1
|
Pedersen C, Chen VT, Herbst P, Zhang R, Elfert A, Krishan A, Azar DT, Chang JH, Hu WY, Kremsmayer TP, Jalilian E, Djalilian AR, Guaiquil VH, Rosenblatt MI. Target specification and therapeutic potential of extracellular vesicles for regulating corneal angiogenesis, lymphangiogenesis, and nerve repair. Ocul Surf 2024; 34:459-476. [PMID: 39426677 DOI: 10.1016/j.jtos.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Extracellular vesicles, including exosomes, are small extracellular vesicles that range in size from 30 nm to 10 μm in diameter and have specific membrane markers. They are naturally secreted and are present in various bodily fluids, including blood, urine, and saliva, and through the variety of their internal cargo, they contribute to both normal physiological and pathological processes. These processes include immune modulation, neuronal synapse formation, cell differentiation, cancer metastasis, angiogenesis, lymphangiogenesis, progression of infectious disease, and neurodegenerative disorders like Alzheimer's and Parkinson's disease. In recent years, interest has grown in the use of exosomes as a potential drug delivery system for various diseases and injuries. Importantly, exosomes originating from a patient's own cells exhibit minimal immunogenicity and possess remarkable stability along with inherent and adjustable targeting capabilities. This review explores the roles of exosomes in angiogenesis, lymphangiogenesis, and nerve repair with a specific emphasis on these processes within the cornea. Furthermore, it examines exosomes derived from specific cell types, discusses the advantages of exosome-based therapies in modulating these processes, and presents some of the most established methods for exosome isolation. Exosome-based treatments are emerging as potential minimally invasive and non-immunogenic therapies that modulate corneal angiogenesis and lymphangiogenesis, as well as enhance and accelerate endogenous corneal nerve repair.
Collapse
Affiliation(s)
- Cameron Pedersen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Victoria T Chen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Paula Herbst
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Runze Zhang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Amr Elfert
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Abhi Krishan
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL, USA
| | - Tobias P Kremsmayer
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Victor H Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Sawada A, Kawanishi K, Igarashi Y, Taneda S, Hattori M, Ishida H, Tanabe K, Koike J, Honda K, Nagashima Y, Nitta K. Overexpression of Plasmalemmal Vesicle-Associated Protein-1 Reflects Glomerular Endothelial Injury in Cases of Proliferative Glomerulonephritis with Monoclonal IgG Deposits. Kidney Int Rep 2022; 8:151-163. [PMID: 36644361 PMCID: PMC9831946 DOI: 10.1016/j.ekir.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction Proliferative glomerulonephritis with monoclonal IgG deposits (PGNMID) occasionally presents refractory nephrotic syndrome resulting in poor renal prognosis, but its etiology is not fully elucidated. Given that glomerular endothelial cell (GEC) stress or damage may lead to podocytopathy and subsequent proteinuria, as in thrombotic microangiopathy (TMA), diabetic kidney disease, and focal segmental glomerulosclerosis, we investigated the evidence of glomerular endothelial injury by evaluating the expression of plasmalemmal vesicle-associated protein-1 (PV-1), a component of caveolae in the cases of PGNMID. Methods We measured the immunofluorescent PV-1 intensities of 23 PGNMID cases and compared with those of primary membranoproliferative glomerulonephritis (MPGN) (n = 5) and IgA nephropathy (IgAN) (n = 54) cases. PV-1 localization was evaluated with Caveolin-1, and CD31 staining, and the ultrastructural analysis was performed using a low-vacuum scanning electron microscope (LVSEM). To check the association of podocyte injury, we also conducted 8-oxoguanine and Wilms tumor 1 (WT1) double stain. We then evaluated PV-1 expression in other glomerulitis and glomerulopathy such as lupus nephritis and minimal change disease. Results The intensity of glomerular PV-1 expression in PGNMID is significantly higher than that in the other glomerular diseases, although the intensity is not associated with clinical outcomes such as urinary protein levels or renal prognosis. Immunostaining and LVSEM analysis revealed that glomerular PV-1 expression is localized in GECs in PGNMID. 8-oxoguanine accumulation was detected in WT1-positive podocytes but not in PV-1-expressing GECs, suggesting GEC-derived podocyte injury in PGNMID. Conclusion PV-1 overexpression reflects glomerular endothelial injury, which could be associated with podocyte oxidative stress in PGNMID cases.
Collapse
Affiliation(s)
- Anri Sawada
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan,Department of Surgical Pathology, Tokyo Women’s Medical University Hospital, Tokyo, Japan
| | - Kunio Kawanishi
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan,Correspondence: Kunio Kawanishi or Anri Sawada, Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki Japan.
| | - Yuto Igarashi
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Sekiko Taneda
- Department of Surgical Pathology, Tokyo Women’s Medical University Hospital, Tokyo, Japan
| | - Motoshi Hattori
- Department of Pediatric Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Hideki Ishida
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan,Department of Organ Transplant Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Junki Koike
- Department of Pathology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Kazuho Honda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Yoji Nagashima
- Department of Surgical Pathology, Tokyo Women’s Medical University Hospital, Tokyo, Japan
| | - Kosaku Nitta
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
3
|
Carloni S, Rescigno M. Unveiling the gut-brain axis: structural and functional analogies between the gut and the choroid plexus vascular and immune barriers. Semin Immunopathol 2022; 44:869-882. [PMID: 35861857 PMCID: PMC9301898 DOI: 10.1007/s00281-022-00955-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
The vasculature plays an essential role in the development and maintenance of blood-tissue interface homeostasis. Knowledge on the morphological and functional nature of the blood vessels in every single tissue is, however, very poor, but it is becoming clear that each organ is characterized by the presence of endothelial barriers with different properties fundamental for the maintenance of tissue resident immune homeostasis and for the recruitment of blood-trafficking immune cells. The tissue specificity of the vascular unit is dependent on the presence of differentiated endothelial cells that form continues, fenestrated, or sinusoidal vessels with different grades of permeability and different immune receptors, according to how that particular tissue needs to be protected. The gut-brain axis highlights the prominent role that the vasculature plays in allowing a direct and prompt exchange of molecules between the gut, across the gut vascular barrier (GVB), and the brain. Recently, we identified a new choroid plexus vascular barrier (PVB) which receives and integrates information coming from the gut and is fundamental in the modulation of the gut-brain axis. Several pathologies are linked to functional dysregulation of either the gut or the choroid plexus vascular barriers. In this review, we unveil the structural and functional analogies between the GVB and PVB, comparing their peculiar features and highlighting the functional role of pitcher and catcher of the gut-brain axis, including their role in the establishment of immune homeostasis and response upon systemic stimuli. We propose that when the gut vascular barrier-the main protecting system of the body from the external world-is compromised, the choroid plexus gatekeeper becomes a second barrier that protects the central nervous system from systemic inflammation.
Collapse
Affiliation(s)
- Sara Carloni
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072, Pieve Emanuele, MI, Italy.
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy.
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072, Pieve Emanuele, MI, Italy.
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy.
| |
Collapse
|
4
|
Gastrin mediates cardioprotection through angiogenesis after myocardial infarction by activating the HIF-1α/VEGF signalling pathway. Sci Rep 2021; 11:15836. [PMID: 34349170 PMCID: PMC8339006 DOI: 10.1038/s41598-021-95110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/16/2021] [Indexed: 11/08/2022] Open
Abstract
Acute myocardial infarction (MI) is one of the leading causes of death in humans. Our previous studies showed that gastrin alleviated acute myocardial ischaemia-reperfusion injury. We hypothesize that gastrin might protect against heart injury after MI by promoting angiogenesis. An MI model was simulated by ligating the anterior descending coronary artery in adult male C57BL/6J mice. Gastrin was administered twice daily by intraperitoneal injection for 2 weeks after MI. We found that gastrin reduced mortality, improved myocardial function with reduced infarct size and promoted angiogenesis. Gastrin increased HIF-1α and VEGF expression. Downregulation of HIF-1α expression by siRNA reduced the proliferation, migration and tube formation of human umbilical vein endothelial cells. These results indicate that gastrin restores cardiac function after MI by promoting angiogenesis via the HIF-1α/VEGF pathway.
Collapse
|
5
|
Grant D, Wanner N, Frimel M, Erzurum S, Asosingh K. Comprehensive phenotyping of endothelial cells using flow cytometry 2: Human. Cytometry A 2020; 99:257-264. [PMID: 33369145 DOI: 10.1002/cyto.a.24293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In vascular research, clinical samples and samples from animal models are often used together to foster translation of preclinical findings to humans. General concepts of endothelia and murine-specific endothelial phenotypes were discussed in part 1 of this two part series. Here, in part 2, we present a comprehensive overview of human-specific endothelial phenotypes. Pan-endothelial cell markers, organ specific endothelial antigens, and flow cytometric immunophenotyping of blood-borne endothelial cells are reviewed.
Collapse
Affiliation(s)
- Dillon Grant
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas Wanner
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Matthew Frimel
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Serpil Erzurum
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA.,Flow Cytometry Core Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Auvinen K, Lokka E, Mokkala E, Jäppinen N, Tyystjärvi S, Saine H, Peurla M, Shetty S, Elima K, Rantakari P, Salmi M. Fenestral diaphragms and PLVAP associations in liver sinusoidal endothelial cells are developmentally regulated. Sci Rep 2019; 9:15698. [PMID: 31666588 PMCID: PMC6821839 DOI: 10.1038/s41598-019-52068-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/11/2019] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells contain several nanoscale domains such as caveolae, fenestrations and transendothelial channels, which regulate signaling and transendothelial permeability. These structures can be covered by filter-like diaphragms. A transmembrane PLVAP (plasmalemma vesicle associated protein) protein has been shown to be necessary for the formation of diaphragms. The expression, subcellular localization and fenestra-forming role of PLVAP in liver sinusoidal endothelial cells (LSEC) have remained controversial. Here we show that fenestrations in LSEC contain PLVAP-diaphragms during the fetal angiogenesis, but they lose the diaphragms at birth. Although it is thought that PLVAP only localizes to diaphragms, we found luminal localization of PLVAP in adult LSEC using several imaging techniques. Plvap-deficient mice revealed that the absence of PLVAP and diaphragms did not affect the morphology, the number of fenestrations or the overall vascular architecture in the liver sinusoids. Nevertheless, PLVAP in fetal LSEC (fenestrations with diaphragms) associated with LYVE-1 (lymphatic vessel endothelial hyaluronan receptor 1), neuropilin-1 and VEGFR2 (vascular endothelial growth factor receptor 2), whereas in the adult LSEC (fenestrations without diaphragms) these complexes disappeared. Collectively, our data show that PLVAP can be expressed on endothelial cells without diaphragms, contradict the prevailing concept that biogenesis of fenestrae would be PLVAP-dependent, and reveal previously unknown PLVAP-dependent molecular complexes in LSEC during angiogenesis.
Collapse
Affiliation(s)
- Kaisa Auvinen
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Emmi Lokka
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Elias Mokkala
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Norma Jäppinen
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sofia Tyystjärvi
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Heikki Saine
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Markus Peurla
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Shishir Shetty
- Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Kati Elima
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pia Rantakari
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marko Salmi
- MediCity Research Laboratory, University of Turku, Turku, Finland. .,Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
7
|
Bosma EK, van Noorden CJF, Schlingemann RO, Klaassen I. The role of plasmalemma vesicle-associated protein in pathological breakdown of blood-brain and blood-retinal barriers: potential novel therapeutic target for cerebral edema and diabetic macular edema. Fluids Barriers CNS 2018; 15:24. [PMID: 30231925 PMCID: PMC6146740 DOI: 10.1186/s12987-018-0109-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022] Open
Abstract
Breakdown of the blood–brain barrier (BBB) or inner blood–retinal barrier (BRB), induced by pathologically elevated levels of vascular endothelial growth factor (VEGF) or other mediators, can lead to vasogenic edema and significant clinical problems such as neuronal morbidity and mortality, or vision loss. Restoration of the barrier function with corticosteroids in the brain, or by blocking VEGF in the eye are currently the predominant treatment options for brain edema and diabetic macular edema, respectively. However, corticosteroids have side effects, and VEGF has important neuroprotective, vascular protective and wound healing functions, implying that long-term anti-VEGF therapy may also induce adverse effects. We postulate that targeting downstream effector proteins of VEGF and other mediators that are directly involved in the regulation of BBB and BRB integrity provide more attractive and safer treatment options for vasogenic cerebral edema and diabetic macular edema. The endothelial cell-specific protein plasmalemma vesicle-associated protein (PLVAP), a protein associated with trans-endothelial transport, emerges as candidate for this approach. PLVAP is expressed in a subset of endothelial cells throughout the body where it forms the diaphragms of caveolae, fenestrae and trans-endothelial channels. However, PLVAP expression in brain and eye barrier endothelia only occurs in pathological conditions associated with a compromised barrier function such as cancer, ischemic stroke and diabetic retinopathy. Here, we discuss the current understanding of PLVAP as a structural component of endothelial cells and regulator of vascular permeability in health and central nervous system disease. Besides providing a perspective on PLVAP identification, structure and function, and the regulatory processes involved, we also explore its potential as a novel therapeutic target for vasogenic cerebral edema and retinal macular edema.
Collapse
Affiliation(s)
- Esmeralda K Bosma
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands. .,Ocular Angiogenesis Group, Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, Room L3-154, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Elgueta R, Tse D, Deharvengt SJ, Luciano MR, Carriere C, Noelle RJ, Stan RV. Endothelial Plasmalemma Vesicle-Associated Protein Regulates the Homeostasis of Splenic Immature B Cells and B-1 B Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:3970-3981. [PMID: 27742829 DOI: 10.4049/jimmunol.1501859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/18/2016] [Indexed: 12/18/2022]
Abstract
Plasmalemma vesicle-associated protein (Plvap) is an endothelial protein with roles in endothelial diaphragm formation and maintenance of basal vascular permeability. At the same time, Plvap has roles in immunity by facilitating leukocyte diapedesis at inflammatory sites and controlling peripheral lymph node morphogenesis and the entry of soluble Ags into lymph node conduits. Based on its postulated role in diapedesis, we have investigated the role of Plvap in hematopoiesis and show that deletion of Plvap results in a dramatic decrease of IgM+IgDlo B cells in both the spleen and the peritoneal cavity. Tissue-specific deletion of Plvap demonstrates that the defect is B cell extrinsic, because B cell and pan-hematopoietic Plvap deletion has no effect on IgM+IgDlo B cell numbers. Endothelial-specific deletion of Plvap in the embryo or at adult stage recapitulates the full Plvap knockout phenotype, whereas endothelial-specific reconstitution of Plvap under the Chd5 promoter rescues the IgM+IgDlo B cell phenotype. Taken together, these results show that Plvap expression in endothelial cells is important in the maintenance of IgM+ B cells in the spleen and peritoneal cavity.
Collapse
Affiliation(s)
- Raul Elgueta
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Immune Regulation and Intervention, Medical Research Council Centre for Transplantation, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Dan Tse
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Sophie J Deharvengt
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Marcus R Luciano
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Catherine Carriere
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756; and
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; .,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756; and
| | - Radu V Stan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; .,Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| |
Collapse
|
9
|
Development of Blood and Lymphatic Endothelial Cells in Embryonic and Fetal Human Skin. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2563-74. [PMID: 26188132 DOI: 10.1016/j.ajpath.2015.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/08/2015] [Accepted: 05/13/2015] [Indexed: 12/26/2022]
Abstract
Blood and lymphatic vessels provide nutrients for the skin and fulfill important homeostatic functions, such as the regulation of immunologic processes. In this study, we investigated the development of blood and lymphatic endothelial cells in prenatal human skin in situ using multicolor immunofluorescence and analyzed angiogenic molecules by protein arrays of lysates and cell culture supernatants. We found that at 8 to 10 weeks of estimated gestational age, CD144(+) vessels predominantly express the venous endothelial cell marker PAL-E, whereas CD144(+)PAL-E(-) vessels compatible with arteries only appear at the end of the first trimester. Lymphatic progenitor cells at 8 weeks of estimated gestational age express CD31, CD144, Prox1, and temporary PAL-E. At that developmental stage not all lymphatic progenitor cells express podoplanin or Lyve-1, which are acquired with advancing gestational age in a stepwise fashion. Already in second-trimester human skin, the phenotype of blood and lymphatic vessels roughly resembles the one in adult skin. The expression pattern of angiogenic molecules in lysates and cell culture supernatants of prenatal skin did not reveal the expected bent to proangiogenic molecules, indicating a complex regulation of angiogenesis during ontogeny. In summary, this study provides enticing new insights into the development and phenotypic characteristics of the vascular system in human prenatal skin.
Collapse
|
10
|
The endothelial protein PLVAP in lymphatics controls the entry of lymphocytes and antigens into lymph nodes. Nat Immunol 2015; 16:386-96. [PMID: 25665101 DOI: 10.1038/ni.3101] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/12/2015] [Indexed: 12/14/2022]
Abstract
In the lymphatic sinuses of draining lymph nodes, soluble lymph-borne antigens enter the reticular conduits in a size-selective manner and lymphocytes transmigrate to the parenchyma. The molecular mechanisms that control these processes are unknown. Here we unexpectedly found that PLVAP, a prototypic endothelial protein of blood vessels, was synthesized in the sinus-lining lymphatic endothelial cells covering the distal conduits. In PLVAP-deficient mice, both small antigens and large antigens entered the conduit system, and the transmigration of lymphocytes through the sinus floor was augmented. Mechanistically, the filtering function of the lymphatic sinus endothelium was dependent on diaphragms formed by PLVAP fibrils in transendothelial channels. Thus, in the lymphatic sinus, PLVAP forms a physical sieve that regulates the parenchymal entry of lymphocytes and soluble antigens.
Collapse
|
11
|
Herrnberger L, Hennig R, Kremer W, Hellerbrand C, Goepferich A, Kalbitzer HR, Tamm ER. Formation of fenestrae in murine liver sinusoids depends on plasmalemma vesicle-associated protein and is required for lipoprotein passage. PLoS One 2014; 9:e115005. [PMID: 25541982 PMCID: PMC4277272 DOI: 10.1371/journal.pone.0115005] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 11/17/2014] [Indexed: 12/11/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSEC) are characterized by the presence of fenestrations that are not bridged by a diaphragm. The molecular mechanisms that control the formation of the fenestrations are largely unclear. Here we report that mice, which are deficient in plasmalemma vesicle-associated protein (PLVAP), develop a distinct phenotype that is caused by the lack of sinusoidal fenestrations. Fenestrations with a diaphragm were not observed in mouse LSEC at three weeks of age, but were present during embryonic life starting from embryonic day 12.5. PLVAP was expressed in LSEC of wild-type mice, but not in that of Plvap-deficient littermates. Plvap-/- LSEC showed a pronounced and highly significant reduction in the number of fenestrations, a finding, which was seen both by transmission and scanning electron microscopy. The lack of fenestrations was associated with an impaired passage of macromolecules such as FITC-dextran and quantum dot nanoparticles from the sinusoidal lumen into Disse's space. Plvap-deficient mice suffered from a pronounced hyperlipoproteinemia as evidenced by milky plasma and the presence of lipid granules that occluded kidney and liver capillaries. By NMR spectroscopy of plasma, the nature of hyperlipoproteinemia was identified as massive accumulation of chylomicron remnants. Plasma levels of low density lipoproteins (LDL) were also significantly increased as were those of cholesterol and triglycerides. In contrast, plasma levels of high density lipoproteins (HDL), albumin and total protein were reduced. At around three weeks of life, Plvap-deficient livers developed extensive multivesicular steatosis, steatohepatitis, and fibrosis. PLVAP is critically required for the formation of fenestrations in LSEC. Lack of fenestrations caused by PLVAP deficiency substantially impairs the passage of chylomicron remnants between liver sinusoids and hepatocytes, and finally leads to liver damage.
Collapse
Affiliation(s)
- Leonie Herrnberger
- Department of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Robert Hennig
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Germany
| | - Werner Kremer
- Department of Biophysics and Physical Biochemistry, and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, Regensburg, Germany
| | - Claus Hellerbrand
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Germany
| | - Hans Robert Kalbitzer
- Department of Biophysics and Physical Biochemistry, and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, Regensburg, Germany
| | - Ernst R. Tamm
- Department of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
12
|
Keuschnigg J, Karinen S, Auvinen K, Irjala H, Mpindi JP, Kallioniemi O, Hautaniemi S, Jalkanen S, Salmi M. Plasticity of blood- and lymphatic endothelial cells and marker identification. PLoS One 2013; 8:e74293. [PMID: 24058540 PMCID: PMC3769239 DOI: 10.1371/journal.pone.0074293] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/29/2013] [Indexed: 01/17/2023] Open
Abstract
The distinction between lymphatic and blood vessels is biologically fundamental. Here we wanted to rigorously analyze the universal applicability of vascular markers and characteristics of the two widely used vascular model systems human microvascular endothelial cell line-1 (HMEC-1) and telomerase-immortalized microvascular endothelial cell line (TIME). Therefore we studied the protein expression and functional properties of the endothelial cell lines HMEC-1 and TIME by flow cytometry and in vitro flow assays. We then performed microarray analyses of the gene expression in these two cell lines and compared them to primary endothelial cells. Using bioinformatics we then defined 39 new, more universal, endothelial-type specific markers from 47 primary endothelial microarray datasets and validated them using immunohistochemistry with normal and pathological tissues. We surprisingly found that both HMEC-1 and TIME are hybrid blood- and lymphatic cells. In addition, we discovered great discrepancies in the previous identifications of blood- and lymphatic endothelium-specific genes. Hence we identified and validated new, universally applicable vascular markers. Summarizing, the hybrid blood-lymphatic endothelial phenotype of HMEC-1 and TIME is indicative of plasticity in the gene expression of immortalized endothelial cell lines. Moreover, we identified new, stable, vessel-type specific markers for blood- and lymphatic endothelium, useful for basic research and clinical diagnostics.
Collapse
Affiliation(s)
- Johannes Keuschnigg
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
- Turku Doctoral Program of Biomedical Sciences, Turku, Finland
| | - Sirkku Karinen
- Research Programs Unit, Genome-Scale Biology, and Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Kaisa Auvinen
- MediCity Research Laboratory, University of Turku, Turku, Finland
- National Institute of Public Health and Welfare, Turku, Finland
| | - Heikki Irjala
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, Finland
| | - John-Patrick Mpindi
- FIMM, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Olli Kallioniemi
- FIMM, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Programs Unit, Genome-Scale Biology, and Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
- National Institute of Public Health and Welfare, Turku, Finland
| | - Marko Salmi
- MediCity Research Laboratory, University of Turku, Turku, Finland
- National Institute of Public Health and Welfare, Turku, Finland
- Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland
- * E-mail:
| |
Collapse
|
13
|
ASH 2012: allogeneic stem cell transplantation. MEMO - MAGAZINE OF EUROPEAN MEDICAL ONCOLOGY 2013. [DOI: 10.1007/s12254-013-0102-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Abstract
A relatively large number of new endothelial markers that can assist in the diagnosis and classification of endothelial and vascular neoplasms have become available over the past few years. The expression of these markers, however, differs considerably among the various tumors. A selection of markers that have potential diagnostic utility or are of current interest among pathologists are reviewed and compared with some of the more traditional markers that have been employed in diagnostic pathology.
Collapse
|