1
|
Keng CT, Sze CW, Zheng D, Zheng Z, Yong KSM, Tan SQ, Ong JJY, Tan SY, Loh E, Upadya MH, Kuick CH, Hotta H, Lim SG, Tan TC, Chang KTE, Hong W, Chen J, Tan YJ, Chen Q. Characterisation of liver pathogenesis, human immune responses and drug testing in a humanised mouse model of HCV infection. Gut 2016; 65:1744-53. [PMID: 26149491 PMCID: PMC5036242 DOI: 10.1136/gutjnl-2014-307856] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 05/11/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE HCV infection affects millions of people worldwide, and many patients develop chronic infection leading to liver cancers. For decades, the lack of a small animal model that can recapitulate HCV infection, its immunopathogenesis and disease progression has impeded the development of an effective vaccine and therapeutics. We aim to provide a humanised mouse model for the understanding of HCV-specific human immune responses and HCV-associated disease pathologies. DESIGN Recently, we have established human liver cells with a matched human immune system in NOD-scid Il2rg(-/-) (NSG) mice (HIL mice). These mice are infected with HCV by intravenous injection, and the pathologies are investigated. RESULTS In this study, we demonstrate that HIL mouse is capable of supporting HCV infection and can present some of the clinical symptoms found in HCV-infected patients including hepatitis, robust virus-specific human immune cell and cytokine responses as well as liver fibrosis and cirrhosis. Similar to results obtained from the analysis of patient samples, the human immune cells, particularly T cells and macrophages, play critical roles during the HCV-associated liver disease development in the HIL mice. Furthermore, our model is demonstrated to be able to reproduce the therapeutic effects of human interferon alpha 2a antiviral treatment. CONCLUSIONS The HIL mouse provides a model for the understanding of HCV-specific human immune responses and HCV-associated disease pathologies. It could also serve as a platform for antifibrosis and immune-modulatory drug testing.
Collapse
Affiliation(s)
- Choong Tat Keng
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Ching Wooen Sze
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dahai Zheng
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Zhiqiang Zheng
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | | | - Shu Qi Tan
- Department of Obstetrics & Gynaecology, KK Women's and Children's Hospital, Singapore, Singapore
| | | | - Sue Yee Tan
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Eva Loh
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Megha Haridas Upadya
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chik Hong Kuick
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Hak Hotta
- Division of Microbiology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Seng Gee Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore Department of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
| | - Thiam Chye Tan
- Department of Obstetrics & Gynaecology, KK Women's and Children's Hospital, Singapore, Singapore Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Kenneth T E Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Jianzhu Chen
- Interdisciplinary Research Group in Infectious Diseases, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore, Singapore The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yee-Joo Tan
- Institute of Molecular and Cell Biology, Singapore, Singapore Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Singapore, Singapore Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore Interdisciplinary Research Group in Infectious Diseases, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore, Singapore
| |
Collapse
|
2
|
Dustin LB, Bartolini B, Capobianchi MR, Pistello M. Hepatitis C virus: life cycle in cells, infection and host response, and analysis of molecular markers influencing the outcome of infection and response to therapy. Clin Microbiol Infect 2016; 22:826-832. [PMID: 27592089 PMCID: PMC5627509 DOI: 10.1016/j.cmi.2016.08.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/16/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) is a major global health burden accounting for around 170 million chronic infections worldwide. Since its discovery, which dates back to about 30 years ago, many details of the viral genome organization and the astonishing genetic diversity have been unveiled but, owing to the difficulty of culturing HCV in vitro and obtaining fully susceptible yet immunocompetent in vivo models, we are still a long way from the full comprehension of viral life cycle, host cell pathways facilitating or counteracting infection, pathogenetic mechanisms in vivo, and host defences. Here, we illustrate the viral life cycle into cells, describe the interplay between immune and genetic host factors shaping the course of infection, and provide details of the molecular approaches currently used to genotype, monitor replication in vivo, and study the emergence of drug-resistant viral variants.
Collapse
Affiliation(s)
- L B Dustin
- Kennedy Institute for Rheumatology and Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - B Bartolini
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - M R Capobianchi
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - M Pistello
- Virology Unit, Pisa University Hospital, and Virology Section and Retrovirus Centre, Department of Translational Research, University of Pisa, Pisa, Italy.
| |
Collapse
|