London, Peter Gorer Department of Immunobiology, Guy’s Hospital, London, United Kingdom
| | - Michael Shipton
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Kostya Kanyuka
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, United Kingdom
| | | | - Christian Ottensmeier
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sandra S. Diebold
- King’s College London, Peter Gorer Department of Immunobiology, Guy’s Hospital, London, United Kingdom
| | - Freda K. Stevenson
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Natalia Savelyeva
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
5
|
Laffleur B, Denis-Lagache N, Péron S, Sirac C, Moreau J, Cogné M. AID-induced remodeling of immunoglobulin genes and B cell fate. Oncotarget 2015; 5:1118-31. [PMID: 24851241 PMCID: PMC4012742 DOI: 10.18632/oncotarget.1546] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Survival and phenotype of normal and malignant B lymphocytes are critically dependent on constitutive signals by the B cell receptor (BCR) for antigen. In addition, either antigen ligation of the BCR or various mitogenic stimuli result in B cell activation and induction of activation-induced deaminase (AID). AID activity can in turn mediate somatic hypermutation (SHM) of immunoglobulin (Ig) V regions and also deeply remodel the Ig heavy chain locus through class switch recombination (CSR) or locus suicide recombination (LSR). In addition to changes linked to affinity for antigen, modifying the class/isotype (i.e. the structure and function) of the BCR or suddenly deleting BCR expression also modulates the fate of antigen-experienced B cells.
Collapse
|
6
|
Zhuang X, Ahmed F, Zhang Y, Ferguson HJ, Steele JC, Steven NM, Nagy Z, Heath VL, Toellner KM, Bicknell R. Robo4 vaccines induce antibodies that retard tumor growth. Angiogenesis 2014; 18:83-95. [PMID: 25348086 DOI: 10.1007/s10456-014-9448-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 10/13/2014] [Indexed: 01/24/2023]
Abstract
Tumor endothelial specific expression of Robo4 in adults identifies this plasma membrane protein as an anti-cancer target for immunotherapeutic approaches, such as vaccination. In this report, we describe how vaccination against Robo4 inhibits angiogenesis and tumor growth. To break tolerance to the auto-antigen Robo4, mice were immunised with the extracellular domain of mouse Robo4, fused to the Fc domain of human immunoglobulin within an adjuvant. Vaccinated mice show a strong antibody response to Robo4, with no objectively detectable adverse effects on health. Robo4 vaccinated mice showed impaired fibrovascular invasion and angiogenesis in a rodent sponge implantation assay, as well as a reduced growth of implanted syngeneic Lewis lung carcinoma. The anti-tumor effect of Robo4 vaccination was present in CD8 deficient mice but absent in B cell or IgG1 knockout mice, suggesting antibody dependent cell mediated cytotoxicity as the anti-vascular/anti-tumor mechanism. Finally, we show that an adjuvant free soluble Robo4-carrier conjugate can retard tumor growth in carrier primed mice. These results point to appropriate Robo4 conjugates as potential anti-angiogenic vaccines for cancer patients.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Institute for Biomedical Research, Schools of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Follicular lymphoma (FL) is a B-cell tumor arising in germinal centers and retaining features of its normal B-cell counterpart. Lymphomagenesis appears stepwise from the t(14;18) translocation, through FL-like cells, to FL in situ, then to overt FL. Surface Ig is mandatory and carries a striking V-region modification because of introduction of glycan addition sites during somatic mutation. These are positively selected and acquire unusual high mannoses, which interact with lectins. The Ig-associated mannoses appear essential for FL, providing a disease- specific target for antibody attack. Antibody therapy is currently focused on anti-CD20 (rituximab), which appears to rely predominantly on the Fcγ module recruiting suitably activated macrophages. Immunogloblulin and, to some extent, CD20, can each escape antibody attack in vitro by modulation, but this is difficult to demonstrate clinically. Instead, studies of anti-CD20 therapy of FL suggest that effector modulation, similar to that seen in the suppression of autoimmune inflammation by infusions of normal human IgG, may be important. Both antigenic and effector modulations might be minimized by repeated small doses of more potent antibodies. Clearly, mechanisms of attack vary with the malignancy, the target molecule, and the antibody design, offering opportunities for optimizing this promising strategy.
Collapse
|