1
|
Gammall J, Lai AG. Prognostic determinants in cancer survival: a multidimensional evaluation of clinical and genetic factors across 10 cancer types in the participants of Genomics England's 100,000 Genomes Project. Discov Oncol 2024; 15:448. [PMID: 39277826 PMCID: PMC11402888 DOI: 10.1007/s12672-024-01310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 09/03/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Cancer is a complex disease, caused and impacted by a combination of genetic, demographic, clinical, environmental and lifestyle factors. Analysis of cancer characteristics, risk factors, treatment options and the heterogeneity across cancer types has been the focus of medical research for years. The aim of this study is to describe and summarise genetic, clinicopathological, behavioural and demographic characteristics and their differences across ten common cancer types and evaluate their impact on overall survival outcomes. METHODS This study included data from 9977 patients with bladder, breast, colorectal, endometrial, glioma, leukaemia, lung, ovarian, prostate, and renal cancers. Genetic data collected through the 100,000 Genomes Project was linked with clinical and demographic data provided by the National Cancer Registration and Analysis Service (NCRAS), Hospital Episode Statistics (HES) and Office for National Statistics (ONS). Descriptive and Kaplan Meier survival analyses were performed to visualise similarities and differences across cancer types. Cox proportional hazards regression models were applied to identify statistically significant prognostic factor associations with overall survival. RESULTS 161 clinical and 124 genetic factors were evaluated for prognostic association with overall survival. Of these, 116 unique factors were found to have significant prognostic effect for overall survival across ten cancer types when adjusted for age, sex and stage. The findings confirmed prognostic associations with overall survival identified in previous studies in factors such as multimorbidity, tumour mutational burden, and mutations in genes BRAF, CDH1, NF1, NRAS, PIK3CA, PTEN, TP53. The results also identified new prognostic associations with overall survival in factors such as mental health conditions, female health-related conditions, previous hospital encounters and mutations in genes FANCE, FBXW7, GATA3, MSH6, PTPN11, RB1, RNF43. CONCLUSION This study provides a comprehensive view of clinicopathological and genetic prognostic factors across different cancer types and draws attention to less commonly known factors which might help produce more precise prognosis and survival estimates. The results from this study contribute to the understanding of cancer disease and could be used by researchers to develop complex prognostic models, which in turn could help predict cancer prognosis more accurately and improve patient outcomes.
Collapse
Affiliation(s)
- Jurgita Gammall
- Institute of Health Informatics, University College London, 222 Euston Road, London, NW1 2DA, UK.
- Oracle Global Services Limited, London, UK.
| | - Alvina G Lai
- Institute of Health Informatics, University College London, 222 Euston Road, London, NW1 2DA, UK.
| |
Collapse
|
2
|
Chow RD, Velu P, Deihimi S, Belman J, Youn A, Shah N, Luger SM, Carroll MP, Morrissette J, Bowman RL. Early drivers of clonal hematopoiesis shape the evolutionary trajectories of de novo acute myeloid leukemia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.31.24312756. [PMID: 39252918 PMCID: PMC11383471 DOI: 10.1101/2024.08.31.24312756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Mutations commonly found in AML such as DNMT3A, TET2 and ASXL1 can be found in the peripheral blood of otherwise healthy adults - a phenomenon referred to as clonal hematopoiesis (CH). These mutations are thought to represent the earliest genetic events in the evolution of AML. Genomic studies on samples acquired at diagnosis, remission, and at relapse have demonstrated significant stability of CH mutations following induction chemotherapy. Meanwhile, later mutations in genes such as NPM1 and FLT3, have been shown to contract at remission and in the case of FLT3 often are absent at relapse. We sought to understand how early CH mutations influence subsequent evolutionary trajectories throughout remission and relapse in response to induction chemotherapy. Here, we assembled a retrospective cohort of patients diagnosed with de novo AML at our institution that underwent genomic sequencing at diagnosis as well as at the time of remission and/or relapse (total n = 182 patients). Corroborating prior studies, FLT3 and NPM1 mutations were generally eliminated at the time of cytologic complete remission but subsequently reemerged upon relapse, whereas DNMT3A, TET2 and ASXL1 mutations often persisted through remission. Early CH-related mutations exhibited distinct constellations of co-occurring genetic alterations, with NPM1 and FLT3 mutations enriched in DNMT3A mut AML, while CBL and SRSF2 mutations were enriched in TET2 mut and ASXL1 mut AML, respectively. In the case of NPM1 and FLT3 mutations, these differences vanished at the time of complete remission yet readily reemerged upon relapse, indicating the reproducible nature of these genetic interactions. Thus, early CH-associated mutations that precede malignant transformation subsequently shape the evolutionary trajectories of AML through diagnosis, therapy, and relapse.
Collapse
Affiliation(s)
- Ryan D. Chow
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priya Velu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell School of Medicine, Cornell University, New York, NY, USA
| | - Safoora Deihimi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Belman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela Youn
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nisargbhai Shah
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Selina M. Luger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martin P. Carroll
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Morrissette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert L Bowman
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Ou J, Deng S, Ding C, Cai Z, Chen J, Huang Z, Xu X, Li J, Wu Z, Tang B, Zhang T, Wang Z, Zhou Y, Xuan L, Liu Q, Zhou H. Mutations of epigenetic modifier genes predict poor outcome in adult acute lymphoblastic leukemia. Ann Hematol 2024; 103:3639-3648. [PMID: 38451293 DOI: 10.1007/s00277-024-05681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Epigenetic modifier (EM) genes play important roles in the occurrence and progression of acute lymphoblastic leukemia (ALL). However, the prognostic significance of EM mutations in ALL has not yet been thoroughly investigated. This retrospective study included 205 adult patients with ALL engaged in a pediatric-type regimen. Based on targeted next-generation sequencing, they were divided into EM mutation group (EM-mut, n = 75) and EM wild-type group (EM-wt, n = 130). The EM-mut group showed a higher positive rate of minimal residual disease (MRD) on treatment day24 and before consolidation therapy (P = 0.026, 0.020). Multivariate Cox regression analysis showed that EM-mut was an independent adverse factor for overall survival (OS) and event-free survival (EFS) (HR = 2.123, 1.742; P = 0.009, 0.007). Survival analysis revealed that the OS and EFS rates were significantly lower in the EM-mut group than in the EM-wt group (3-year OS rate, 45.8% vs. 65.0%, P = 0.0041; 3-year EFS rate, 36.7% vs. 53.2%, P = 0.011). In conclusion, EM was frequently mutated in adult ALL and was characterized by poor response to induction therapy and inferior clinical outcomes.
Collapse
Affiliation(s)
- Jiawang Ou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shiyu Deng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chenhao Ding
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihong Cai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zicong Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuli Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhengwei Wu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingqing Tang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ya Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Jiang DH, Ni H, Curti M, Phan V, Jiang JG, Wu L. Cytogenetic and Molecular Characteristics in Adult Hispanic Acute Myeloid Leukemia Patients From Puerto Rico. Cureus 2024; 16:e70388. [PMID: 39469370 PMCID: PMC11515688 DOI: 10.7759/cureus.70388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2024] [Indexed: 10/30/2024] Open
Abstract
The cytogenetic and molecular heterogeneity of acute myeloid leukemia (AML) is characterized as a contributing factor in the disparity of treatment outcomes and clinical outcomes seen among ethnic and racial groups. In this study, we have retrospectively evaluated the karyotypes of 800 adult Hispanic AML patients from Puerto Rico (PR). Acute promyelocytic leukemia with PML-RARA is the most common recurrent cytogenetic abnormality, compatible with previously published results. Among these AML patients, 163 patients had 21 gene panels performed. Twenty-six (15.95%) patients showed no detectable mutations, and 137 patients (84.05%) showed at least one mutation. Compared with previously published data from other examined Hispanic AML populations in the United States, mutational frequencies of these 21 genes, except for ASXL1, WT1, and KRAS, show no significant difference. This is the largest study to date about the landscape of cytogenetic and molecular abnormalities in Hispanic AML patients and a first report regarding the frequencies of these abnormalities in Puerto Rican Hispanic AML patients.
Collapse
Affiliation(s)
| | - Hongyu Ni
- Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Mario Curti
- Hematology and Oncology, University of California, Irvine (UCI) Health, Los Alamitos, USA
| | - Vu Phan
- Hematology and Oncology, University of California, Irvine (UCI) Health, Los Alamitos, USA
| | - Jie-Gen Jiang
- Pathology, University of California, Irvine (UCI) Health, Los Alamitos, USA
| | - Lihong Wu
- Hematology and Oncology, City of Hope, Long Beach, USA
| |
Collapse
|
5
|
Fasouli ES, Katsantoni E. Age-associated myeloid malignancies - the role of STAT3 and STAT5 in myelodysplastic syndrome and acute myeloid leukemia. FEBS Lett 2024. [PMID: 39048534 DOI: 10.1002/1873-3468.14985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
In the last few decades, the increasing human life expectancy has led to the inflation of the elderly population and consequently the escalation of age-related disorders. Biological aging has been associated with the accumulation of somatic mutations in the Hematopoietic Stem Cell (HSC) compartment, providing a fitness advantage to the HSCs leading to clonal hematopoiesis, that includes non-malignant and malignant conditions (i.e. Clonal Hematopoiesis of Indeterminate Potential, Myelodysplastic Syndrome and Acute Myeloid Leukemia). The Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway is a key player in both normal and malignant hematopoiesis. STATs, particularly STAT3 and STAT5, are greatly implicated in normal hematopoiesis, immunity, inflammation, leukemia, and aging. Here, the pleiotropic functions of JAK-STAT pathway in age-associated hematopoietic defects and of STAT3 and STAT5 in normal hematopoiesis, leukemia, and inflammaging are reviewed. Even though great progress has been made in deciphering the role of STATs, further research is required to provide a deeper understanding of the molecular mechanisms of leukemogenesis, as well as novel biomarkers and therapeutic targets for improved management of age-related disorders.
Collapse
Affiliation(s)
- Eirini Sofia Fasouli
- Biomedical Research Foundation, Academy of Athens, Basic Research Center, Athens, Greece
| | - Eleni Katsantoni
- Biomedical Research Foundation, Academy of Athens, Basic Research Center, Athens, Greece
| |
Collapse
|
6
|
Wu Z, Lin Q, Sheng L, Chen W, Liang M, Wu D, Ke Y. A novel immune-related risk-scoring system associated with the prognosis and response of cervical cancer patients treated with radiation therapy. Front Mol Biosci 2023; 10:1297774. [PMID: 38028542 PMCID: PMC10667679 DOI: 10.3389/fmolb.2023.1297774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Objective: The tumor microenvironment plays a critical role in the radiotherapy and immunotherapy response of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). Radioresistance is a key factor in treatment failure among patients who receive radical radiotherapy. Thus, new immune-related biomarkers associated with radiotherapy response in CESC are needed. Methods: In this study, the CIBERSORT and ESTIMATE methods were applied to determine the percentage of tumor-infiltrating cells and the number of immune components in 103 CESCs treated with radiotherapy from The Cancer Genome Atlas (TCGA) database. The main dysregulated genes were subjected to multivariate and univariate analyses. The prognostic value of this system was studied via receiver operating characteristic curve and survival analysis. For further confirmation, the biomarkers' expression levels and predictive value were validated by immunohistochemistry (IHC) and qRT-PCR. The CIBERSORT algorithm was used to calculate the compositional patterns of 22 types of immune cells in cervical cancer patients treated with radiation therapy. Results: Data for 17 radioresistant and 86 radiosensitive tumors were obtained from the The Cancer Genome Atlas database. 53 immune-related DEGs were identified. GO and KEGG analyses revealed that the DEGs were enriched in protein kinase B signaling, growth factors in cytokines, the MAPK pathway and the PI3K-Akt pathway. Then, 14 key immune-related genes built a risk scoring model were deemed prognostic in CESC with radiotherapy. The area under the curve (AUC) of the model was 0.723, and the high-risk group presented worse outcomes than the low-risk group. In addition, the high-risk group tended to have persistent tumors (p = 0.001). The high expression of WT1 and SPOUYT4 were associated with relapse, the high expression of Angiotensinogen and MIEN1 were associated with nonrelapse. Analysis of the immune microenvironment indicated that M0 macrophages, M2 macrophages, activated mast cells and resting memory CD4+ T cells were positively correlated with the risk score (p < 0.05). Conclusion: The novel immune-related risk scoring system has some advantages in predicting the prognosis and treatment response of cervical cancer patients treated with radiotherapy. Moreover, it might provide novel clues for providing targeted immune therapy to these patients.
Collapse
Affiliation(s)
- Zhuna Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qiuya Lin
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Liying Sheng
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Weihong Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Meili Liang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Danni Wu
- Department of Operation, The Second Hospital of Jinjiang, Quanzhou, China
| | - Yumin Ke
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
7
|
Jiang JL, Gao WH, Wang LN, Wan M, Wang L, Hu J. Low Incidence of Relapse with a Moderate Conditioning Regimen of Fludarabine, Busulfan, and Melphalan for Patients with Myeloid Malignancies: A Single-Center Analysis of 100 Patients. Transplant Cell Ther 2023; 29:512.e1-512.e8. [PMID: 37263418 DOI: 10.1016/j.jtct.2023.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT) with standard myeloablative conditioning regimens such as fludarabine (Flu) and busulfan (Bu) remains a major concern in patients with myeloid malignancies. A low relapse rate has been reported when thiotepa or melphalan (Mel) is added to Flu-Bu, but at a possible increased risk of nonrelapse mortality (NRM). Here we evaluated the outcomes of 100 patients (70 with acute myeloid leukemia, 23 with myelodysplastic syndrome, 4 with chronic myelomonocytic leukemia, and 3 with granulocytic sarcoma) who underwent their first allo-HSCT after a moderate-dose FBM conditioning regimen consisting of Flu 150 mg/m2, Bu 6.4 mg/kg, and Mel 140 mg/m2 (n = 69), with Mel 100 mg/m2 for patients age >55 years and/or with a Hematopoietic Cell Transplantation Comorbidity Index (HCT-CI) ≥3 (n = 31). Donors were HLA-matched siblings (n = 19), matched unrelated donors (n = 4), and haploidentical donors (n = 77). The majority of patients (88%) had an intermediate or high Disease Risk Index. Out of 96 evaluable patients, 94 achieved neutrophil engraftment and had full donor chimerism on day +30 post-transplantation. After a median follow-up of 468 days (range, 55 to 1039 days), only 4 patients relapsed, with a 2-year cumulative incidence of relapse (CIR) of 5.3% ± 3.6%. The 100-day and 2-year NRM were 6.8% ± 4.4% and 12.3% ± 3.6%, respectively. At the last follow-up, the 2-year disease-free survival (DFS) and overall survival (OS) were 82.4% ± 4.2% and 80.3% ± 6.0%, respectively. Comparing the transplantation outcomes between patients receiving Mel 100 mg/m2 and those receiving Mel 140 mg/m2, showed no significant differences in NRM and CIR between the 2 groups and similar 2-year DFS and OS in the 2 groups, although the Mel 100 group had a higher median age (58 years versus 42 years; P < .001) and a higher percentage of patients with an HCT-CI ≥3 (P = .005). In the total cohort, the sole independent factor associated with transplantation outcomes was HCT-CI ≥3, which correlated with higher NRM and inferior DFS and OS. Our study suggests that moderate-intensity FBM conditioning is feasible for patients with myeloid malignancies, with a low relapse rate without increased NRM. A lower Mel dose of 100 mg/m2 maintained the low risk of relapse without excess NRM in older adults. However, the FBM regimen should be used with caution in patients with high-risk HCT-CI (≥3).
Collapse
Affiliation(s)
- Jie-Ling Jiang
- Shanghai Institute of Hematology, Blood & Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Hui Gao
- Shanghai Institute of Hematology, Blood & Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Ning Wang
- Shanghai Institute of Hematology, Blood & Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Wan
- Shanghai Clinical Research Center, Feng Lin International Centre, Shanghai, China
| | - Ling Wang
- Shanghai Institute of Hematology, Blood & Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiong Hu
- Shanghai Institute of Hematology, Blood & Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Chen X, Tian C, Hao Z, Pan L, Hong M, Wei W, Muyey DM, Wang H, Chen X. The impact of DNMT3A variant allele frequency and two different comutations on patients with de novo cytogenetically normal acute myeloid leukemia. Cancer Med 2023; 12:10340-10350. [PMID: 36912186 DOI: 10.1002/cam4.5764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
To refine the biological and prognostic significance of DNMT3A mutations in acute myeloid leukemia (AML), we assessed the impact of DNMT3A variant allele frequency (VAF) and its comutations in this study. Using targeted next-generation sequencing, we analyzed 171 adult patients with de novo cytogenetically normal AML for DNMT3A mutations and associated comutations. DNMT3Amut was detected in 35 patients. DNMT3Amut patients were divided into DNMT3AHigh and DNMT3ALow using a cut-off VAF value of 42%. We observed that DNMT3AHigh patients at diagnosis had increasing white blood cell (WBC) counts (p < 0.001) and a higher lactate dehydrogenase (LDH) level (p = 0.027), and were associated with lower complete remission (CR) rate (p = 0.015) and shorter overall survival (OS) (p = 0.032) than DNMT3ALow patients. We classified two different comutated genetypes, including DNMT3Amut NPM1mut FLT3-ITDmut and DNMT3Amut IDH1/IDH2mut . Patients with DNMT3Amut NPM1mut FLT3-ITDmut showed worse OS (p = 0.026) and relapse-free survival (RFS) (p = 0.003) than those with DNMT3Amut IDH1/IDH2mut , and showed a shorter OS (p = 0.027) than those with DNMT3Awt NPM1mut FLT3-ITDmut . We also observed that patients with DNMT3Amut IDH1/IDH2mut had higher platelet counts (p = 0.009) and a lower BM blast percentage (p = 0.040) than those with DNMT3Awt IDH1/IDH2mut . In multivariate analyses, DNMT3AHigh was independently associated with a lower CR rate (OR = 5.883; p = 0.004) and shorter OS (HR = 3.768; p < 0.001). DNMT3Amut NPM1mut FLT3-ITDmut independently affected worse OS (HR = 6.030; p < 0.001) and RFS (HR = 8.939; p < 0.001). Our findings might be potentially useful for predicting clinical outcomes.
Collapse
Affiliation(s)
- Xian Chen
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China.,Department of Genetic Medicine, Shanxi Medical University, Jinzhong, China
| | - Chuchu Tian
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhuanghui Hao
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lingang Pan
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Minglin Hong
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wei Wei
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Daniel Muteb Muyey
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiuhua Chen
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
9
|
Murray HC, Miller K, Brzozowski JS, Kahl RGS, Smith ND, Humphrey SJ, Dun MD, Verrills NM. Synergistic Targeting of DNA-PK and KIT Signaling Pathways in KIT Mutant Acute Myeloid Leukemia. Mol Cell Proteomics 2023; 22:100503. [PMID: 36682716 PMCID: PMC9986649 DOI: 10.1016/j.mcpro.2023.100503] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common and aggressive form of acute leukemia, with a 5-year survival rate of just 24%. Over a third of all AML patients harbor activating mutations in kinases, such as the receptor tyrosine kinases FLT3 (receptor-type tyrosine-protein kinase FLT3) and KIT (mast/stem cell growth factor receptor kit). FLT3 and KIT mutations are associated with poor clinical outcomes and lower remission rates in response to standard-of-care chemotherapy. We have recently identified that the core kinase of the non-homologous end joining DNA repair pathway, DNA-PK (DNA-dependent protein kinase), is activated downstream of FLT3; and targeting DNA-PK sensitized FLT3-mutant AML cells to standard-of-care therapies. Herein, we investigated DNA-PK as a possible therapeutic vulnerability in KIT mutant AML, using isogenic FDC-P1 mouse myeloid progenitor cell lines transduced with oncogenic mutant KIT (V560G and D816V) or vector control. Targeted quantitative phosphoproteomic profiling identified phosphorylation of DNA-PK in the T2599/T2605/S2608/S2610 cluster in KIT mutant cells, indicative of DNA-PK activation. Accordingly, proliferation assays revealed that KIT mutant FDC-P1 cells were more sensitive to the DNA-PK inhibitors M3814 or NU7441, compared with empty vector controls. DNA-PK inhibition combined with inhibition of KIT signaling using the kinase inhibitors dasatinib or ibrutinib, or the protein phosphatase 2A activators FTY720 or AAL(S), led to synergistic cell death. Global phosphoproteomic analysis of KIT-D816V cells revealed that dasatinib and M3814 single-agent treatments inhibited extracellular signal-regulated kinase and AKT (RAC-alpha serine/threonine-protein kinase)/MTOR (serine/threonine-protein kinase mTOR) activity, with greater inhibition of both pathways when used in combination. Combined dasatinib and M3814 treatment also synergistically inhibited phosphorylation of the transcriptional regulators MYC and MYB. This study provides insight into the oncogenic pathways regulated by DNA-PK beyond its canonical role in DNA repair and demonstrates that DNA-PK is a promising therapeutic target for KIT mutant cancers.
Collapse
Affiliation(s)
- Heather C Murray
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Kasey Miller
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Joshua S Brzozowski
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Richard G S Kahl
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Nathan D Smith
- Analytical and Biomolecular Research Facility, Advanced Mass Spectrometry Unit, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sean J Humphrey
- School of Life and Environmental Sciences, and The Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia.
| |
Collapse
|
10
|
Stölzel F, Fordham SE, Nandana D, Lin WY, Blair H, Elstob C, Bell HL, Mohr B, Ruhnke L, Kunadt D, Dill C, Allsop D, Piddock R, Soura EN, Park C, Fadly M, Rahman T, Alharbi A, Wobus M, Altmann H, Röllig C, Wagenführ L, Jones GL, Menne T, Jackson GH, Marr HJ, Fitzgibbon J, Onel K, Meggendorfer M, Robinson A, Bziuk Z, Bowes E, Heidenreich O, Haferlach T, Villar S, Ariceta B, Diaz RA, Altschuler SJ, Wu LF, Prosper F, Montesinos P, Martinez-Lopez J, Bornhäuser M, Allan JM. Biallelic TET2 mutations confer sensitivity to 5'-azacitidine in acute myeloid leukemia. JCI Insight 2023; 8:e150368. [PMID: 36480300 PMCID: PMC9977313 DOI: 10.1172/jci.insight.150368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Precision medicine can significantly improve outcomes for patients with cancer, but implementation requires comprehensive characterization of tumor cells to identify therapeutically exploitable vulnerabilities. Here, we describe somatic biallelic TET2 mutations in an elderly patient with acute myeloid leukemia (AML) that was chemoresistant to anthracycline and cytarabine but acutely sensitive to 5'-azacitidine (5'-Aza) hypomethylating monotherapy, resulting in long-term morphological remission. Given the role of TET2 as a regulator of genomic methylation, we hypothesized that mutant TET2 allele dosage affects response to 5'-Aza. Using an isogenic cell model system and an orthotopic mouse xenograft, we demonstrate that biallelic TET2 mutations confer sensitivity to 5'-Aza compared with cells with monoallelic mutations. Our data argue in favor of using hypomethylating agents for chemoresistant disease or as first-line therapy in patients with biallelic TET2-mutated AML and demonstrate the importance of considering mutant allele dosage in the implementation of precision medicine for patients with cancer.
Collapse
Affiliation(s)
- Friedrich Stölzel
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Sarah E. Fordham
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Devi Nandana
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Wei-Yu Lin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen Blair
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Claire Elstob
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hayden L. Bell
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Brigitte Mohr
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Leo Ruhnke
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Desiree Kunadt
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Claudia Dill
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Daniel Allsop
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel Piddock
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emmanouela-Niki Soura
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Catherine Park
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mohd Fadly
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thahira Rahman
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Abrar Alharbi
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Manja Wobus
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Heidi Altmann
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Christoph Röllig
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Lisa Wagenführ
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Gail L. Jones
- Department of Hematology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Tobias Menne
- Department of Hematology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Graham H. Jackson
- Department of Hematology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Helen J. Marr
- Department of Hematology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Jude Fitzgibbon
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Kenan Onel
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Amber Robinson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Zuzanna Bziuk
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emily Bowes
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Olaf Heidenreich
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Sara Villar
- Department of Hematology, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Beñat Ariceta
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Navarra, Spain
- IdiSNA, Navarra, Spain
| | - Rosa Ayala Diaz
- Hematology Department, Hospital 12 de Octubre (i+12), Centro Nacional de Investigaciones Oncológicas (CNIO), Complutense University, Madrid, Spain
| | - Steven J. Altschuler
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, San Francisco, California, USA
| | - Lani F. Wu
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, San Francisco, California, USA
| | - Felipe Prosper
- Department of Hematology, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Pau Montesinos
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Joaquin Martinez-Lopez
- Hematology Department, Hospital 12 de Octubre (i+12), Centro Nacional de Investigaciones Oncológicas (CNIO), Complutense University, Madrid, Spain
| | - Martin Bornhäuser
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
| | - James M. Allan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
11
|
Ameri M, Alipour M, Madihi M, Nezafat N. Identification of intrinsically disordered regions in hub genes of acute myeloid leukemia: A bioinformatics approach. Biotechnol Appl Biochem 2022; 69:2304-2322. [PMID: 34812529 DOI: 10.1002/bab.2287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/30/2021] [Indexed: 12/27/2022]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Over the past decades, there has been a great challenge in the treatment of AML. A combination of gene expression profiling with computational approaches can lead to the identification of hub genes in AML. However, it is important to study the structure of these hub genes considering their importance in the protein-protein interaction (PPI) network of specific cancer. In this study, we designed an integrated method to analyze the presence of intrinsically disordered regions (IDRs) in selected hub genes of AML. A gene expression profile of AML was obtained from Gene Expression Omnibus (GEO) database. Further analysis identified differentially expressed genes (DEGs) in AML. Additionally, the top 15 hub genes following construction and analysis of the PPI network of DEGs were selected. Validation of hub genes revealed that there is a reverse relationship between overexpression of FLT3, PPBP, and PF4 genes and the survival of AML patients. Based on IDRs investigation, FLT3 and PF4 are partially disordered, while PPBP is mostly disordered. Through clustering the network into structural modules, we identified two important modules in the PPI network of DEGs that showed the important position of PPBP in module 1. Based on further analysis of protein flexibility and its important role in biological processes, we suggest that PPBP can be considered as a potential drug target in AML.
Collapse
Affiliation(s)
- Mehrdad Ameri
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Alipour
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mobina Madihi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
He X, Zhang W, Fu W, Liu X, Yang P, Wang J, Zhu M, Li S, Zhang W, Zhang X, Dong G, Yan C, Zhao Y, Zeng Z, Jing H. The prognostic value of RASGEF1A RNA expression and DNA methylation in cytogenetically normal acute myeloid leukemia. Cancer Biomark 2022; 36:103-116. [PMID: 36404533 DOI: 10.3233/cbm-210407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a significantly heterogeneous malignancy of the blood. Cytogenetic abnormalities are crucial for the prognosis of AML. However, since more than half of patients with AML are cytogenetically normal AML (CN-AML), predictive prognostic indicators need to be further refined. In recent years, gene abnormalities are considered to be strong prognostic factors of CN-AML, already having clinical significance for treatment. In addition, the relationship of methylation in some genes and AML prognosis predicting has been discovered. RASGEF1A is a guanine nucleotide exchange factors of Ras and widely expressed in brain tissue, bone marrow and 17 other tissues. RASGEF1A has been reported to be associated with a variety of malignant tumors, examples include Hirschsprung disease, renal cell carcinoma, breast cancer, diffuse large B cell lymphoma, intrahepatic cholangiocarcinoma and so on [1, 2]. However, the relationship between the RASGEF1A gene and CN-AML has not been reported. METHODS By integrating the Cancer Genome Atlas (TCGA) database 75 patients with CN-AML and 240 Gene Expression Omnibus (GEO) database CN-AML samples, we examined the association between RASGEF1A's RNA expression level and DNA methylation of and AML patients' prognosis. Then, we investigated the RASGEF1A RNA expression and DNA methylation's prognostic value in 77 patients with AML after allogeneic hematopoietic stem cell transplantation (Allo-HSCT) as well as 101 AML patients after chemotherapy respectively. We investigated the association between sensitivity to Crenolanib and expression level of RASGED1A in patients by integrating 191 CN-AML patients from BeatAML dadataset. We integrated the expression and methylation of RASGEF1A to predict the CN-AML patients' prognosis and investigated the relationship between prognostic of AML patients with different risk classification and expression levels or methylation levels of RASGEF1A. RESULTS We found that RASGEF1A gene high expression group predicted poorer event-free survival (EFS) (P< 0.0001) as well as overall survival (OS) (P< 0.0001) in CN-AML samples, and the identical results were found in AML patients receiving chemotherapy (P< 0.0001) and Allo-HSCT (P< 0.0001). RASGEF1A RNA expression level is an CN-AML patients' independent prognostic factor (EFS: HR = 5.5534, 95% CI: 1.2982-23.756, P= 0.0208; OS: HR = 5.3615, 95% CI: 1.1014-26.099, P= 0.0376). The IC50 (half maximal inhibitory concentration) of Crenolanib of CN-AML samples with RASGEF1A high expression level is lower. In addition, patients with high RASGEF1A methylation level had significant favorable prognosis (EPS: P< 0.0001, OS: P< 0.0001). Furthermore, the integrative analysis of expression and methylation of RASGEF1A could classify CN-AML patients into subgroups with different prognosis (EFS: P= 0.034, OS: P= 0.0024). Expression levels or methylation levels of RASGEF1A help to improve risk classification of 2010 European Leukemia Net. CONCLUSION Higher RASGEF1A RNA expression and lower DNA methylation predicts CN-AML patients' poorer prognosis. The RASGEF1A high expression level from patients with CN-AML have better sensitivity to Crenolanib. The integrative analysis of RASGEF1A RNA expression and DNA methylation can provide a more accurate classification for prognosis. Lower RASGEF1A expression is a favorable prognostic factor for AML patients receiving chemotherapy or Allo-HSCT. 2010 European Leukemia Net's risk classification can be improved by RASGEF1A expression levels or methylation levels.
Collapse
Affiliation(s)
- Xue He
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Pathology, Capital Medical University, Beijing, China.,Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China.,Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Fu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China.,Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoni Liu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Ping Yang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Jing Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Mingxia Zhu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Shaoxiang Li
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Pathology, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Pathology, Capital Medical University, Beijing, China
| | - Xiuru Zhang
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Pathology, Capital Medical University, Beijing, China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Pathology, Capital Medical University, Beijing, China
| | | | - Yali Zhao
- General Practice Medicine, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Zhiping Zeng
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
13
|
Dissecting the Genetic and Non-Genetic Heterogeneity of Acute Myeloid Leukemia Using Next-Generation Sequencing and In Vivo Models. Cancers (Basel) 2022; 14:cancers14092182. [PMID: 35565315 PMCID: PMC9103951 DOI: 10.3390/cancers14092182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is an extremely aggressive form of blood cancer with high rates of treatment failure. AML arises from the stepwise acquisition of genetic aberrations and is a highly heterogeneous disorder. Recent research has shown that individual AML samples often contain several clones that are defined by a distinct combination of genetic lesions, epigenetic patterns and cell surface marker expression profiles. A better understanding of the clonal dynamics of AML is required to develop novel treatment strategies against this disease. In this review, we discuss the recent developments that have further deepened our understanding of clonal evolution and heterogeneity in AML. Abstract Acute myeloid leukemia (AML) is an extremely aggressive and heterogeneous disorder that results from the transformation of hematopoietic stem cells. Although our understanding of the molecular pathology of AML has greatly improved in the last few decades, the overall and relapse free survival rates among AML patients remain quite poor. This is largely due to evolution of the disease and selection of the fittest, treatment-resistant leukemic clones. There is increasing evidence that most AMLs possess a highly complex clonal architecture and individual leukemias are comprised of genetically, phenotypically and epigenetically distinct clones, which are continually evolving. Advances in sequencing technologies as well as studies using murine AML models have provided further insights into the heterogeneity of leukemias. We will review recent advances in the field of genetic and non-genetic heterogeneity in AML.
Collapse
|
14
|
Shen Q, Feng Y, Gong X, Jia Y, Gao Q, Jiao X, Qi S, Liu X, Wei H, Huang B, Zhao N, Song X, Ma Y, Liang S, Zhang D, Qin L, Wang Y, Qu S, Zou Y, Chen Y, Guo Y, Yi S, An G, Jiao Z, Zhang S, Li L, Yan J, Wang H, Song Z, Mi Y, Qiu L, Zhu X, Wang J, Xiao Z, Chen J. A Phenogenetic Axis that Modulates Clinical Manifestation and Predicts Treatment Outcome in Primary Myeloid Neoplasms. CANCER RESEARCH COMMUNICATIONS 2022; 2:258-276. [PMID: 36873623 PMCID: PMC9981215 DOI: 10.1158/2767-9764.crc-21-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
Although the concept of "myeloid neoplasm continuum" has long been proposed, few comparative genomics studies directly tested this hypothesis. Here we report a multi-modal data analysis of 730 consecutive newly diagnosed patients with primary myeloid neoplasm, along with 462 lymphoid neoplasm cases serving as the outgroup. Our study identified a "Pan-Myeloid Axis" along which patients, genes, and phenotypic features were all aligned in sequential order. Utilizing relational information of gene mutations along the Pan-Myeloid Axis improved prognostic accuracy for complete remission and overall survival in adult patients of de novo acute myeloid leukemia and for complete remission in adult patients of myelodysplastic syndromes with excess blasts. We submit that better understanding of the myeloid neoplasm continuum might shed light on how treatment should be tailored to individual diseases. Significance The current criteria for disease diagnosis treat myeloid neoplasms as a group of distinct, separate diseases. This work provides genomics evidence for a "myeloid neoplasm continuum" and suggests that boundaries between myeloid neoplastic diseases are much more blurred than previously thought.
Collapse
Affiliation(s)
- Qiujin Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yahui Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaowen Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yujiao Jia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qingyan Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | - Saibing Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xueou Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Bingqing Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ningning Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoqiang Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yueshen Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | - Donglei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Li Qin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ying Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shiqiang Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yao Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yumei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shuhua Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | - Song Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Linfeng Li
- Yidu Cloud Technology Inc., Beijing, China
| | - Jun Yan
- Yidu Cloud Technology Inc., Beijing, China
| | - Huijun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhen Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingchang Mi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Junren Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
15
|
Su L, Shi YY, Liu ZY, Gao SJ. Acute Myeloid Leukemia With CEBPA Mutations: Current Progress and Future Directions. Front Oncol 2022; 12:806137. [PMID: 35178345 PMCID: PMC8844020 DOI: 10.3389/fonc.2022.806137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in CCAAT enhancer binding protein A gene (CEBPA) are one of the common genetic alterations in acute myeloid leukemia (AML). Recently, the emergence of new evidence makes it necessary to reconsider the subsets and treatment of AML patients with CEBPA mutations. This review will summarize the history of research progress of CEBPA mutations in AML, the heterogeneities of AML with CEBPA double mutations (CEBPA dm), and two special subtypes of CEBPA mutated AML. We will discuss the treatment of AML with CEBPA mutations as well, and finally propose a new algorithm for the treatment of these patients, including both familial and sporadic CEBPA mutated AML patients. This review may be beneficial for further investigation and optimizing clinical management of AML patients with CEBPA mutations.
Collapse
Affiliation(s)
- Long Su
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Yuan-Yuan Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zeng-Yan Liu
- Department of Hematology, Binzhou Medical University Hospital, Binzhou, China
| | - Su-Jun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Zhang Y, Li X, Weng X, Shen Y, Chen Y, Zheng Y, Zhao H, You J, Mao Y, Wang L, Wu M, Sheng Y, Wu J, Hu J, Chen Q, Li J. Optimization of idarubicin and cytarabine induction regimen with homoharringtonine for newly diagnosed acute myeloid leukemia patients based on the peripheral blast clearance rate: A single-arm, phase 2 trial (RJ-AML 2014). Am J Hematol 2022; 97:43-51. [PMID: 34687467 DOI: 10.1002/ajh.26386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
Individualized chemotherapy, which is at the forefront of acute myeloid leukemia (AML) treatment, has moderately improved outcomes over the past decade. Monitoring the peripheral blood blast burden during induction by flow cytometry has shown significant value in the evaluation of treatment responses. Our previous study reported the day 5 peripheral blast clearance rate (D5-PBCR) as an indicator of early treatment response, and D5-PBCR (+) patients showed poor outcomes. We performed the present phase 2 trial of early intervention in D5-PBCR (+) patients with homoharringtonine (HHT) introduced in the traditional induction regimen with anthracycline and cytarabine. The primary endpoint was complete remission (CR). This study enrolled 151 patients, 65 patients were D5-PBCR (+) and 55 patients completed induction with HHT addition. The overall CR rate after one course of induction was 84.4%, with 87.5% and 80.0% for the D5-PBCR (-) and D5-PBCR (+) groups, respectively. The incidence of grade 3/4 adverse events was comparable between the two groups. At the median follow-up of 53.1 months, median overall survival (OS) was not reached in the entire cohort, and median event-free survival (EFS) was 42.2 months. Neither the OS nor EFS showed significant differences between the D5-PBCR (-) and D5-PBCR (+) groups. Compared to historical data, significant improvements in both OS (p = .020) and EFS (p = .020) were observed in the D5-PBCR (+) group. In conclusion, optimization of induction chemotherapy with idarubicin and cytarabine according to D5-PBCR is feasible in patients with newly diagnosed AML. The addition of HHT demonstrated a good efficacy and safety profile.
Collapse
Affiliation(s)
- Yunxiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiaoyang Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiangqin Weng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yang Shen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yu Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Huijin Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jianhua You
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yuanfei Mao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Lining Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Min Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yan Sheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jing Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jiong Hu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Qiusheng Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
17
|
Liao XY, Fang JP, Zhou DH, Qiu KY. CEBPA are independent good prognostic factors in pediatric acute myeloid leukemia. Hematol Oncol 2021; 40:258-268. [PMID: 34816468 DOI: 10.1002/hon.2951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022]
Abstract
To evaluate the outcome and prognostic significance of CEBPA mutations among pediatric acute myeloid leukemia (AML) from TARGET dataset. A total of 1803 pediatric patients who were diagnosed with AML were classified into two groups based on the CEBPA status by using a retrospective cohort study method from September 1996 to December 2016. The incidence of CEBPA mutations was 18%. CEBPA mutations were significantly associated with elder age (p < 0.001), higher WBC (p = 0.004), higher proportion of peripheral blood blast (p < 0.001), normal karyotype (p < 0.001), low risk (p < 0.001) and higher complete remission induction rates (p < 0.05). Overall, CEBPA mutations patients had a significantly better 5-year EFS (p < 0.001) and OS (p < 0.001) compared to CEBPA wild-type patients, and this favorable impact was maintained even in the presence of FLT3/ITD mutations. Stem cell transplantation had no significant impact on the survival of patients with coexistence of CEBPA and FLT3/ITD mutations. Multivariate analysis demonstrated that mutated CEBPA were an independent favorable indicators of better outcome in terms of EFS (p = 0.007) and OS (p = 0.039). Our study demonstrate mutated CEBPA have an excellent outcome in pediatric AML patients. Furthermore, pediatric AML patients with coexistence of CEBPA and FLT3/ITD mutation appear to have favorable prognoses and might not required stem cell transplantation.
Collapse
Affiliation(s)
- Xiong-Yu Liao
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jian-Pei Fang
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dun-Hua Zhou
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kun-Yin Qiu
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
18
|
Kalushkova A, Nylund P, Párraga AA, Lennartsson A, Jernberg-Wiklund H. One Omics Approach Does Not Rule Them All: The Metabolome and the Epigenome Join Forces in Haematological Malignancies. EPIGENOMES 2021; 5:epigenomes5040022. [PMID: 34968247 PMCID: PMC8715477 DOI: 10.3390/epigenomes5040022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 02/01/2023] Open
Abstract
Aberrant DNA methylation, dysregulation of chromatin-modifying enzymes, and microRNAs (miRNAs) play a crucial role in haematological malignancies. These epimutations, with an impact on chromatin accessibility and transcriptional output, are often associated with genomic instability and the emergence of drug resistance, disease progression, and poor survival. In order to exert their functions, epigenetic enzymes utilize cellular metabolites as co-factors and are highly dependent on their availability. By affecting the expression of metabolic enzymes, epigenetic modifiers may aid the generation of metabolite signatures that could be utilized as targets and biomarkers in cancer. This interdependency remains often neglected and poorly represented in studies, despite well-established methods to study the cellular metabolome. This review critically summarizes the current knowledge in the field to provide an integral picture of the interplay between epigenomic alterations and the cellular metabolome in haematological malignancies. Our recent findings defining a distinct metabolic signature upon response to enhancer of zeste homolog 2 (EZH2) inhibition in multiple myeloma (MM) highlight how a shift of preferred metabolic pathways may potentiate novel treatments. The suggested link between the epigenome and the metabolome in haematopoietic tumours holds promise for the use of metabolic signatures as possible biomarkers of response to treatment.
Collapse
Affiliation(s)
- Antonia Kalushkova
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
- Correspondence:
| | - Patrick Nylund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| | - Alba Atienza Párraga
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, NEO, Karolinska Institutet, 14157 Huddinge, Sweden;
| | - Helena Jernberg-Wiklund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| |
Collapse
|
19
|
TP53 in Acute Myeloid Leukemia: Molecular Aspects and Patterns of Mutation. Int J Mol Sci 2021; 22:ijms221910782. [PMID: 34639121 PMCID: PMC8509740 DOI: 10.3390/ijms221910782] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/10/2023] Open
Abstract
Mutation of the tumor suppressor gene, TP53, is associated with abysmal survival outcomes in acute myeloid leukemia (AML). Although it is the most commonly mutated gene in cancer, its occurrence is observed in only 5–10% of de novo AML, and in 30% of therapy related AML (t-AML). TP53 mutation serves as a prognostic marker of poor response to standard-of-care chemotherapy, particularly in t-AML and AML with complex cytogenetics. In light of a poor response to traditional chemotherapy and only a modest improvement in outcome with hypomethylation-based interventions, allogenic stem cell transplant is routinely recommended in these cases, albeit with a response that is often short lived. Despite being frequently mutated across the cancer spectrum, progress and enthusiasm for the development of p53 targeted therapeutic interventions is lacking and to date there is no approved drug that mitigates the effects of TP53 mutation. There is a mounting body of evidence indicating that p53 mutants differ in functionality and form from typical AML cases and subsequently display inconsistent responses to therapy at the cellular level. Understanding this pathobiological activity is imperative to the development of effective therapeutic strategies. This review aims to provide a comprehensive understanding of the effects of TP53 on the hematopoietic system, to describe its varying degree of functionality in tumor suppression, and to illustrate the need for the adoption of personalized therapeutic strategies to target distinct classes of the p53 mutation in AML management.
Collapse
|
20
|
Khateb A, Deshpande A, Feng Y, Finlay D, Lee JS, Lazar I, Fabre B, Li Y, Fujita Y, Zhang T, Yin J, Pass I, Livneh I, Jeremias I, Burian C, Mason JR, Almog R, Horesh N, Ofran Y, Brown K, Vuori K, Jackson M, Ruppin E, Deshpande AJ, Ronai ZA. The ubiquitin ligase RNF5 determines acute myeloid leukemia growth and susceptibility to histone deacetylase inhibitors. Nat Commun 2021; 12:5397. [PMID: 34518534 PMCID: PMC8437979 DOI: 10.1038/s41467-021-25664-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) remains incurable, largely due to its resistance to conventional treatments. Here, we find that increased abundance of the ubiquitin ligase RNF5 contributes to AML development and survival. High RNF5 expression in AML patient specimens correlates with poor prognosis. RNF5 inhibition decreases AML cell growth in culture, in patient-derived xenograft (PDX) samples and in vivo, and delays development of MLL-AF9-driven leukemogenesis in mice, prolonging their survival. RNF5 inhibition causes transcriptional changes that overlap with those seen upon histone deacetylase (HDAC)1 inhibition. RNF5 induces the formation of K29 ubiquitin chains on the histone-binding protein RBBP4, promoting its recruitment to and subsequent epigenetic regulation of genes involved in AML maintenance. Correspondingly, RNF5 or RBBP4 knockdown enhances AML cell sensitivity to HDAC inhibitors. Notably, low expression of both RNF5 and HDAC coincides with a favorable prognosis. Our studies identify an ERAD-independent role for RNF5, demonstrating that its control of RBBP4 constitutes an epigenetic pathway that drives AML, and highlight RNF5/RBBP4 as markers useful to stratify patients for treatment with HDAC inhibitors.
Collapse
Affiliation(s)
- Ali Khateb
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anagha Deshpande
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yongmei Feng
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Darren Finlay
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Joo Sang Lee
- Cancer Data Science Lab (CDSL), National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Ikrame Lazar
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Bertrand Fabre
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yan Li
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yu Fujita
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Division of Respiratory Medicine, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Tongwu Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jun Yin
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ian Pass
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ido Livneh
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health, Munich, Germany
| | - Carol Burian
- Scripps MD Anderson Cancer Center, La Jolla, CA, USA
| | - James R Mason
- Scripps MD Anderson Cancer Center, La Jolla, CA, USA
| | - Ronit Almog
- Rambam Health Care Campus, Epidemiology Department and Biobank, Haifa, Israel
| | - Nurit Horesh
- Rambam Health Care Campus, Hematology and Bone marrow Transplantation Department, Haifa, Israel
| | - Yishai Ofran
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Rambam Health Care Campus, Hematology and Bone marrow Transplantation Department, Haifa, Israel
| | - Kevin Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kristiina Vuori
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael Jackson
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Eytan Ruppin
- Cancer Data Science Lab (CDSL), National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Aniruddha J Deshpande
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
21
|
Mendoza H, Podoltsev NA, Siddon AJ. Laboratory evaluation and prognostication among adults and children with CEBPA-mutant acute myeloid leukemia. Int J Lab Hematol 2021; 43 Suppl 1:86-95. [PMID: 34288448 DOI: 10.1111/ijlh.13517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/25/2021] [Indexed: 02/02/2023]
Abstract
CEBPA-mutant acute myeloid leukemia (AML) encompasses clinically and biologically distinct subtypes of AML in both adults and children. CEBPA-mutant AML may occur with monoallelic (moCEBPA) or biallelic (biCEBPA) mutations, which can be somatic or germline, with each entity impacting prognosis in unique ways. BiCEBPA AML is broadly associated with a favorable prognosis, but differences in the type and location of CEBPA mutations as well as the presence of additional leukemogenic mutations can lead to heterogeneity in survival. Concurrent FLT3-ITD mutations have a well-documented negative effect on survival in adult biCEBPA AML, whereas support for a negative prognostic effect of mutations in TET2, DNMT3A, WT1, CSF3R, ASXL1, and KIT is mixed. NPM1 and GATA2 mutations may have a positive prognostic impact. MoCEBPA AML has similar survival outcomes compared to AML with wild-type CEBPA, and risk stratification is determined by other cytogenetic and molecular findings. Germline CEBPA mutations may lead to familial biCEBPA AML after acquisition of second somatic CEBPA mutation, with variable penetrance and age. BiCEBPA AML in children is likely a favorable-risk diagnosis as it is in adults, but the role of a single CEBPA mutation and the impact of concurrent leukemogenic mutations are not clear in this population. Laboratory evaluation of the CEBPA gene includes PCR-based fragment-length analysis, Sanger sequencing, and next-generation sequencing. Phenotypic analysis using multiparameter flow cytometry can also provide additional data in evaluating CEBPA, helping to assess for the likelihood of mutation presence.
Collapse
Affiliation(s)
- Hadrian Mendoza
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Nikolai A Podoltsev
- Hematology Section, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Alexa J Siddon
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
22
|
CEBPA Mutations in 4708 Patients with Acute Myeloid Leukemia - Differential Impact of bZIP and TAD Mutations on Outcome. Blood 2021; 139:87-103. [PMID: 34320176 DOI: 10.1182/blood.2020009680] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/18/2021] [Indexed: 11/20/2022] Open
Abstract
Biallelic mutations of the CEBPA gene (CEBPAbi) define a distinct entity associated with favorable prognosis, however the role of monoallelic mutations (CEBPAsm) is poorly understood. We retrospectively analyzed 4708 adult AML patients recruited into Study Alliance Leukemia trials to investigate the prognostic impact of CEBPAsm. CEBPA mutations were identified in 240 patients (5.1%), 131 CEBPAbi and 109 CEBPAsm (60 affecting the amino-terminal transactivation domains (CEBPAsmTAD) and 49 the carboxy-terminal DNA-binding or basic leucine zipper region (CEBPAsmbZIP)). Interestingly, CEBPAbi and CEBPAsmbZIP patients shared several clinical factors, i.e. were significantly younger (median 46 years and 50 years) and had higher WBC counts at diagnosis (median 23.7 and 35.7 109/l) compared to CEBPAsmTAD patients (median age 63 yrs., median WBC 13.1 109/l; p<.001). Co-mutations were also similar in both groups, e.g. GATA2 mutations (35.1% CEBPAbi; 36.7% CEBPAsmbZIP vs. 6.7% CEBPAsmTAD; p<.001) or NPM1 mutations (3.1% CEBPAbi; 8.2% CEBPAsmbZIP vs. 38.3% CEBPAsmTAD; p<.001). CEBPAbi and CEBPAsmbZIP, but not CEBPAsmTAD were associated with significantly improved overall (median OS: 103 and 63 vs. 13 months) and event-free survival (median EFS: 20.7 and 17.1 vs. 5.7 months), in univariate and multivariable analyses. More detailed analysis revealed that the clinical and molecular features as well as the favorable survival were confined to patients showing in-frame mutations in bZIP (CEBPAbZIP-inf). When grouping patients into CEBPAbZIP-inf and CEBPAother (including CEBPAsmTAD and other non-CEBPAbZIP-inf patients), only CEBPAbZIP-inf patients showed superior CR rates and the longest median OS and EFS, arguing for a previously undefined prognostic role of this type of mutations.
Collapse
|
23
|
Kang Y, Chen X, Fang F, Zhang L, Wang J, Tian C, Guo W, Xu J, Ren H, Muyey DM, Tan Y, Xu Z, Wang H. The clinical characteristics and prognosis of cytogenetically normal AML with single mutations of CEBPA. Int J Lab Hematol 2021; 43:1424-1431. [PMID: 34216417 DOI: 10.1111/ijlh.13612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION CEBPA mutation is a common mutation in normal karyotype AML. CEBPAdm AML has been recognized as a separate entity, but there is still controversy to the prognosis of CEBPAsm patients. METHODS A total of 151 newly diagnosed cytogenetically normal AML patients treated at the Second Hospital Center of Shanxi Medical University from February 2017 to December 2019 were the subjects of the study. According to the number of mutations in the CEBPA gene, the patients were divided into three groups, CEBPAsm, CEBPAdm, and CEBPAwt patients. The clinical characteristics, gene mutations, response, and prognosis were retrospectively compared among the three groups. RESULTS CEBPAsm patients had lower hemoglobin values compared to CEBPAdm (P = .049). There was no statistical difference between the CEBPAsm cases and the CEBPAdm cases in the mutation types and the distribution of mutation regions (P > .050). Compared with CEBPAdm, cases with CEBPAsm were more likely associated with multiple other gene mutations (P = .023). Patients with CEBPAdm had a higher CR, ORR, and OS than those CEBPAwt (P < .050). CEBPAsm patients had a similar OS with CEBPAdm and CEBPAwt patients (P = .281). These CEBPAsm patients with VAF<30% had lower OS than the patients with VAF≥30%. FLT3-ITD mutations could reduce CEBPAsm patients' OS (P = .019). CONCLUSION Our data first highlighted the impact of CEBPAsm VAF on OS, and the results showed the lower the VAF was, the shorter the OS tended to. The VAF of CEBPAsm could provide specific significance in some extent for the prognosis of patients.
Collapse
Affiliation(s)
- Yefang Kang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiuhua Chen
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Fang Fang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lingli Zhang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiaxuan Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chuchu Tian
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenzheng Guo
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Xu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Huanying Ren
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Daniel Muteb Muyey
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanhong Tan
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhifang Xu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
24
|
Zhou L, An J, Hou C, Ding Z, Qiu H, Tang X, Sun A, Chen S, Xu Y, Liu T, Wu D. Allogeneic hematopoietic stem cell transplantation could improve the survival of acute myeloid leukemia patients with ASXL1 mutations. ACTA ACUST UNITED AC 2021; 26:340-347. [PMID: 33840380 DOI: 10.1080/16078454.2021.1905356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective: To discover the function of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in ASXL1-mutated acute myeloid leukemia (AML) patients.Methods: We analyzed the prognostic value of ASXL1 mutations and explored the role of allo-HSCT in 581 AML patients.Results: According to the definition of intermediate- and adverse-risk AML groups in the European Leukemia Net (ELN), ASXL1-mutated patients had shorter OS and DFS than ASXL1-wild-type patients in the intermediate- and adverse-risk AML groups (3-year OS: 47.5% vs. 60.8%, P<0.001; 3-year DFS: 28.5% vs. 48.9%, P<0.001). Among the cytogenetically normal acute myeloid leukemia (CN-AML), differences were found in both OS (47.4% vs.65.2%, P<0.001) and DFS (21.0% vs. 52.1%, P<0.001) between ASXL1-mutated patients and ASXL1 wild-type patients.In the ASXL1-mutated AML cohort, the patients received allo-HSCT had longer 3-year OS (P=0.0005) and 3-year DFS (P<0.0001) than those who did not receive allo-HSCT. Multivariate analysis revealed that ASXL1 mutation was an independent prognostic factor for OS (HR 2.248, 95% CI 1.155-4.375, P=0.017), and allo-HSCT had a positive impact on OS (HR 7.568, 95% CI 3.597-15.92, P<0.001) and DFS (HR 2.611, 95% CI 1.688-4.039, P<0.001) in ASXL1-mutated patients.Conclusion: The results indicate that the presence of ASXL1 mutations is a factor predictive of poor prognosis in AML patients and allo-HSCT could improve the survival of AML patients with ASXL1 mutations.
Collapse
Affiliation(s)
- Lili Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, People's Republic of China
| | - Jingnan An
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, People's Republic of China
| | - Chang Hou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zixuan Ding
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Huiying Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Aining Sun
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, People's Republic of China
| | - Tianhui Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, People's Republic of China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
25
|
Nie Y, Su L, Li W, Gao S. Novel insights of acute myeloid leukemia with CEBPA deregulation: Heterogeneity dissection and re-stratification. Crit Rev Oncol Hematol 2021; 163:103379. [PMID: 34087345 DOI: 10.1016/j.critrevonc.2021.103379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/21/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia with bi-allelic CEBPA mutation was categorized as an independent disease entity with favorable prognosis, however, recent researches have revealed huge heterogeneity within this disease group, and for some patients, relapse remained a major cause of treatment failure. Further risk stratification is essentially needed. Here by reviewing the latest literature, we summarized the characteristics of CEBPA mutation profiles and clinical features, with a special intention of dissecting the heterogeneity within the seemingly homogeneous AML with bi-allelic CEBPA mutations. Specifically, non-classical CEBPA mutation, miscellaneous companion genetic aberrations and the presence of germline CEBPA mutation are three major sources of heterogeneity. Identifying these factors can help us predict patients at a higher risk of relapse, for whom aggressive treatment may be recommended. Novel therapeutic approaches regarding manipulating potentially druggable targets as well as the debate over post remission consolidation regimens has also been discussed.
Collapse
Affiliation(s)
- Yuanyuan Nie
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Long Su
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Wei Li
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130012, China; Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, 130012, China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130012, China.
| |
Collapse
|
26
|
Adverse Impact of DNA Methylation Regulatory Gene Mutations on the Prognosis of AML Patients in the 2017 ELN Favorable Risk Group, Particularly Those Defined by NPM1 Mutation. Diagnostics (Basel) 2021; 11:diagnostics11060986. [PMID: 34072516 PMCID: PMC8227437 DOI: 10.3390/diagnostics11060986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
The 2017 ELN risk stratification has been widely adopted, but some studies have suggested the outcomes are heterogenous within the ELN risk groups and may be affected by other co-existing genetic mutations. This study evaluated the impact of DNA methylation regulatory gene (TET2, IDH1/2, DNMT3A, SETBP1) mutations (DMRGM) evaluated by NGS in the outcome of AML patients in each ELN risk group. A total of 114 patients were analyzed with a median follow-up of 12 months. Overall, 30.7% (35/114) of patients had DMRGM. DMRGM status had no impact on CR rate in each ELN risk group. The OS, however, was significantly shorter in patients with DMRGM compared to those without DMRGM (median OS: 12 vs. 33 months, p = 0.0053). Multivariate analysis showed DMRGM status was an independent unfavorable factor for OS (HR: 2.704, 95% CI: 1.451–5.041, p = 0.0017). The adverse OS impact of DMRGM was only observed in the ELN favorable group (7 months vs. not reached, p = 0.0001), but not in the intermediate or adverse group. Among the favorable group with DMRGM (n = 16), DMRGM occurred predominantly in cases with mutated NPM1 (15/16, or 93.8%). Our results suggest that DMRGM adversely impact the outcomes of ELN favorable group patients, particularly those with mutated NPM1. Further studies are warranted to confirm our observations.
Collapse
|
27
|
Di Gregorio E, Miolo G, Saorin A, Steffan A, Corona G. From Metabolism to Genetics and Vice Versa: The Rising Role of Oncometabolites in Cancer Development and Therapy. Int J Mol Sci 2021; 22:5574. [PMID: 34070384 PMCID: PMC8197491 DOI: 10.3390/ijms22115574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last decades, the study of cancer metabolism has returned to the forefront of cancer research and challenged the role of genetics in the understanding of cancer development. One of the major impulses of this new trend came from the discovery of oncometabolites, metabolic intermediates whose abnormal cellular accumulation triggers oncogenic signalling and tumorigenesis. These findings have led to reconsideration and support for the long-forgotten hypothesis of Warburg of altered metabolism as oncogenic driver of cancer and started a novel paradigm whereby mitochondrial metabolites play a pivotal role in malignant transformation. In this review, we describe the evolution of the cancer metabolism research from a historical perspective up to the oncometabolites discovery that spawned the new vision of cancer as a metabolic disease. The oncometabolites' mechanisms of cellular transformation and their contribution to the development of new targeted cancer therapies together with their drawbacks are further reviewed and discussed.
Collapse
Affiliation(s)
- Emanuela Di Gregorio
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Asia Saorin
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| |
Collapse
|
28
|
Liu FJ, Cheng WY, Lin XJ, Wang SY, Jiang TY, Ma TT, Zhu YM, Shen Y. Measurable Residual Disease Detected by Multiparameter Flow Cytometry and Sequencing Improves Prediction of Relapse and Survival in Acute Myeloid Leukemia. Front Oncol 2021; 11:677833. [PMID: 34094982 PMCID: PMC8173083 DOI: 10.3389/fonc.2021.677833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
The clinically ideal time point and optimal approach for the assessment of measurable residual disease (MRD) in patients with acute myeloid leukemia (AML) are still inconclusive. We investigated the clinical value of multiparameter flow cytometry-based MRD (MFC MRD) after induction (n = 492) and two cycles of consolidation (n = 421). The latter time point was proved as a superior indicator with independent prognostic significance for both relapse-free survival (RFS, HR = 3.635, 95% CI: 2.433-5.431, P <0.001) and overall survival (OS: HR = 3.511, 95% CI: 2.191-5.626, P <0.001). Furthermore, several representative molecular MRD markers were compared with the MFC MRD. Both approaches can establish prognostic value in patients with NPM1 mutations, and FLT3, C-KIT, or N-RAS mutations involved in kinase-related signaling pathways, while the combination of both techniques further refined the risk stratification. The detection of RUNX1-RUNX1T1 fusion transcripts achieved a considerable net reclassification improvement in predicting the prognosis. Conversely, for patients with biallelic CEBPA or DNMT3A mutations, only the MFC method was recommended due to the poor prognostic discriminability in tracking mutant transcripts. In conclusion, this study demonstrated that the MFC MRD after two consolidation cycles independently predicted clinical outcomes, and the integration of MFC and molecular MRD should depend on different types of AML-related genetic lesions.
Collapse
Affiliation(s)
- Fu-Jia Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Yan Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Jing Lin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Yang Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian-Yi Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting-Ting Ma
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Mei Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Shen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Chen X, Zhu H, Qiao C, Zhao S, Liu L, Wang Y, Jin H, Qian S, Wu Y. Next-generation sequencing reveals gene mutations landscape and clonal evolution in patients with acute myeloid leukemia. ACTA ACUST UNITED AC 2021; 26:111-122. [PMID: 33491606 DOI: 10.1080/16078454.2020.1858610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The study aims to understand geneome diversification and complexity that developed in Acute myeloid leukemia (AML). METHODS Next-generation sequencing (NGS) was used to identify the genetic profiles of 22 genes relevant to hematological malignancy in 204 patients with de novo non-M3 AML. RESULTS At time of initial diagnosis, at least one mutation was identified in 80.9% of patients (165/204). The most commonly mutated gene was NPM1 (22.1%), followed by ASXL1 (18.1%), TET2 (18.1%), IDH2 (15.7%), CEBPA (14.7%), FLT3-ITD (13.2%) and DNMT3A (11.8%). Mutations landscape analysis indicated several patterns of co-occurring and mutual exclusive gene mutations. Some correlation was observed between gene mutations and clinicohematological features. Multivariate analysis showed that age >60 years, karyotypes, IDH2 and KIT mutations were the independent unfavorable prognostic factors for OS; NPM1-mut/ FLT3-ITD-wt was independently correlated with prolonged OS; whereas the independent poor risk factors for RFS were karyotypes, high WBC and RUNX1 mutation. According to different genotype demonstrated by multivariate analysis, 163 patients with intermediate-risk cytogenetics were classified into three subgroups: patients with NPM1-mut/ FLT3-ITD-wt or biallelic CEBPA mutation as favorable risk, patients with KIT, IDH2, TP53 or NRAS mutations as unfavorable risk, and the remaining was the intermediate risk. We also obtain information of clonal evolution during leukemia progression by observing five patients who underwent repeat NGS at relapse in our cohort. CONCLUSION NGS techniques is a useful tool for discovering related gene mutations and clonal evolution in AML genomes, leading to novel targeted therapeutic approaches that could improve patients outcomes.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People's Republic of China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, People's Republic of China
| | - Han Zhu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People's Republic of China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, People's Republic of China
| | - Chun Qiao
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People's Republic of China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, People's Republic of China
| | - Sishu Zhao
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People's Republic of China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, People's Republic of China
| | - Lu Liu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People's Republic of China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, People's Republic of China
| | - Yan Wang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People's Republic of China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, People's Republic of China
| | - Huimin Jin
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People's Republic of China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, People's Republic of China
| | - Sixuan Qian
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People's Republic of China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, People's Republic of China
| | - Yujie Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People's Republic of China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, People's Republic of China
| |
Collapse
|
30
|
Westermann J, Bullinger L. Precision medicine in myeloid malignancies. Semin Cancer Biol 2021; 84:153-169. [PMID: 33895273 DOI: 10.1016/j.semcancer.2021.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Myeloid malignancies have always been at the forefront of an improved understanding of the molecular pathogenesis of cancer. In accordance, over the last years, basic research focusing on the aberrations underlying malignant transformation of myeloid cells has provided the basis for precision medicine approaches and subsequently has led to the development of powerful therapeutic strategies. In this review article, we will recapitulate what has happened since in the 1980s the use of all-trans retinoic acid (ATRA), as a first targeted cancer therapy, has changed one of the deadliest leukemia subtypes, acute promyelocytic leukemia (APL), into one that can be cured without classical chemotherapy today. Similarly, imatinib, the first molecularly designed cancer therapy, has revolutionized the management of chronic myeloid leukemia (CML). Thus, targeted treatment approaches have become the paradigm for myeloid malignancy, but many questions still remain unanswered, especially how identical mutations can be associated with different phenotypes. This might be linked to the impact of the cell of origin, gene-gene interactions, or the tumor microenvironment including the immune system. Continuous research in the field of myeloid neoplasia has started to unravel the molecular pathways that are not only crucial for initial treatment response, but also resistance of leukemia cells under therapy. Ongoing studies focusing on leukemia cell vulnerabilities do already point to novel (targetable) "Achilles heels" that can further improve myeloid cancer therapy.
Collapse
Affiliation(s)
- Jörg Westermann
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
31
|
Moncada A, Pancrazzi A. Lab tests for MPN. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 366:187-220. [PMID: 35153004 DOI: 10.1016/bs.ircmb.2021.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Molecular laboratory investigations for myeloproliferative neoplasm (MPN) can ideally be divided into two distincts groups, those for the detection of the BCR-ABL rearrangement (suspect of chronic myeloid leukemia) and those for the variants determination of the driver genes of the negative Philadelphia forms (MPN Ph neg). The BCR-ABL detection is based on RT-Polymerase Chain Reaction techniques and more recently on droplet digital PCR (ddPCR). For this type of analysis, combined with chromosome banding analysis (CBA) and Fluorescent in situ hybridization (FISH), it is essential to quantify BCR-ABL mutated copies by standard curve method. The investigation on driver genes for MPN Ph neg forms includes activity for erythroid forms such as Polycythemia Vera (test JAK2V617F and JAK2 exon 12), for non-erythroid forms such as essential thrombocythemia and myelofibrosis (test JAK2V617F, CALR exon 9, MPL exon 10), for "atypical" ones such as mastocytosis (cKIT D816V test) and for hypereosinophilic syndrome (FIP1L1-PDGFRalpha test). It's crucial to assign prognosis value through calculating allelic burden of JAK2 V617F variant and determining CALR esone 9 variants (type1/1like, type2/2like and atypical ones). A fundamental innovation for investigating triple negative cases for JAK2, CALR, MPL and for providing prognostic score is the use of Next Generation Sequencing panels containing high molecular risk genes as ASXL1, EZH2, TET2, IDH1/IDH2, SRSF2. This technique allows to detect additional or subclonal mutations which are usually acquired in varying sized sub-clones of hematopoietic progenitors. These additional variants have a prognostic significance and should be indagated to exclude false negative cases.
Collapse
Affiliation(s)
- Alice Moncada
- Laboratory Medicine Department, Molecular and Clinical Pathology Sector, Azienda USL Toscana Sudest, Ospedale San Donato, Arezzo, Italy
| | - Alessandro Pancrazzi
- Laboratory Medicine Department, Molecular and Clinical Pathology Sector, Azienda USL Toscana Sudest, Ospedale San Donato, Arezzo, Italy.
| |
Collapse
|
32
|
Mayo Clinic experience with 1123 adults with acute myeloid leukemia. Blood Cancer J 2021; 11:46. [PMID: 33654065 PMCID: PMC7925511 DOI: 10.1038/s41408-021-00435-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/14/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Between 2004 and 2017, a total of 1123 adult patients (median age 65 years; 61% males) with newly diagnosed acute myeloid leukemia (AML), not including acute promyelocytic leukemia, were seen at the Mayo Clinic. Treatment included intensive (n = 766) or lower intensity (n = 144) chemotherapy or supportive care (n = 213), with respective median survivals of 22, 9, and 2 months (p < 0.01). Intensive chemotherapy resulted in complete remission (CR) and CR with incomplete count recovery (CRi) rates of 44 and 33%, respectively, with no difference in survival outcome between the two (p = 0.4). Allogeneic hematopoietic stem cell transplant (AHSCT) was documented in 259 patients and provided the best survival rate (median 55 months; p < 0.01). After a median follow-up of 13 months, 841 (75%) deaths were recorded. Multivariate analysis identified age >60 years (HR 2.2, 1.9-2.6), adverse karyotype (HR 2.9, 1.9-4.9), intermediate-risk karyotype (HR 1.6, 1.02-2.6), post-myeloproliferative neoplasm AML (HR 1.9, 1.5-2.4), and other secondary AML (HR 1.3 (1.1-1.6) as risk factors for shortened survival. These risk factors retained their significance after inclusion of FLT3/NPM1 mutational status in 392 informative cases: FLT3+NPM1- (HR 2.8, 1.4-5.6), FLT3+/NPM+ (HR 2.6 (1.3-5.2), and FLT3-NPM1- (HR 1.8, 1.0-3.0).
Collapse
|
33
|
Chen WS, Zhang ML, Han B. [Comparison of genetic mutations in myelodysplastic syndrome and acute myeloid leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:171-176. [PMID: 33858051 PMCID: PMC8071666 DOI: 10.3760/cma.j.issn.0253-2727.2021.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 11/23/2022]
Affiliation(s)
- W S Chen
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - M L Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - B Han
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
34
|
Gemović B, Perović V, Davidović R, Drljača T, Veljkovic N. Alignment-free method for functional annotation of amino acid substitutions: Application on epigenetic factors involved in hematologic malignancies. PLoS One 2021; 16:e0244948. [PMID: 33395407 PMCID: PMC7781373 DOI: 10.1371/journal.pone.0244948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022] Open
Abstract
For the last couple of decades, there has been a significant growth in sequencing data, leading to an extraordinary increase in the number of gene variants. This places a challenge on the bioinformatics research community to develop and improve computational tools for functional annotation of new variants. Genes coding for epigenetic regulators have important roles in cancer pathogenesis and mutations in these genes show great potential as clinical biomarkers, especially in hematologic malignancies. Therefore, we developed a model that specifically focuses on these genes, with an assumption that it would outperform general models in predicting the functional effects of amino acid substitutions. EpiMut is a standalone software that implements a sequence based alignment-free method. We applied a two-step approach for generating sequence based features, relying on the biophysical and biochemical indices of amino acids and the Fourier Transform as a sequence transformation method. For each gene in the dataset, the machine learning algorithm-Naïve Bayes was used for building a model for prediction of the neutral or disease-related status of variants. EpiMut outperformed state-of-the-art tools used for comparison, PolyPhen-2, SIFT and SNAP2. Additionally, EpiMut showed the highest performance on the subset of variants positioned outside conserved functional domains of analysed proteins, which represents an important group of cancer-related variants. These results imply that EpiMut can be applied as a first choice tool in research of the impact of gene variants in epigenetic regulators, especially in the light of the biomarker role in hematologic malignancies. EpiMut is freely available at https://www.vin.bg.ac.rs/180/tools/epimut.php.
Collapse
Affiliation(s)
- Branislava Gemović
- Laboratory for Bioinformatics and Computational Chemistry, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
- * E-mail:
| | - Vladimir Perović
- Laboratory for Bioinformatics and Computational Chemistry, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Radoslav Davidović
- Laboratory for Bioinformatics and Computational Chemistry, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Drljača
- Laboratory for Bioinformatics and Computational Chemistry, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nevena Veljkovic
- Laboratory for Bioinformatics and Computational Chemistry, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Heliant d.o.o., Belgrade, Serbia
| |
Collapse
|
35
|
Abstract
Although we are just beginning to understand the mechanisms that regulate the epigenome, aberrant epigenetic programming has already emerged as a hallmark of hematologic malignancies including acute myeloid leukemia (AML) and B-cell lymphomas. Although these diseases arise from the hematopoietic system, the epigenetic mechanisms that drive these malignancies are quite different. Yet, in all of these tumors, somatic mutations in transcription factors and epigenetic modifiers are the most commonly mutated set of genes and result in multilayered disruption of the epigenome. Myeloid and lymphoid neoplasms generally manifest epigenetic allele diversity, which contributes to tumor cell population fitness regardless of the underlying genetics. Epigenetic therapies are emerging as one of the most promising new approaches for these patients. However, effective targeting of the epigenome must consider the need to restore the various layers of epigenetic marks, appropriate biological end points, and specificity of therapeutic agents to truly realize the potential of this modality.
Collapse
Affiliation(s)
- Cihangir Duy
- Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Wendy Béguelin
- Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Ari Melnick
- Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
36
|
Ma TT, Lin XJ, Cheng WY, Xue Q, Wang SY, Liu FJ, Yan H, Zhu YM, Shen Y. Development and validation of a prognostic model for adult patients with acute myeloid leukaemia. EBioMedicine 2020; 62:103126. [PMID: 33232873 PMCID: PMC7689519 DOI: 10.1016/j.ebiom.2020.103126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
Background The high heterogeneity of acute myeloid leukaemia (AML) reflected in the patient- and disease-related factors accounts for the unsatisfactory prognosis despite the introduction of novel therapeutic approaches and drugs in recent years. Methods In the development set (n = 412), parameters including age, hematopoietic cell transplantation-comorbidity index, white blood cell count, hemoglobin, biallelic CEBPA mutations, DNMT3A mutations, FLT3-ITD/NPM1 status, and ELN cytogenetic risk status were identified as independent prognostic factors for overall survival (OS) in the multivariable Cox regression analysis. A nomogram combining these predictors for individual risk estimation was established thereby. Findings The prognostic model demonstrated promising performance in the development cohort. The calibration plot, C-index (0.74), along with the 1-, 2- and 3-year area under the receiver operating characteristic curve (AUC, 0.76, 0.79, and 0.74, respectively) in the validation set (n = 238) substantiated the robustness of the model. In addition to stratifying young (age ≤ 60 years) and elderly patients (age > 60 years) into three and two risk groups with significant distinct outcomes, the prognostic model succeeded in distinguishing eligible candidates for hematopoietic stem cell transplantation. Interpretation The prognostic model is capable of survival prediction, risk stratification and helping with therapeutic decision-making with the use of easily acquired variables in daily clinical routine. Funding This work was supported in part by grants from the National Natural Science Foundation of China (81770141), the National Key R&D Program of China (2016YFE0202800), and Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20161406).
Collapse
Affiliation(s)
- Ting-Ting Ma
- Shanghai Institute of Haematology, Department of Haematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, China
| | - Xiao-Jing Lin
- Shanghai Institute of Haematology, Department of Haematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, China
| | - Wen-Yan Cheng
- Shanghai Institute of Haematology, Department of Haematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, China
| | - Qing Xue
- Shanghai Institute of Haematology, Department of Haematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, China
| | - Shi-Yang Wang
- Shanghai Institute of Haematology, Department of Haematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, China
| | - Fu-Jia Liu
- Shanghai Institute of Haematology, Department of Haematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, China
| | - Han Yan
- Shanghai Institute of Haematology, Department of Haematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, China
| | - Yong-Mei Zhu
- Shanghai Institute of Haematology, Department of Haematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, China
| | - Yang Shen
- Shanghai Institute of Haematology, Department of Haematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, China.
| |
Collapse
|
37
|
4-Hydroxyphenyl Retinamide Preferentially Targets FLT3 Mutated Acute Myeloid Leukemia via ROS Induction and NF-κB Inhibition. Curr Med Sci 2020; 40:810-816. [PMID: 33123895 DOI: 10.1007/s11596-020-2259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutation is strongly associated with poor prognosis in acute myeloid leukemia (AML). Though many FLT3 inhibitors have been developed for clinical application with 34%-56% complete remission rate, patients would develop resistance sooner or later after initial response to tyrosine kinase inhibitors (TKIs), such as gilteritinib. And increasing studies have shown that several resistance related mutations of FLT3 emerged during the AML progression. Thus, further investigation is warranted for these FLT3mut AML patients to achieve a better treatment outcome. 4-Hydroxyphenyl retinamide (4-HPR) has been investigated extensively in animal models and clinical trials as an anticancer/chemopreventive agent and is currently used for protection against cancer development/recurrence, with minimal side effects. In this study, we performed gene-set enrichment analysis and found that down-regulated genes induced by 4-HPR were associated with FLT3-ITD gene sets. CD34+ AML stem/progenitor cells separated from 32 AML samples were treated with 4-HPR. Correlation analysis showed that AML cells with FLT3-ITD genetic alteration were more sensitive to 4-HPR treatment than those without FLT3-ITD. Next, we treated 22 primary AML cells with 4-HPR and found that 4-HPR was more toxic to AML cells with FLT3-ITD. These results indicated that 4-HPR was preferentially cytotoxic to all FLT3-ITD AML+ cells irrespective of stem/progenitor cells or blast cells. 4-HPR-induced reactive oxygen species (ROS) production and NF-κB inhibition might be the reason of 4-HPR selectivity on FLT3 mutated AML cells.
Collapse
|
38
|
Cardona-Echeverry A, Prada-Arismendy J. Deciphering the role of Wnt signaling in acute myeloid leukemia prognosis: how alterations in DNA methylation come into play in patients' prognosis. J Cancer Res Clin Oncol 2020; 146:3097-3109. [PMID: 32980885 DOI: 10.1007/s00432-020-03407-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Acute myeloid leukemia (AML) is a malignant clonal disorder affecting myeloid differentiation through mechanisms that include epigenetic dysregulation. Abnormal changes in DNA methylation and gene expression profiles of pathways involved in hematopoietic development, such as Wnt/β-catenin, contribute to the transformation, development, and maintenance of leukemic cells. This review summarizes the alterations of Wnt signaling-related genes at the epigenetic and transcriptional level and their implications for AML prognosis. Among the implications of epigenetic alterations in AML, methylation of Wnt antagonists is related to poor prognosis, whereas their upregulation has been associated with a better clinical outcome. Furthermore, Wnt target genes c-Myc and LEF-1 present distinct implications. LEF-1 expression positively influences the patient overall survival. c-Myc upregulation has been associated with treatment resistance in AML, although c-Myc expression is not exclusively dependent of Wnt signaling. Understanding the signaling abnormalities could help us to further understand leukemogenesis, improve the current risk stratification for AML patients, and even serve to propose novel therapeutic targets.
Collapse
Affiliation(s)
- Andrés Cardona-Echeverry
- Grupo de Investigación e innovación Biomédica-GI2B, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano-ITM, 050034, Medellín, Colombia
| | - Jeanette Prada-Arismendy
- Grupo de Investigación e innovación Biomédica-GI2B, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano-ITM, 050034, Medellín, Colombia.
| |
Collapse
|
39
|
Wang RQ, Chen CJ, Jing Y, Qin JY, Li Y, Chen GF, Zhou W, Li YH, Wang J, Li DW, Zhao HM, Wang BH, Wang LL, Wang H, Wang MZ, Gao XN, Yu L. Characteristics and prognostic significance of genetic mutations in acute myeloid leukemia based on a targeted next-generation sequencing technique. Cancer Med 2020; 9:8457-8467. [PMID: 32970934 PMCID: PMC7666719 DOI: 10.1002/cam4.3467] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 08/22/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
To explore the characteristics and prognostic significance of genetic mutations in acute myeloid leukemia (AML), we screened the gene mutation profile of 171 previously untreated AML patients using a next‐generation sequencing technique targeting 127 genes with potential prognostic significance. A total of 390 genetic alterations were identified in 149 patients with a frequency of 87.1%. Younger age and high sensitivity to induction chemotherapy were associated with a lower number of mutations. NPM1 mutation was closely related to DNMT3A and FLT3‐internal tandem duplication (FLT3‐ITD) mutations, but mutually exclusive with ASXL1 mutation and CEBPAdouble mutation. In univariate analysis, ASXL1 or TET2 mutation predicted shorter overall survival (OS) or relapse‐free survival (RFS), DNMT3A, FLT3‐ITD, or RUNX1 mutation predicted a higher likelihood of remission‐induction failure, whereas NRAS mutation or CEBPAdouble mutation predicted longer OS. Concurrent DNMT3A, FLT3‐ITD, and NPM1 mutations predicted shorter OS. Hypomethylation agents could improve the OS in patients with DNA methylation‐related mutations. According to multivariate analysis, TET2 mutation was recognized as an independent prognostic factors for RFS. In summary, our study provided a detailed pattern of gene mutations and their prognostic relevance in Chinese AML patients based on targeted next‐generation sequencing screening.
Collapse
Affiliation(s)
- Rui-Qi Wang
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China.,Medicine School, Nankai University, Tianjin, China
| | - Chong-Jian Chen
- Annoroad Gene Technology Co, Beijing Economic-Technological Development Area, Beijing, China
| | - Yu Jing
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Jia-Yue Qin
- Annoroad Gene Technology Co, Beijing Economic-Technological Development Area, Beijing, China
| | - Yan Li
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Guo-Feng Chen
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Wei Zhou
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Yong-Hui Li
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Juan Wang
- Annoroad Gene Technology Co, Beijing Economic-Technological Development Area, Beijing, China
| | - Da-Wei Li
- Annoroad Gene Technology Co, Beijing Economic-Technological Development Area, Beijing, China
| | - Hong-Mei Zhao
- Annoroad Gene Technology Co, Beijing Economic-Technological Development Area, Beijing, China
| | - Bian-Hong Wang
- Beijing Tsinghua Changgung Hospital, Changping District, Beijing, China
| | - Li-Li Wang
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Hong Wang
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Meng-Zhen Wang
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Xiao-Ning Gao
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Li Yu
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China.,Department of Hematology-Oncology, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
40
|
High-efficiency CRISPR induction of t(9;11) chromosomal translocations and acute leukemias in human blood stem cells. Blood Adv 2020; 3:2825-2835. [PMID: 31582391 DOI: 10.1182/bloodadvances.2019000450] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 02/08/2023] Open
Abstract
Chromosomal rearrangements involving the mixed lineage leukemia (MLL) gene, also known as KMT2A, are often observed in human leukemias and are generally associated with a poor prognosis. To model these leukemias, we applied clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing to induce MLL chromosomal rearrangements in human hematopoietic stem and progenitor cells purified from umbilical cord blood. Electroporation of ribonucleoprotein complexes containing chemically modified synthetic single guide RNAs and purified Cas9 protein induced translocations between chromosomes 9 and 11 [t(9;11)] at an efficiency >1%. Transplantation of gene-edited cells into immune-compromised mice rapidly induced acute leukemias of different lineages and often with multiclonal origins dictated by the duration of in vitro culture prior to transplantation. Breakpoint junction sequences served as biomarkers to monitor clonal selection and progression in culture and in vivo. High-dimensional cell surface and intracellular protein analysis by mass cytometry (CyTOF) revealed that gene-edited leukemias recapitulated disease-specific protein expression observed in human patients and showed that MLL-rearranged (MLLr) mixed phenotype acute leukemias (MPALs) were more similar to acute myeloid leukemias (AMLs) than to acute lymphoblastic leukemias (ALLs). Therefore, highly efficient generation of MLL chromosomal translocations in primary human blood stem cells using CRISPR/Cas9 reliably models human acute MLLr leukemia and provides an experimental platform for basic and translational studies of leukemia biology and therapeutics.
Collapse
|
41
|
Jiang G, Capo-Chichi JM, Liu A, Atenafu EG, Guo R, Tierens A, Minden MD, Chang H. Acute myeloid leukemia with myelodysplasia-related changes diagnosed with multilineage dysplasia alone demonstrates a superior clinical outcome. Hum Pathol 2020; 104:117-126. [PMID: 32798550 DOI: 10.1016/j.humpath.2020.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/14/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022]
Abstract
Acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) generally confers poor prognosis; however, the clinical outcome remains heterogeneous. We sought to further stratify this subentity of AML by performing a retrospective analysis of 179 adult patients with AML-MRC diagnosed at our institution. Based on 2016 World Health Organization diagnostic criteria, 44 (25%) patients had multilineage dysplasia alone (AML-MRC-M), 74 (41%) had history of myelodysplastic syndrome (MDS) or myelodysplastic/myeloproliferative disease (AML-MRC-H), and 61 (34%) had MDS-related cytogenetics (AML-MRC-C). AML-MRC-M and hematopoietic stem cell transplantation (HSCT) were associated with prolonged event-free survival (EFS) (P = 0.0051 and P < 0.0001, respectively) and overall survival (OS) (P = 0.0015 and P < 0.0001, respectively), whereas AML-MRC-C and age ≥60 years were associated with shorter EFS (P = 0.028 and P = 0.015, respectively) and OS (P = 0.021 and P = 0.013, respectively). Of note, NPM1mut did not affect the patient's outcome. Multivariable analysis confirmed HSCT and AML-MRC-C as independent predictors for EFS (P < 0.0001 and P = 0.0342, respectively) and OS (P < 0.0001 and P = 0.0295, respectively). AML-MRC-M was an independent predictor for OS (P = 0.0449). When compared with a control group of 105 patients with normal karyotype AML not otherwise specified (NK-AML-NOS), patients with AML-MRC-M had similar EFS and OS (P = 0.99 and P = 0.91, respectively). However, AML-MRC-H and AML-MRC-C were associated with shorter EFS and OS (P = 0.0002 and P < 0.0001, respectively) than the same control group. In a subset of patients, next-generation sequencing analysis showed AML-MRC-M was associated with ASXL1 mutation compared with NK-AML (56% vs 6%). In conclusion, AML-MRC-M demonstrates a superior clinical outcome compared with the rest of the AML-MRC group. They have comparable outcomes to NK-AML-NOS, and these data suggest AML-MRC-M may be considered not to be classified in the same group as patients with other AML-MRC.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Cell Lineage
- Female
- Genetic Predisposition to Disease
- Hematopoietic Stem Cell Transplantation/adverse effects
- Hematopoietic Stem Cell Transplantation/mortality
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/surgery
- Male
- Middle Aged
- Mutation
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/mortality
- Myelodysplastic Syndromes/pathology
- Myelodysplastic Syndromes/surgery
- Nuclear Proteins/genetics
- Nucleophosmin
- Progression-Free Survival
- Repressor Proteins/genetics
- Retrospective Studies
- Risk Assessment
- Risk Factors
- Time Factors
- Young Adult
Collapse
Affiliation(s)
- Gina Jiang
- Department of Laboratory Hematology, University Health Network, University of Toronto, Toronto, Canada
| | - Jose-Mario Capo-Chichi
- Department of Clinical Laboratory Genetics, Genome Diagnostics, University Health Network, Canada
| | - Aijun Liu
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, China
| | | | - Robert Guo
- Department of Laboratory Hematology, University Health Network, University of Toronto, Toronto, Canada
| | - Ann Tierens
- Department of Laboratory Hematology, University Health Network, University of Toronto, Toronto, Canada
| | - Mark D Minden
- Department of Hematology and Medical Oncology, University Health Network, University of Toronto, Toronto, Canada
| | - Hong Chang
- Department of Laboratory Hematology, University Health Network, University of Toronto, Toronto, Canada.
| |
Collapse
|
42
|
Targeting Actomyosin Contractility Suppresses Malignant Phenotypes of Acute Myeloid Leukemia Cells. Int J Mol Sci 2020; 21:ijms21103460. [PMID: 32422910 PMCID: PMC7279019 DOI: 10.3390/ijms21103460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Actomyosin-mediated contractility is required for the majority of force-driven cellular events such as cell division, adhesion, and migration. Under pathological conditions, the role of actomyosin contractility in malignant phenotypes of various solid tumors has been extensively discussed, but the pathophysiological relevance in hematopoietic malignancies has yet to be elucidated. In this study, we found enhanced actomyosin contractility in diverse acute myeloid leukemia (AML) cell lines represented by highly expressed non-muscle myosin heavy chain A (NMIIA) and increased phosphorylation of the myosin regulatory light chain. Genetic and pharmacological inhibition of actomyosin contractility induced multivalent malignancy- suppressive effects in AML cells. In this context, perturbed actomyosin contractility enhances AML cell apoptosis through cytokinesis failure and aryl hydrocarbon receptor activation. Moreover, leukemic oncogenes were downregulated by the YAP/TAZ-mediated mechanotransduction pathway. Our results provide a theoretical background for targeting actomyosin contractility to suppress the malignancy of AML cells.
Collapse
|
43
|
Zhang X, Wang X, Wang XQD, Su J, Putluri N, Zhou T, Qu Y, Jeong M, Guzman A, Rosas C, Huang Y, Sreekumar A, Li W, Goodell MA. Dnmt3a loss and Idh2 neomorphic mutations mutually potentiate malignant hematopoiesis. Blood 2020; 135:845-856. [PMID: 31932841 PMCID: PMC7068035 DOI: 10.1182/blood.2019003330] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations in the epigenetic regulators DNMT3A and IDH1/2 co-occur in patients with acute myeloid leukemia and lymphoma. In this study, these 2 epigenetic mutations cooperated to induce leukemia. Leukemia-initiating cells from Dnmt3a-/- mice that express an IDH2 neomorphic mutant have a megakaryocyte-erythroid progenitor-like immunophenotype, activate a stem-cell-like gene signature, and repress differentiated progenitor genes. We observed an epigenomic dysregulation with the gain of repressive H3K9 trimethylation and loss of H3K9 acetylation in diseased mouse bone marrow hematopoietic stem and progenitor cells (HSPCs). HDAC inhibitors rapidly reversed the H3K9 methylation/acetylation imbalance in diseased mouse HSPCs while reducing the leukemia burden. In addition, using targeted metabolomic profiling for the first time in mouse leukemia models, we also showed that prostaglandin E2 is overproduced in double-mutant HSPCs, rendering them sensitive to prostaglandin synthesis inhibition. These data revealed that Dnmt3a and Idh2 mutations are synergistic events in leukemogenesis and that HSPCs carrying both mutations are sensitive to induced differentiation by the inhibition of both prostaglandin synthesis and HDAC, which may reveal new therapeutic opportunities for patients carrying IDH1/2 mutations.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI
- Department of Molecular and Human Genetics and
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Xinyu Wang
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | | | - Jianzhong Su
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
- Division of Biostatistics, Dan L. Duncan Cancer Center
- Department of Molecular and Cellular Biology, and
| | | | - Ting Zhou
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Ying Qu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; and
| | - Mira Jeong
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Anna Guzman
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Carina Rosas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Yun Huang
- Health Science Center, Texas A&M University, Houston, TX
| | - Arun Sreekumar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; and
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center
- Department of Molecular and Cellular Biology, and
| | - Margaret A Goodell
- Department of Molecular and Human Genetics and
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| |
Collapse
|
44
|
Douglas JK, Callahan RE, Hothem ZA, Cousineau CS, Kawak S, Thibodeau BJ, Bergeron S, Li W, Peeples CE, Wasvary HJ. Genomic variation as a marker of response to neoadjuvant therapy in locally advanced rectal cancer. Mol Cell Oncol 2020; 7:1716618. [PMID: 32391418 PMCID: PMC7199754 DOI: 10.1080/23723556.2020.1716618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
There is variation in the responsiveness of locally advanced rectal cancer to neoadjuvant chemoradiation, from complete response to total resistance. This study compared genetic variation in rectal cancer patients who had a complete response to chemoradiation versus poor response, using tumor tissue samples sequenced with genomics analysis software. Rectal cancer patients treated with chemoradiation and proctectomy June 2006-March 2017 were grouped based on response to chemoradiation: those with no residual tumor after surgery (CR, complete responders, AJCC-CPR tumor grade 0, n = 8), and those with poor response (PR, AJCC-CPR tumor grade two or three on surgical resection, n = 8). We identified 195 variants in 83 genes in tissue specimens implicated in colorectal cancer biopathways. PR patients showed mutations in four genes not mutated in complete responders: KDM6A, ABL1, DAXX-ZBTB22, and KRAS. Ten genes were mutated only in the CR group, including ARID1A, PMS2, JAK1, CREBBP, MTOR, RB1, PRKAR1A, FBXW7, ATM C11orf65, and KMT2D, with specific discriminating variants noted in DMNT3A, KDM6A, MTOR, APC, and TP53. Although conclusions may be limited by small sample size in this pilot study, we identified multiple genetic variations in tumor DNA from rectal cancer patients who are poor responders to neoadjuvant chemoradiation, compared to complete responders.
Collapse
Affiliation(s)
| | - Rose E. Callahan
- Department of Surgical Research, Beaumont Research Institute, Royal Oak, MI, USA
| | | | | | - Samer Kawak
- Department of Surgery, Beaumont Health, Royal Oak, MI, USA
| | | | | | - Wei Li
- Department of Pathology, Beaumont Health, Royal Oak, MI, USA
| | | | | |
Collapse
|
45
|
Efficacy and predictive factors of venetoclax combined with azacitidine as salvage therapy in advanced acute myeloid leukemia patients: A multicenter retrospective study. Leuk Res 2020; 91:106317. [PMID: 32092584 DOI: 10.1016/j.leukres.2020.106317] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 11/20/2022]
|
46
|
Ney GM, Anderson B, Bender J, Kumar-Sinha C, Wu YM, Vats P, Cieslik M, Robinson DR, Li Q, Chinnaiyan AM, Mody R. Mutations predictive of hyperactive Ras signaling correlate with inferior survival across high-risk pediatric acute leukemia. Transl Pediatr 2020; 9:43-50. [PMID: 32154134 PMCID: PMC7036640 DOI: 10.21037/tp.2019.12.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cancer remains the number one cause of disease-related mortality in children, and despite advances in the molecular understanding of leukemia and targeted therapies, refractory leukemia remains a leading cause of death. It therefore is essential to further define features, e.g., FLT3 alterations and KMT2A rearrangements, associated with inferior survival early to augment or alter therapeutic strategies to improve outcomes. METHODS To gain insights into the genetic drivers predictive of aggressive clinical behavior among pediatric leukemia patients, we performed comprehensive integrative clinical sequencing (ICS), including paired tumor/normal DNA sequencing and RNA-seq, for pediatric patients who presented at our institution over a period of five years with acute lymphoblastic or myelogenous leukemia (ALL and AML; n=43) and high-risk clinical features (high white blood cell count, extramedullary disease, or refractory and/or relapsed disease). RESULTS We found that RAS- and Ras-pathway aberrations, including N-RAS, NF1 and PTPN11, are frequent somatic mutations and, importantly, associated with decreased event free and overall survival (OS) (P=0.04, median event free survival 22.8 vs. 5.6 months; P=0.04, median OS 124 vs. 22.5 months). CONCLUSIONS We thus propose that hyperactive Ras signaling confers inferior survival in high-risk pediatric acute leukemia and that Ras pathways should be molecularly characterized to inform clinical decision making and to identify patients for experimental clinical trials and RAS-targeted therapy.
Collapse
Affiliation(s)
- Gina M Ney
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Bailey Anderson
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Bender
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Chandan Kumar-Sinha
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yi-Mi Wu
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Pankaj Vats
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Dan R Robinson
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Qing Li
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rajen Mody
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
47
|
Remethylation of Dnmt3a -/- hematopoietic cells is associated with partial correction of gene dysregulation and reduced myeloid skewing. Proc Natl Acad Sci U S A 2020; 117:3123-3134. [PMID: 31996479 PMCID: PMC7022185 DOI: 10.1073/pnas.1918611117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations that reduce the function of the de novo DNA methyltransferase, DNMT3A, are very common in patients with clonal hematopoiesis and hematopoietic malignancies. Restoring the function of DNMT3A in mouse hematopoietic cells deficient for this protein corrects the DNA methylation defect in an ordered fashion, and partially restores abnormalities in gene expression and myeloid population skewing. These data may be relevant for therapeutic strategies designed to restore DNMT3A activity in patients with diseases caused by mutations in this gene. Mutations in the DNA methyltransferase 3A (DNMT3A) gene are the most common cause of age-related clonal hematopoiesis (ARCH) in older individuals, and are among the most common initiating events for acute myeloid leukemia (AML). The most frequent DNMT3A mutation in AML patients (R882H) encodes a dominant-negative protein that reduces methyltransferase activity by ∼80% in cells with heterozygous mutations, causing a focal, canonical DNA hypomethylation phenotype; this phenotype is partially recapitulated in murine Dnmt3a−/− bone marrow cells. To determine whether the hypomethylation phenotype of Dnmt3a−/− hematopoietic cells is reversible, we developed an inducible transgene to restore expression of DNMT3A in transplanted bone marrow cells from Dnmt3a−/− mice. Partial remethylation was detected within 1 wk, but near-complete remethylation required 6 mo. Remethylation was accurate, dynamic, and highly ordered, suggesting that differentially methylated regions have unique properties that may be relevant for their functions. Importantly, 22 wk of DNMT3A addback partially corrected dysregulated gene expression, and mitigated the expansion of myeloid cells. These data show that restoring DNMT3A expression can alter the epigenetic “state” created by loss of Dnmt3a activity; this genetic proof-of-concept experiment suggests that this approach could be relevant for patients with ARCH or AML caused by loss-of-function DNMT3A mutations.
Collapse
|
48
|
Jiang H, Ou Z, He Y, Yu M, Wu S, Li G, Zhu J, Zhang R, Wang J, Zheng L, Zhang X, Hao W, He L, Gu X, Quan Q, Zhang E, Luo H, Wei W, Li Z, Zang G, Zhang C, Poon T, Zhang D, Ziyar I, Zhang RZ, Li O, Cheng L, Shimizu T, Cui X, Zhu JK, Sun X, Zhang K. DNA methylation markers in the diagnosis and prognosis of common leukemias. Signal Transduct Target Ther 2020; 5:3. [PMID: 32296024 PMCID: PMC6959291 DOI: 10.1038/s41392-019-0090-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/26/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022] Open
Abstract
The ability to identify a specific type of leukemia using minimally invasive biopsies holds great promise to improve the diagnosis, treatment selection, and prognosis prediction of patients. Using genome-wide methylation profiling and machine learning methods, we investigated the utility of CpG methylation status to differentiate blood from patients with acute lymphocytic leukemia (ALL) or acute myelogenous leukemia (AML) from normal blood. We established a CpG methylation panel that can distinguish ALL and AML blood from normal blood as well as ALL blood from AML blood with high sensitivity and specificity. We then developed a methylation-based survival classifier with 23 CpGs for ALL and 20 CpGs for AML that could successfully divide patients into high-risk and low-risk groups, with significant differences in clinical outcome in each leukemia type. Together, these findings demonstrate that methylation profiles can be highly sensitive and specific in the accurate diagnosis of ALL and AML, with implications for the prediction of prognosis and treatment selection.
Collapse
Affiliation(s)
- Hua Jiang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Zhiying Ou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yingyi He
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Meixing Yu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Shaoqing Wu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Gen Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jie Zhu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ru Zhang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jiayi Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Lianghong Zheng
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Xiaohong Zhang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wenge Hao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Liya He
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaoqiong Gu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Qingli Quan
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Edward Zhang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Huiyan Luo
- State Key Laboratory of Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wei Wei
- State Key Laboratory of Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhihuan Li
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Guangxi Zang
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Charlotte Zhang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Tina Poon
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Daniel Zhang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ian Ziyar
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Run-Ze Zhang
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Oulan Li
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Linhai Cheng
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Taylor Shimizu
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Xinping Cui
- Department of Statistics and Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 210602, China
| | - Xin Sun
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Kang Zhang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, China.
| |
Collapse
|
49
|
Gene mutational analysis by NGS and its clinical significance in patients with myelodysplastic syndrome and acute myeloid leukemia. Exp Hematol Oncol 2020; 9:2. [PMID: 31921515 PMCID: PMC6945703 DOI: 10.1186/s40164-019-0158-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/26/2019] [Indexed: 01/05/2023] Open
Abstract
Background In this study, we retrospectively summarized the differences of molecular gene mutations between MDS and AML patients, as well as the young and older age groups of MDS and AML patients. We also analyzed the response of newly diagnosed AML patients to standard DA or IA induction chemotherapy and the relationship between the chemotherapy outcome and the frequency of different gene mutation abnormalities. Methods NGS assay covering 43 genes was studied in 93 de novo MDS and 325 non-M3 AML patients. Bone marrow samples from all patients underwent gene mutational analysis by NGS. Results At least one non-synonymous gene mutation was detected in 279 AML patients (85.8%) and 85 MDS patients (91.4%). Contrary to 59 years and younger AML patients, there was a significantly higher incidence of gene mutation in 60 years and older AML patients (2.37 vs 1.94, p = 0.034). Gene mutation incidence in 60 years and older MDS patients increased, but no statistical significance was present (1.95 vs 1.64, p = 0.216). AML patients had a significantly higher gene mutation incidence compared with MDS-MLD patients (2.02 vs 1.63, p = 0.046). Gene mutation incidence was higher in patients with MDS-EB1/EB2 compared with patients with MDS-MLD but there was no statistical significance present (2.14 vs 1.63, p = 0.081). AML patients had significantly higher incidences of CEBPA, FLT3-ITD, DNMT3A, NPM1 and IDH1/2 gene mutations (p = 0.0043, 0.000, 0.030962, 0.002752, and 0.000628, respectively) and a lower incidence of TET2 and U2AF1 gene mutations (p = 0.000004 and 0.000, respectively) compared with MDS patients. Among the individual genes in different age groups, there were significantly higher incidences of RUNX1, IDH2, TP53 and SF3B1 gene mutations (p = 0.0478, 0.0028, 0.0024 and 0.005, respectively) as well as a trend of higher ASXL gene mutation (p = 0.057) in 60 years and older AML patients compared to 59 years and younger patients. There was no statistically significant difference in MDS patients with the different age groups and among the individual genes. Between AML patients and MDS patients among the different gene functional groups, AML patients had a significantly higher incidence of transcriptional deregulation (27.4% vs 15.1%, p = 0.014963), activated signalling (36.3% vs 10.8%, p = 0.000002) related gene mutations as well as a significantly lower incidence of RNA spliceosome (6.15% vs 60.1%, p = 0.000) related gene mutations. Furthermore, among the patients who received either IA or DA regimen for induction chemotherapy, patients with IA regimen had a significantly better CR rate than those with DA regimen (76.6% vs 57.1%, p = 0.0228). Conclusions Different gene mutations had been found in majority of MDS and AML patients. MDS and AML patients had different gene mutation patterns. AML patients with fewer or no gene mutations had a better chance of achieving CR when treated with IA and DA regimen induction chemotherapy.
Collapse
|
50
|
Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT. Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia. J Med Chem 2019; 62:11135-11150. [DOI: 10.1021/acs.jmedchem.9b01229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Wen-Hsing Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Su-Ying Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Hui-Yi Shiao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Tsu Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Cheng-Tai Lu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Pei-Chen Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Tsung-Sheng Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Yi-Hui Peng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Hui-You Lin
- National Institute of Cancer Research, National Health Research Institutes, Tainan City 704, Taiwan R.O.C
| | - Ching-Ping Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Ya-Ling Weng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Fang-Chun Kung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Mine-Hsine Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Yu-Chieh Su
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Kuo-Wei Huang
- National Institute of Cancer Research, National Health Research Institutes, Tainan City 704, Taiwan R.O.C
| | - Ling-Hui Chou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Ching-Cheng Hsueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Kuei-Jung Yen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Po-Chu Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Chen-Lung Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan City 704, Taiwan R.O.C
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Hui-Jen Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan City 704, Taiwan R.O.C
| | - Weir-Torn Jiaang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| |
Collapse
|