2
|
Grenier JMP, Testut C, Fauriat C, Mancini SJC, Aurrand-Lions M. Adhesion Molecules Involved in Stem Cell Niche Retention During Normal Haematopoiesis and in Acute Myeloid Leukaemia. Front Immunol 2021; 12:756231. [PMID: 34867994 PMCID: PMC8636127 DOI: 10.3389/fimmu.2021.756231] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
In the bone marrow (BM) of adult mammals, haematopoietic stem cells (HSCs) are retained in micro-anatomical structures by adhesion molecules that regulate HSC quiescence, proliferation and commitment. During decades, researchers have used engraftment to study the function of adhesion molecules in HSC's homeostasis regulation. Since the 90's, progress in genetically engineered mouse models has allowed a better understanding of adhesion molecules involved in HSCs regulation by BM niches and raised questions about the role of adhesion mechanisms in conferring drug resistance to cancer cells nested in the BM. This has been especially studied in acute myeloid leukaemia (AML) which was the first disease in which the concept of cancer stem cell (CSC) or leukemic stem cells (LSCs) was demonstrated. In AML, it has been proposed that LSCs propagate the disease and are able to replenish the leukemic bulk after complete remission suggesting that LSC may be endowed with drug resistance properties. However, whether such properties are due to extrinsic or intrinsic molecular mechanisms, fully or partially supported by molecular crosstalk between LSCs and surrounding BM micro-environment is still matter of debate. In this review, we focus on adhesion molecules that have been involved in HSCs or LSCs anchoring to BM niches and discuss if inhibition of such mechanism may represent new therapeutic avenues to eradicate LSCs.
Collapse
Affiliation(s)
- Julien M P Grenier
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| | - Céline Testut
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| | - Cyril Fauriat
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| | - Stéphane J C Mancini
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| | - Michel Aurrand-Lions
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| |
Collapse
|
3
|
Dhavalikar P, Robinson A, Lan Z, Jenkins D, Chwatko M, Salhadar K, Jose A, Kar R, Shoga E, Kannapiran A, Cosgriff-Hernandez E. Review of Integrin-Targeting Biomaterials in Tissue Engineering. Adv Healthc Mater 2020; 9:e2000795. [PMID: 32940020 PMCID: PMC7960574 DOI: 10.1002/adhm.202000795] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The ability to direct cell behavior has been central to the success of numerous therapeutics to regenerate tissue or facilitate device integration. Biomaterial scientists are challenged to understand and modulate the interactions of biomaterials with biological systems in order to achieve effective tissue repair. One key area of research investigates the use of extracellular matrix-derived ligands to target specific integrin interactions and induce cellular responses, such as increased cell migration, proliferation, and differentiation of mesenchymal stem cells. These integrin-targeting proteins and peptides have been implemented in a variety of different polymeric scaffolds and devices to enhance tissue regeneration and integration. This review first presents an overview of integrin-mediated cellular processes that have been identified in angiogenesis, wound healing, and bone regeneration. Then, research utilizing biomaterials are highlighted with integrin-targeting motifs as a means to direct these cellular processes to enhance tissue regeneration. In addition to providing improved materials for tissue repair and device integration, these innovative biomaterials provide new tools to probe the complex processes of tissue remodeling in order to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Prachi Dhavalikar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Robinson
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ziyang Lan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Dana Jenkins
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Malgorzata Chwatko
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Karim Salhadar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Anupriya Jose
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ronit Kar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Erik Shoga
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aparajith Kannapiran
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | | |
Collapse
|
4
|
Sugimura R, Jha DK, Han A, Soria-Valles C, da Rocha EL, Lu YF, Goettel JA, Serrao E, Rowe RG, Malleshaiah M, Wong I, Sousa P, Zhu TN, Ditadi A, Keller G, Engelman AN, Snapper SB, Doulatov S, Daley GQ. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature 2017; 545:432-438. [PMID: 28514439 PMCID: PMC5872146 DOI: 10.1038/nature22370] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
Abstract
A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here, to yield functional human haematopoietic stem cells, we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid, B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders.
Collapse
Affiliation(s)
- Ryohichi Sugimura
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA
| | - Deepak Kumar Jha
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA
| | - Areum Han
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Clara Soria-Valles
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA
| | - Edroaldo Lummertz da Rocha
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA
| | - Yi-Fen Lu
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA
| | - Jeremy A Goettel
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Erik Serrao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts, 02215, USA
| | - R Grant Rowe
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Mohan Malleshaiah
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Irene Wong
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Patricia Sousa
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA
| | - Ted N Zhu
- Program in Computer Science, Harvard University, Cambridge, Massachusetts, USA
| | - Andrea Ditadi
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Gordon Keller
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts, 02215, USA
| | - Scott B Snapper
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sergei Doulatov
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA
| | - George Q Daley
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
6
|
Oubari F, Amirizade N, Mohammadpour H, Nakhlestani M, Zarif MN. The Important Role of FLT3-L in Ex Vivo Expansion of Hematopoietic Stem Cells following Co-Culture with Mesenchymal Stem Cells. CELL JOURNAL 2015. [PMID: 26199899 PMCID: PMC4503834 DOI: 10.22074/cellj.2016.3715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objective Hematopoietic stem cells (HSCs) transplantation using umbilical cord blood
(UCB) has improved during the last decade. Because of cell limitations, several studies focused on the ex vivo expansion of HSCs. Numerous investigations were performed to introduce the best cytokine cocktails for HSC expansion The majority used the Fms-related
tyrosine kinase 3 ligand (FLT3-L) as a critical component. According to FLT3-L biology, in
this study we have investigated the hypothesis that FLT3-L only effectively induces HSCs
expansion in the presence of a mesenchymal stem cell (MSC) feeder.
Materials and Methods In this experimental study, HSCs and MSCs were isolated from
UCB and placenta, respectively. HSCs were cultured in different culture conditions in the
presence and absence of MSC feeder and cytokines. After ten days of culture, total nucleated cell count (TNC), cluster of differentiation 34+(CD34+) cell count, colony forming
unit assay (CFU), long-term culture initiating cell (LTC-IC), homeobox protein B4 (HoxB4)
mRNA and surface CD49d expression were evaluated. The fold increase for some culture
conditions was compared by the t test.
Results HSCs expanded in the presence of cytokines and MSCs feeder. The rate of expansion in the co-culture condition was two-fold more than culture with cytokines (P<0.05).
FLT3-L could expand HSCs in the co-culture condition at a level of 20-fold equal to the
presence of stem cell factor (SCF), thrombopoietin (TPO) and FLT3-L without feeder cells.
The number of extracted colonies from LTC-IC and CD49d expression compared with a
cytokine cocktail condition meaningfully increased (P<0.05).
Conclusion FLT3-L co-culture with MSCs can induce high yield expansion of HSCs and
be a substitute for the universal cocktail of SCF, TPO and FLT3-L in feeder-free culture.
Collapse
Affiliation(s)
- Farhad Oubari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran ; Faulty of Paramedics, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Naser Amirizade
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hemn Mohammadpour
- Department of Medical Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mozhdeh Nakhlestani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mahin Nikougoftar Zarif
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
8
|
Termini CM, Cotter ML, Marjon KD, Buranda T, Lidke KA, Gillette JM. The membrane scaffold CD82 regulates cell adhesion by altering α4 integrin stability and molecular density. Mol Biol Cell 2014; 25:1560-73. [PMID: 24623721 PMCID: PMC4019488 DOI: 10.1091/mbc.e13-11-0660] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hematopoietic stem/progenitor cell (HSPC) interactions with the bone marrow microenvironment are important for maintaining HSPC self-renewal and differentiation. In recent work, we identified the tetraspanin protein, CD82, as a regulator of HPSC adhesion and homing to the bone marrow, although the mechanism by which CD82 mediated adhesion was unclear. In the present study, we determine that CD82 expression alters cell-matrix adhesion, as well as integrin surface expression. By combining the superresolution microscopy imaging technique, direct stochastic optical reconstruction microscopy, with protein clustering algorithms, we identify a critical role for CD82 in regulating the membrane organization of α4 integrin subunits. Our data demonstrate that CD82 overexpression increases the molecular density of α4 within membrane clusters, thereby increasing cellular adhesion. Furthermore, we find that the tight packing of α4 into membrane clusters depend on CD82 palmitoylation and the presence of α4 integrin ligands. In combination, these results provide unique quantifiable evidence of CD82's contribution to the spatial arrangement of integrins within the plasma membrane and suggest that regulation of integrin density by tetraspanins is a critical component of cell adhesion.
Collapse
Affiliation(s)
- Christina M Termini
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Maura L Cotter
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Kristopher D Marjon
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Tione Buranda
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131
| | - Jennifer M Gillette
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| |
Collapse
|