1
|
Oster HS, Van de Loosdrecht AA, Mittelman M. Diagnosis of myelodysplastic syndromes: the classic and the novel. Haematologica 2025; 110:300-311. [PMID: 39445407 PMCID: PMC11788627 DOI: 10.3324/haematol.2023.284937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Indexed: 10/25/2024] Open
Abstract
The myelodysplastic syndromes (MDS) are a heterogenous group of clonal bone marrow (BM) stem cell myeloid neoplasms, characterized by BM dysplasia, macrocytic anemia or cytopenia with a tendency for leukemic transformation. The suspicion of MDS is raised by a typical but not specific clinical picture and routine laboratory findings, but the gold standard for the diagnosis of MDS is still BM examination with the presence of uni-or multi-lineage dysplasia and blast percentage, together with exclusion of other reasons. Cytogenetics is also a part of the diagnostic process. Flow cytometry and genetics are helpful but are not always mandatory for the diagnosis of MDS. This review summarizes the current steps in the diagnostic approach for a patient suspected of having MDS. We also describe new concepts that use non-invasive diagnostic technologies, especially digital methods as well as peripheral blood genetics. The hope is that one day these will mature, be introduced into clinical practice, and perhaps in many cases even replace the invasive BM biopsy.
Collapse
Affiliation(s)
- Howard S Oster
- Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv University School of Medicine
| | - Arjan A Van de Loosdrecht
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam
| | - Moshe Mittelman
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv University School of Medicine.
| |
Collapse
|
2
|
Mittelman M. Introduction to the Review Series on Myelodysplasia. Haematologica 2025; 110:281-282. [PMID: 39895333 PMCID: PMC11788610 DOI: 10.3324/haematol.2023.284948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 10/01/2024] [Indexed: 02/04/2025] Open
Affiliation(s)
- Moshe Mittelman
- Tel-Aviv Sourasky Medical Center and Tel-Aviv University Medical School, Tel-Aviv, Israel
| |
Collapse
|
3
|
Kröger N. Treatment of high-risk myelodysplastic syndromes. Haematologica 2025; 110:339-349. [PMID: 39633555 PMCID: PMC11788630 DOI: 10.3324/haematol.2023.284946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Myelodysplastic syndrome (MDS) is considered to be a heterogeneous myeloid malignancy with a common origin in the hematopoietic stem cell compartment and is generally divided into lower- and higher-risk forms. While the treatment goals for lower-risk MDS are to decrease transfusion requirements and transformation into acute leukemia, the major aims for higher-risk MDS are to prolong survival and ultimately cure the patient. Although novel agents such as luspatercept and imetelstat have recently been approved as new treatment options for lower-risk MDS, hypomethylating agents currently remain the only approved non-transplant option for higher-risk MDS and are the standard of care for patients not eligible for allogeneic hematopoietic stem cell transplantation (HSCT). Combinations with other drugs as first-line treatment have to date not proven more efficacious than monotherapy in higher-risk MDS, and outcome after the failure of treatment with hypomethylating agents is poor. The only potential cure and standard of care for eligible patients is HSCT and even though the number of transplanted - especially older - MDS patients has increased over time due to better management and greater donor availability, the majority of MDS patients will not be eligible for this curative approach. Current challenges include decreasing the relapse risk, the main cause of HSCT failure. This review summarizes current knowledge on the options of transplant and non-transplant treatment approaches for these patients and demonstrate the unmet clinical need for more effective therapies.
Collapse
Affiliation(s)
- Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf.
| |
Collapse
|
4
|
Niscola P. Improved survival and enhanced quality of life through anaemia correction in lower risk myelodysplastic syndromes: meaningful insights from an EUMDS Registry study. Lancet Haematol 2025; 12:e88-e90. [PMID: 39909660 DOI: 10.1016/s2352-3026(24)00355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 02/07/2025]
|
5
|
Mo A, Wood E, McQuilten Z. Platelet transfusion. Curr Opin Hematol 2025; 32:14-21. [PMID: 39259696 DOI: 10.1097/moh.0000000000000843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW Platelet transfusions, used as prophylaxis or treatment for bleeding, are potentially life-saving. In many countries, demand for platelet transfusion is rising. Platelets are a limited and costly resource, and it is vital that they are used appropriately. This study will explore the evidence behind platelet transfusions in different contexts, in particular recent and important research in this area. RECENT FINDINGS Recent randomized clinical trials demonstrate the efficacy of platelet transfusions in some contexts but potential detrimental effects in others. Platelet transfusions also carry risk of transfusion reactions, bacterial contamination and platelet transfusion refractoriness. Observational and clinical studies, which highlight approaches to mitigate these risks, will be discussed. There is growing interest in cold-stored or cryopreserved platelet units, which may improve platelet function and availability. Clinical trials also highlight the efficacy of other supportive measures such as tranexamic acid or thrombopoietin receptor agonists in patients with bleeding. SUMMARY Although platelet transfusions are beneficial in many patients, there remain many settings in which the optimal use of platelet transfusions is unclear, and some situations in which they may have detrimental effects. Future clinical trials are needed to determine optimal use of platelet transfusions in different patient populations.
Collapse
Affiliation(s)
- Allison Mo
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University
- Monash Haematology, Monash Health
- Austin Pathology, Austin Health
| | - Erica Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University
- Monash Haematology, Monash Health
| | - Zoe McQuilten
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University
- Monash Haematology, Monash Health
- Department of Haematology, Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Della Porta MG, Bewersdorf JP, Wang YH, Hasserjian RP. Future directions in myelodysplastic syndromes/neoplasms and acute myeloid leukaemia classification: from blast counts to biology. Histopathology 2025; 86:158-170. [PMID: 39450427 DOI: 10.1111/his.15353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukaemia (AML) are neoplastic haematopoietic cell proliferations that are diagnosed and classified based on a combination of morphological, clinical and genetic features. Specifically, the percentage of myeloblasts in the blood and bone marrow is a key feature that has historically separated MDS from AML and, together with several other morphological parameters, defines distinct disease entities within MDS. Both MDS and AML have recurrent genetic abnormalities that are increasingly influencing their definitions and subclassification. For example, in 2022, two new MDS entities were recognised based on the presence of SF3B1 mutation or bi-allelic TP53 abnormalities. Genomic information is more objective and reproducible than morphological analyses, which are subject to interobserver variability and arbitrary numeric cut-offs. Nevertheless, the integration of genomic data with traditional morphological features in myeloid neoplasm classification has proved challenging by virtue of its sheer complexity; gene expression and methylation profiling also can provide information regarding disease pathogenesis, adding to the complexity. New machine-learning technologies have the potential to effectively integrate multiple diagnostic modalities and improve on historical classification systems. Going forward, the application of machine learning and advanced statistical methods to large patient cohorts can refine future classifications by advancing unbiased and robust previously unrecognised disease subgroups. Future classifications will probably incorporate these newer technologies and higher-level analyses that emphasise genomic disease entities over traditional morphologically defined entities, thus promoting more accurate diagnosis and patient risk stratification.
Collapse
Affiliation(s)
- Matteo G Della Porta
- Comprehensive Cancer Center, IRCCS Humanitas Clinical and Research Center and Humanitas University, Milan, Italy
| | - Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale University and Yale Cancer Center, New Haven, CT, USA
| | - Yu-Hung Wang
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, UK
- Division of Hematology, National Taiwan University Hospital, Taipei, Taiwan
| | - Robert P Hasserjian
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Rombaut D, Sandmann S, Tekath T, Crouch S, de Graaf AO, Smith A, Painter D, Kosmider O, Tobiasson M, Lennartsson A, van der Reijden BA, Park S, D'Aveni M, Slama B, Clappier E, Fenaux P, Adès L, van de Loosdrecht A, Langemeijer S, Symeonidis A, Čermák J, Preudhomme C, Savic A, Germing U, Stauder R, Bowen D, van Marrewijk C, Bernard E, de Witte T, Varghese J, Hellström‐Lindberg E, Dugas M, Martens J, Malcovati L, Jansen JH, Fontenay M. Somatic mutations and DNA methylation identify a subgroup of poor prognosis within lower-risk myelodysplastic syndromes. Hemasphere 2025; 9:e70073. [PMID: 39850648 PMCID: PMC11754767 DOI: 10.1002/hem3.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/18/2024] [Accepted: 12/08/2024] [Indexed: 01/25/2025] Open
Abstract
Lower risk (LR) myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem and progenitor disorders caused by the accumulation of somatic mutations in various genes including epigenetic regulators that may produce convergent DNA methylation patterns driving specific gene expression profiles. The integration of genomic, epigenomic, and transcriptomic profiling has the potential to spotlight distinct LR-MDS categories on the basis of pathophysiological mechanisms. We performed a comprehensive study of somatic mutations and DNA methylation in a large and clinically well-annotated cohort of treatment-naive patients with LR-MDS at diagnosis from the EUMDS registry (ClinicalTrials.gov.NCT00600860). Unsupervised clustering analyses identified six clusters based on genetic profiling that concentrate into four clusters on the basis of genome-wide methylation profiling with significant overlap between the two clustering modes. The four methylation clusters showed distinct clinical and genetic features and distinct methylation landscape. All clusters shared hypermethylated enhancers enriched in binding motifs for ETS and bZIP (C/EBP) transcription factor families, involved in the regulation of myeloid cell differentiation. By contrast, one cluster gathering patients with early leukemic evolution exhibited a specific pattern of hypermethylated promoters and, distinctly from other clusters, the upregulation of AP-1 complex members FOS/FOSL2 together with the absence of hypermethylation of their binding motif at target gene enhancers, which is of relevance for leukemic initiation. Among MDS patients with lower-risk IPSS-M, this cluster displayed a significantly inferior overall survival (p < 0.0001). Our study showed that genetic and DNA methylation features of LR-MDS at early stages may refine risk stratification, therefore offering the frame for a precocious therapeutic intervention.
Collapse
Affiliation(s)
- David Rombaut
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104Assistance Publique‐Hôpitaux de Paris.Centre, Laboratory of Hematology, Hôpital CochinParisFrance
| | - Sarah Sandmann
- Institute of Medical InformaticsUniversity of MünsterMünsterGermany
| | - Tobias Tekath
- Institute of Medical InformaticsUniversity of MünsterMünsterGermany
| | - Simon Crouch
- Epidemiology and Cancer Statistics Group, Department of Health SciencesUniversity of YorkYorkUK
| | - Aniek O. de Graaf
- Department of Laboratory Medicine, Laboratory of HematologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Alexandra Smith
- Epidemiology and Cancer Statistics Group, Department of Health SciencesUniversity of YorkYorkUK
| | - Daniel Painter
- Epidemiology and Cancer Statistics Group, Department of Health SciencesUniversity of YorkYorkUK
| | - Olivier Kosmider
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104Assistance Publique‐Hôpitaux de Paris.Centre, Laboratory of Hematology, Hôpital CochinParisFrance
| | - Magnus Tobiasson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska InstituteKarolinska University HospitalStockholmSweden
| | | | - Bert A. van der Reijden
- Department of Laboratory Medicine, Laboratory of HematologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Sophie Park
- Department of HematologyUniversité de Grenoble‐Alpes, CHUGrenobleFrance
| | - Maud D'Aveni
- Service d'Hématologie CliniqueUniversity Hospital of Nancy and University of LorraineNancyFrance
| | - Borhane Slama
- Service d'onco‐hématologie, Centre Hospitalier Général d'AvignonAvignonFrance
| | - Emmanuelle Clappier
- Université Paris Cité, Assistance Publique des Hôpitaux de Paris.Nord, Laboratoire d'Hématologie, Hôpital Saint‐LouisParisFrance
| | - Pierre Fenaux
- Université Paris Cité, Assistance Publique des Hôpitaux de Paris.Nord, Service d'Hématologie Senior, Hôpital Saint‐LouisParisFrance
| | - Lionel Adès
- Université Paris Cité, Assistance Publique des Hôpitaux de Paris.Nord, Service d'Hématologie Senior, Hôpital Saint‐LouisParisFrance
| | | | - Saskia Langemeijer
- Department of HematologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Argiris Symeonidis
- Hematology Division, Department of Internal MedicineUniversity of PatrasPatrasGreece
| | - Jaroslav Čermák
- Department of Clinical HematologyInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - Claude Preudhomme
- Laboratoire d'hématologieCentre Hospitalier Régional UniversitaireLilleFrance
| | - Aleksandar Savic
- Clinic of Hematology, Clinical Center of VojvodinaFaculty of Medicine, University of Novi SadNovi SadSerbia
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical ImmunologyHeinrich‐Heine‐University, Medical FacultyDüsseldorfGermany
| | - Reinhard Stauder
- Department of Internal Medicine V (Haematology and Oncology), Comprehensive Cancer Center InnsbruckMedical University of InnsbruckInnsbruckAustria
| | - David Bowen
- St. James's Institute of OncologyLeeds Teaching HospitalsLeedsUK
| | - Corine van Marrewijk
- Department of HematologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Elsa Bernard
- Department of Computational BiologyInstitut Gustave Roussy, INSERM U981VillejuifFrance
| | - Theo de Witte
- Department of Tumor Immunology, Radboud Institute of Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Julian Varghese
- Institute of Medical InformaticsUniversity of MünsterMünsterGermany
| | - Eva Hellström‐Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska InstituteKarolinska University HospitalStockholmSweden
| | - Martin Dugas
- Institute of Medical InformaticsUniversity of HeidelbergHeidelbergGermany
| | - Joost Martens
- Department of Molecular BiologyFaculty of Science, Radboud UniversityNijmegenThe Netherlands
| | - Luca Malcovati
- Department of Molecular Medicine and Department of Hematology OncologyUniversity of Pavia and Fondazione IRCCS Policlinico S. MatteoPaviaItaly
| | - Joop H. Jansen
- Department of Laboratory Medicine, Laboratory of HematologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Michaela Fontenay
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104Assistance Publique‐Hôpitaux de Paris.Centre, Laboratory of Hematology, Hôpital CochinParisFrance
| | | |
Collapse
|
8
|
Qu X, Stevens E, Fitzgibbon MP, Beppu L, Monahan TM, Yeung C, Stirewalt DL, Wu D, Radich JP, Deeg HJ, Fang M. Pretransplant Chromosome Genomic Array Testing Improves Prognosis for Myelofibrosis Patients Undergoing Transplantation. Transplant Cell Ther 2024:S2666-6367(24)00837-6. [PMID: 39722322 DOI: 10.1016/j.jtct.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Despite its known superior diagnostic yield for chromosomal anomalies compared with karyotype and fluorescence in situ hybridization (FISH) studies, chromosome genomic array testing (CGAT) is not used as a routine clinical test for myelofibrosis. Although many prognostic systems exist that risk stratify patients at diagnosis, limited tools are available to prognosticate transplant outcome. OBJECTIVE The current study aimed at testing whether CGAT results obtained before transplantation improves prognosis of post-transplant outcome in patients with myelofibrosis compared with current risk categorization systems, for example, DIPSS plus (Dynamic International Prognostic Scoring System). STUDY DESIGN We studied patients with myelofibrosis who underwent hematopoietic cell transplantation between 2000 and 2017 at our center (N = 44). We assessed the prognostic significance of CGAT, DIPSS plus, and the total count of gene mutations for post-transplant clinical outcomes, including relapse-free survival (RFS), overall survival (OS), and graft-versus-host-disease (GVHD). RESULTS Abnormal CGAT results were seen in 24 patients (55%), including 18 with copy-neutral loss of heterozygosity (cnLOH, 41%). With a median follow-up of 91 (range 2-258) months starting from the CGAT sample date, RFS was 59% and OS was 68%. The outcome analysis showed significant prognostic implication from CGAT (normal vs. abnormal), specifically for patients with intermediate risk by DIPSS-plus scores and those with 0∼2 mutations. CGAT alone significantly stratified the patients' RFS outcome (P = .03). The addition of CGAT to DIPSS-plus improved the significance from a P value of .08 to .003, whereas the addition of CGAT to mutation count improved the P value from .02 to .01. The best stratification system for RFS was achieved when CGAT, DIPSS-plus, and mutation count were all considered (P = 1e-08). The current study also confirmed individual anomalies that are prognostically significant, including U2AF1 mutation (n = 5, P = .03) and 1q gain (n = 3, P = .01), which were associated with worse RFS. ASXL1 mutations (n = 14) appeared to associate with a later onset of chronic GVHD (P =.03). CONCLUSION Pretransplant CGAT analysis augments the existing risk stratification tools and may be considered as routine clinical testing for myelofibrosis.
Collapse
Affiliation(s)
- Xiaoyu Qu
- Fred Hutchinson Cancer Center, Seattle, Washington
| | - Emily Stevens
- Virginia Mason Franciscan Health, Seattle, Washington
| | | | - Lan Beppu
- Fred Hutchinson Cancer Center, Seattle, Washington
| | | | - Cecilia Yeung
- Fred Hutchinson Cancer Center, Seattle, Washington; University of Washington, Seattle, Washington
| | - Derek L Stirewalt
- Fred Hutchinson Cancer Center, Seattle, Washington; University of Washington, Seattle, Washington
| | - David Wu
- University of Washington, Seattle, Washington
| | - Jerald P Radich
- Fred Hutchinson Cancer Center, Seattle, Washington; University of Washington, Seattle, Washington
| | - H Joachim Deeg
- Fred Hutchinson Cancer Center, Seattle, Washington; University of Washington, Seattle, Washington
| | - Min Fang
- Fred Hutchinson Cancer Center, Seattle, Washington; University of Washington, Seattle, Washington.
| |
Collapse
|
9
|
Mendoza T, King AL, Vera E, Mina A, McGraw K, Pavletic S, Armstrong TS. Patient-reported outcomes in early phase trials for patients with myelodysplastic syndromes. Semin Hematol 2024; 61:457-464. [PMID: 39542751 DOI: 10.1053/j.seminhematol.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Abstract
Patients with myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML) experience a wide range of symptoms due both to their underlying disease and the effects of treatment. Designing early phase trials to explore effective therapies in these patients should not only examine anti-tumor activity, but also consider the effects of treatments on how patients feel and function. Assessing symptomatic toxicities associated with new therapies in early phase trials from the patient perspective is best measured using patient-reported outcomes (PROs) and offers valuable insight and complementary information to the traditional adverse event reporting in cancer clinical trials. This review describes PROs, highlights their importance in MDS drug development, and outlines the key psychometric properties and practical considerations that make PROs essential and desirable in evaluating the impact of new therapies. We will provide a general overview of PROs and follow with application of PROs in MDS/AML including strategies to be considered in early phase trials. Finally, we describe the creation of the Office of Patient-Centered Outcomes Research at the US National Institutes of Health which has developed a standardized PROs methodology for early phase trials conducted in the Center for Cancer Research at the US National Cancer Institute.
Collapse
Affiliation(s)
- Tito Mendoza
- Office of Patient-Centered Outcomes Research, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Amanda L King
- Office of Patient-Centered Outcomes Research, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Vera
- Office of Patient-Centered Outcomes Research, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alain Mina
- Myeloid Malignancies Program, Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kathy McGraw
- Myeloid Malignancies Program, Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven Pavletic
- Myeloid Malignancies Program, Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Terri S Armstrong
- Office of Patient-Centered Outcomes Research, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Sekeres MA, Santini V, Díez-Campelo M, Komrokji RS, Fenaux P, Savona MR, Madanat YF, Valcárcel-Ferreiras D, Oliva EN, Regnault A, Creel K, Sengupta N, Dougherty S, Shah S, Sun L, Wan Y, Navada S, Zeidan AM, Platzbecker U. Sustained benefits of imetelstat on patient-reported fatigue in patients with lower-risk myelodysplastic syndromes ineligible for, or relapsed/refractory to, erythropoiesis-stimulating agents and high transfusion burden in the phase 3 IMerge study. Leuk Lymphoma 2024:1-6. [PMID: 39535901 DOI: 10.1080/10428194.2024.2426057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Mikkael A Sekeres
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Valeria Santini
- Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | | | | | - Pierre Fenaux
- Hôpital Saint-Louis, Université de Paris 7, Paris, France
| | - Michael R Savona
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yazan F Madanat
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | | | | | | - Libo Sun
- Geron Corporation, Parsippany, NJ, USA
| | - Ying Wan
- Geron Corporation, Parsippany, NJ, USA
| | | | - Amer M Zeidan
- Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA
| | | |
Collapse
|
11
|
Lu S, Liu K, Wang D, Ye Y, Jiang Z, Gao Y. Genomic structural variants analysis in leukemia by a novel cytogenetic technique: Optical genome mapping. Cancer Sci 2024; 115:3543-3551. [PMID: 39180374 PMCID: PMC11531954 DOI: 10.1111/cas.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
Genomic structural variants (SVs) play a pivotal role in driving the evolution of hematologic malignancies, particularly in leukemia, in which genetic abnormalities are crucial features. Detecting SVs is essential for achieving precise diagnosis and prognosis in these cases. Karyotyping, often complemented by fluorescence in situ hybridization and/or chromosomal microarray analysis, provides standard diagnostic outcomes for various types of SVs in front-line testing for leukemia. Recently, optical genome mapping (OGM) has emerged as a promising technique due to its ability to detect all SVs identified by other cytogenetic methods within one single assay. Furthermore, OGM has revealed additional clinically significant SVs in various clinical laboratories, underscoring its considerable potential for enhancing front-line testing in cases of leukemia. This review aims to elucidate the principles of conventional cytogenetic techniques and OGM, with a focus on the technical performance of OGM and its applications in diagnosing and prognosticating myelodysplastic syndromes, acute myeloid leukemia, acute lymphoblastic leukemia, and chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Song Lu
- Center for Advanced Measurement ScienceNational Institute of MetrologyBeijingChina
| | - Kefu Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaHunanChina
| | - Di Wang
- Center for Advanced Measurement ScienceNational Institute of MetrologyBeijingChina
| | - Yuan Ye
- College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Zhiping Jiang
- Department of Hematology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Hematology Oncology Clinical Medical Research CenterChangshaHunanChina
| | - Yunhua Gao
- Center for Advanced Measurement ScienceNational Institute of MetrologyBeijingChina
| |
Collapse
|
12
|
Komrokji RS, Lanino L, Ball S, Bewersdorf JP, Marchetti M, Maggioni G, Travaglino E, Al Ali NH, Fenaux P, Platzbecker U, Santini V, Diez-Campelo M, Singh A, Jain AG, Aguirre LE, Tinsley-Vance SM, Schwabkey ZI, Chan O, Xie Z, Brunner AM, Kuykendall AT, Bennett JM, Buckstein R, Bejar R, Carraway HE, DeZern AE, Griffiths EA, Halene S, Hasserjian RP, Lancet J, List AF, Loghavi S, Odenike O, Padron E, Patnaik MM, Roboz GJ, Stahl M, Sekeres MA, Steensma DP, Savona MR, Taylor J, Xu ML, Sweet K, Sallman DA, Nimer SD, Hourigan CS, Wei AH, Sauta E, D'Amico S, Asti G, Castellani G, Delleani M, Campagna A, Borate UM, Sanz G, Efficace F, Gore SD, Kim TK, Daver N, Garcia-Manero G, Rozman M, Orfao A, Wang SA, Foucar MK, Germing U, Haferlach T, Scheinberg P, Miyazaki Y, Iastrebner M, Kulasekararaj A, Cluzeau T, Kordasti S, van de Loosdrecht AA, Ades L, Zeidan AM, Della Porta MG. Data-driven, harmonised classification system for myelodysplastic syndromes: a consensus paper from the International Consortium for Myelodysplastic Syndromes. Lancet Haematol 2024; 11:e862-e872. [PMID: 39393368 DOI: 10.1016/s2352-3026(24)00251-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 10/13/2024]
Abstract
The WHO and International Consensus Classification 2022 classifications of myelodysplastic syndromes enhance diagnostic precision and refine decision-making processes in these diseases. However, some discrepancies still exist and potentially cause inconsistency in their adoption in a clinical setting. We adopted a data-driven approach to provide a harmonisation between these two classification systems. We investigated the importance of genomic features and their effect on the cluster assignment process to define harmonised entity labels. A panel of expert haematologists, haematopathologists, and data scientists who are members of the International Consortium for Myelodysplastic Syndromes was formed and a modified Delphi consensus process was adopted to harmonise morphologically defined categories without a distinct genomic profile. The panel held regular online meetings and participated in a two-round survey using an online voting tool. We identified nine clusters with distinct genomic features. The cluster of highest hierarchical importance was characterised by biallelic TP53 inactivation. Cluster assignment was irrespective of blast count. Individuals with monoallelic TP53 inactivation were assigned to other clusters. Hierarchically, the second most important group included myelodysplastic syndromes with del(5q). Isolated del(5q) and less than 5% of blast cells in the bone marrow were the most relevant label-defining features. The third most important cluster included myelodysplastic syndromes with mutated SF3B1. The absence of isolated del(5q), del(7q)/-7, abn3q26.2, complex karyotype, RUNX1 mutations, or biallelic TP53 were the basis for a harmonised label of this category. Morphologically defined myelodysplastic syndrome entities showed large genomic heterogeneity that was not efficiently captured by single-lineage versus multilineage dysplasia, marrow blasts, hypocellularity, or fibrosis. We investigated the biological continuum between myelodysplastic syndromes with more than 10% bone marrow blasts and acute myeloid leukaemia, and found only a partial overlap in genetic features. After the survey, myelodysplastic syndromes with low blasts (ie, less than 5%) and myelodysplastic syndromes with increased blasts (ie, 5% or more) were recognised as disease entities. Our data-driven approach can efficiently harmonise current classifications of myelodysplastic syndromes and provide a reference for patient management in a real-world setting.
Collapse
Affiliation(s)
- Rami S Komrokji
- Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Luca Lanino
- Center for Accelerating Leukemia/Lymphoma Research at Comprehensive Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Somedeb Ball
- Division of Hematology and Oncology, Vanderbilt Ingram Cancer Center and Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jan P Bewersdorf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Monia Marchetti
- Azienda Ospedaliera Nazionale SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Giulia Maggioni
- Center for Accelerating Leukemia/Lymphoma Research at Comprehensive Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Najla H Al Ali
- Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Pierre Fenaux
- Saint Louis Hospital, Paris Cité University, Paris, France
| | | | | | | | | | | | | | - Sarah M Tinsley-Vance
- Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Zaker I Schwabkey
- Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Onyee Chan
- Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Zhouer Xie
- Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Andrew T Kuykendall
- Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - John M Bennett
- University of Rochester Medical Center, Rochester, NY, USA
| | - Rena Buckstein
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Rafael Bejar
- University of California San Diego, San Diego, CA, USA
| | | | - Amy E DeZern
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | | | - Stephanie Halene
- Hematology Section, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Jeffrey Lancet
- Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Olatoyosi Odenike
- Leukemia Program, University of Chicago Medicine and University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Eric Padron
- Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gail J Roboz
- New York-Presbyterian/Weill Cornell Medicine, New York, NY, USA
| | | | - Mikkael A Sekeres
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | | | - Michael R Savona
- Division of Hematology and Oncology, Vanderbilt Ingram Cancer Center and Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Mina L Xu
- Department of Pathology and Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Kendra Sweet
- Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David A Sallman
- Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | | | - Andrew H Wei
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Elisabetta Sauta
- Center for Accelerating Leukemia/Lymphoma Research at Comprehensive Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Saverio D'Amico
- Center for Accelerating Leukemia/Lymphoma Research at Comprehensive Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy; Train, Milan, Italy
| | - Gianluca Asti
- Center for Accelerating Leukemia/Lymphoma Research at Comprehensive Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Gastone Castellani
- Department of Medical and Surgical Sciences-DIMEC, University of Bologna, Bologna, Italy
| | - Mattia Delleani
- Center for Accelerating Leukemia/Lymphoma Research at Comprehensive Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alessia Campagna
- Center for Accelerating Leukemia/Lymphoma Research at Comprehensive Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Uma M Borate
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Fabio Efficace
- Department of Haematology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Steven D Gore
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| | - Tae Kon Kim
- Division of Hematology and Oncology, Vanderbilt Ingram Cancer Center and Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Navel Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Alberto Orfao
- Haematology Department, University Hospital Salamanca, Salamanca, Spain
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ulrich Germing
- Department of Haematology, Oncology, and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | | | | | - Yasushi Miyazaki
- Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | | | - Austin Kulasekararaj
- King's College Hospital NHS Foundation Trust, NIHR/Wellcome King's Clinical Research Facility, London, UK
| | | | - Shahram Kordasti
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College, London, UK
| | - Arjan A van de Loosdrecht
- Department of Hematology, Amsterdam University Medical Center, VU University Medical Center-Cancer Center, Amsterdam, Netherlands
| | - Lionel Ades
- Saint Louis Hospital, Paris Cité University, Paris, France
| | - Amer M Zeidan
- Hematology Section, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Matteo G Della Porta
- Center for Accelerating Leukemia/Lymphoma Research at Comprehensive Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy.
| |
Collapse
|
13
|
Verigou E, Chatzilygeroudi T, Lazaris V, de Lastic AL, Symeonidis A. Immunophenotyping myelodysplastic neoplasms: the role of flow cytometry in the molecular classification era. Front Oncol 2024; 14:1447001. [PMID: 39544295 PMCID: PMC11560873 DOI: 10.3389/fonc.2024.1447001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024] Open
Abstract
The unique heterogenous landscape of myelodysplastic syndromes/neoplasms (MDS) has resulted in continuous redefinition of disease sub-entities, in view of the novel translational research data that have clarified several areas of the pathogenesis and the progression of the disease. The new international classifications (WHO 2022, ICC 2022) have incorporated genomic data defining phenotypical alterations, that guide clinical management of specific patient subgroups. On the other hand, for over a decade, multiparameter flow cytometry (MFC) has proven its value as a complementary diagnostic tool for these diseases and although it has never been established as a mandatory test for the baseline evaluation of MDS patients in international guidelines, it is almost universally adopted in everyday clinical practice for the assessment of suspected cytopenias through simplified scoring systems or elaborate analytical strategies for the detection of immunophenotypical dysplastic features in every hematopoietic cell lineage in the bone marrow (BM). In this review, we explore the clinically meaningful interplay of MFC data and genetic profiles of MDS patients, to reveal the currently existing and the potential future role of each methodology for routine clinical practice, and the benefit of the patients. We reviewed the existing knowledge and recent advances in the field and discuss how an integrated approach could lead to patient re-stratification and guide personalized management.
Collapse
Affiliation(s)
- Evgenia Verigou
- Hematology Division, Department of Internal Medicine, General University Hospital of Patras - School of Medicine, Patras, Greece
| | - Theodora Chatzilygeroudi
- Hematology Division, Department of Internal Medicine, General University Hospital of Patras - School of Medicine, Patras, Greece
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | | | - Anne-Lise de Lastic
- Laboratory of Immunohematology, School of Medicine, University of Patras, Patras, Greece
| | - Argiris Symeonidis
- Hematology Division, Department of Internal Medicine, General University Hospital of Patras - School of Medicine, Patras, Greece
| |
Collapse
|
14
|
Zhang H, Zhang L, Liang X, Zhang L, Ma B, Li Y, Wang J, Shen Y, Pang Y, Xiong J. Comprehensive analysis of a necroptosis-associated diagnostic signature for myelodysplastic syndromes based on single-cell RNA-seq and bulk RNA-seq. Hereditas 2024; 161:38. [PMID: 39407301 PMCID: PMC11481600 DOI: 10.1186/s41065-024-00335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) are heterogeneous and clonal hematological disorders. The role and mechanism of necroptosis in MDS remain poorly understood. METHODS mRNA expression profiles and single-cell RNA-sequencing (scRNA-seq) data were sourced from the GEO database. ScRNA-seq data were processed using the "Seurat" package. After cell annotation, necroptosis-related scores (NRscores) for each cell were calculated using the "UCell" package. Differentially expressed genes (DEGs) and their associated biological functions in NRscore-related cell populations were identified. Additionally, DEGs and necroptosis-related genes (DE-NRGs) between MDS patients and healthy controls were identified. Consensus clustering was employed to classify MDS patients into distinct subclusters based on DE-NRGs. The biological functions and immune characteristics of these classifications were analyzed. Prognostic gene signatures were determined using LASSO and SVM-RFE analyses, and a nomogram was constructed based on the prognostic gene signature. RESULTS A total of 12 cell types were identified in MDS and healthy controls. NRscore was found to be elevated in monocytes and common lymphoid precursors (CLPs). Enrichment analysis revealed that monocytes and CLPs with high NRscore were associated with mitochondria-related and immune-related pathways. Eleven DEGs in monocytes and CLPs between MDS patients and healthy controls were identified. Additionally, 13 DE-NRGs were identified from 951 DEGs between MDS and healthy controls. MDS patients were classified into two distinct subclusters based on these 13 DE-NRGs, revealing several immune-related processes and signaling pathways. Differences in immune subpopulations between the two subclusters were observed. A necroptosis-related diagnostic gene signature (IRF9, PLA2G4A, MLKL, BAX, JAK2, and STAT3) was identified as predictive of MDS prevalence. CONCLUSION Necroptosis plays a role in MDS progression by inducing inflammation. A novel necroptotic gene signature has been developed to distinguish and diagnose MDS at early stages of the disease.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Hematology, the First Hospital of Hebei Medical University, Shijiazhuang, China.
- Department of Hematology, Shijiazhuang Ping'an Hospital, Shijiazhuang, China.
| | - Li Zhang
- Department of Hematology, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoning Liang
- Department of Hematology, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lihong Zhang
- Department of Hematology, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bing Ma
- Department of Hematology, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuexian Li
- Department of Hematology, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianying Wang
- Department of Hematology, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Shen
- Department of Hematology, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuhui Pang
- Department of Hematology, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianjun Xiong
- Department of Hematology, the First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
15
|
Teymouri F, Dasanu CA. Selecting appropriate therapy for lower-risk myelodysplastic syndromes: current state and future prospects. Expert Opin Pharmacother 2024; 25:1975-1977. [PMID: 39387446 DOI: 10.1080/14656566.2024.2415714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Affiliation(s)
- Farzad Teymouri
- Department of Medicine, Eisenhower Health, Rancho Mirage, CA, USA
| | - Constantin A Dasanu
- Lucy Curci Cancer Center, Eisenhower Health, Rancho Mirage, CA, USA
- Department of Medical Oncology and Hematology, UC San Diego Health System, San Diego, CA, USA
| |
Collapse
|
16
|
Oster HS, Mittelman M. How we diagnose Myelodysplastic syndromes. Front Oncol 2024; 14:1415101. [PMID: 39346739 PMCID: PMC11427428 DOI: 10.3389/fonc.2024.1415101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
The Myelodysplastic syndromes (MDS) are a heterogenous group of clonal bone marrow (BM) stem cell myeloid neoplasms, characterized by ineffective hematopoiesis that results in dysplasia in hematopoietic cells and peripheral cytopenias, especially anemia, and a propensity to leukemic transformation. The suspicion of MDS is raised by a typical but not specific clinical picture and routine laboratory findings, but the gold standard for MDS diagnosis is still BM examination with the presence of uni-or multi-lineage dysplasia and increased blast percentage, together with exclusion of other reasons. Cytogenetics is also an essential part of the diagnostic and prognostic processes. Flow cytometry and full genetic characterization are helpful but not mandatory for MDS diagnosis. This review summarizes the current steps of diagnostic approach for a patient suspected of having MDS. We also express our hopes that within the near future, non-invasive technologies, especially digital and peripheral blood genetics, will mature and be introduced into practice.
Collapse
Affiliation(s)
- Howard S Oster
- Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - Moshe Mittelman
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv University School of Medicine, Tel Aviv, Israel
| |
Collapse
|
17
|
Duployez N, Preudhomme C. Monitoring molecular changes in the management of myelodysplastic syndromes. Br J Haematol 2024; 205:772-779. [PMID: 38934371 DOI: 10.1111/bjh.19614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
The ongoing or anticipated therapeutic advances as well as previous experience in other malignancies, including acute myeloid leukaemia, have made molecular monitoring a potential interesting tool for predicting outcomes and demonstrating treatment efficacy in patients with myelodysplastic syndromes (MDS). The important genetic heterogeneity in MDS has made challenging the establishment of recommendations. In this context, high-throughput/next-generation sequencing (NGS) has emerged as an attractive tool, especially in patients with high-risk diseases. However, its implementation in clinical practice still suffers from a lack of standardization in terms of sensitivity, bioinformatics and result interpretation. Data from literature, mostly gleaned from retrospective cohorts, show NGS monitoring when used appropriately could help clinicians to guide therapy, detect early relapse and predict disease evolution. Translating these observations into personalized patient management requires a prospective evaluation in clinical research and remains a major challenge for the next years.
Collapse
Affiliation(s)
- Nicolas Duployez
- Laboratory of Haematology, CHU Lille, Lille, France
- U1277 CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), University of Lille, INSERM, Lille, France
| | - Claude Preudhomme
- Laboratory of Haematology, CHU Lille, Lille, France
- U1277 CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), University of Lille, INSERM, Lille, France
| |
Collapse
|
18
|
Hedayati N, Safaei Naeini M, Ale Sahebfosoul MM, Mafi A, Eshaghi Milasi Y, Rizaneh A, Nabavi N, Farahani N, Alimohammadi M, Ghezelbash B. MicroRNA dysregulation and its impact on apoptosis-related signaling pathways in myelodysplastic syndrome. Pathol Res Pract 2024; 261:155478. [PMID: 39079383 DOI: 10.1016/j.prp.2024.155478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/18/2024]
Abstract
Myelodysplastic syndrome (MDS) holds a unique position among blood cancers, encompassing a spectrum of blood-related disorders marked by impaired maturation of blood cell precursors, bone marrow abnormalities, genetic instability, and a higher likelihood of progressing to acute myeloid leukemia. MicroRNAs (miRNAs), short non-coding RNA molecules typically 18-24 nucleotides in length, are known to regulate gene expression and contribute to various biological processes, including cellular differentiation and programmed cell death. Additionally, miRNAs are involved in many aspects of cancer development, influencing cell growth, transformation, and apoptosis. In this study, we explore the impact of microRNAs on cellular apoptosis in MDS.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mobina Safaei Naeini
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anahita Rizaneh
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behrooz Ghezelbash
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
19
|
Tentori CA, Gregorio C, Robin M, Gagelmann N, Gurnari C, Ball S, Caballero Berrocal JC, Lanino L, D'Amico S, Spreafico M, Maggioni G, Travaglino E, Sauta E, Meggendorfer M, Zhao LP, Campagna A, Savevski V, Santoro A, Al Ali N, Sallman D, Sole F, Garcia-Manero G, Germing U, Kroger N, Kordasti S, Santini V, Sanz G, Kern W, Platzbecker U, Diez-Campelo M, Maciejewski JP, Ades L, Fenaux P, Haferlach T, Zeidan AM, Castellani G, Komrokji R, Ieva F, Della Porta MG. Clinical and Genomic-Based Decision Support System to Define the Optimal Timing of Allogeneic Hematopoietic Stem-Cell Transplantation in Patients With Myelodysplastic Syndromes. J Clin Oncol 2024; 42:2873-2886. [PMID: 38723212 PMCID: PMC11328926 DOI: 10.1200/jco.23.02175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 08/17/2024] Open
Abstract
PURPOSE Allogeneic hematopoietic stem-cell transplantation (HSCT) is the only potentially curative treatment for patients with myelodysplastic syndromes (MDS). Several issues must be considered when evaluating the benefits and risks of HSCT for patients with MDS, with the timing of transplantation being a crucial question. Here, we aimed to develop and validate a decision support system to define the optimal timing of HSCT for patients with MDS on the basis of clinical and genomic information as provided by the Molecular International Prognostic Scoring System (IPSS-M). PATIENTS AND METHODS We studied a retrospective population of 7,118 patients, stratified into training and validation cohorts. A decision strategy was built to estimate the average survival over an 8-year time horizon (restricted mean survival time [RMST]) for each combination of clinical and genomic covariates and to determine the optimal transplantation policy by comparing different strategies. RESULTS Under an IPSS-M based policy, patients with either low and moderate-low risk benefited from a delayed transplantation policy, whereas in those belonging to moderately high-, high- and very high-risk categories, immediate transplantation was associated with a prolonged life expectancy (RMST). Modeling decision analysis on IPSS-M versus conventional Revised IPSS (IPSS-R) changed the transplantation policy in a significant proportion of patients (15% of patient candidate to be immediately transplanted under an IPSS-R-based policy would benefit from a delayed strategy by IPSS-M, whereas 19% of candidates to delayed transplantation by IPSS-R would benefit from immediate HSCT by IPSS-M), resulting in a significant gain-in-life expectancy under an IPSS-M-based policy (P = .001). CONCLUSION These results provide evidence for the clinical relevance of including genomic features into the transplantation decision making process, allowing personalizing the hazards and effectiveness of HSCT in patients with MDS.
Collapse
Affiliation(s)
- Cristina Astrid Tentori
- Humanitas Clinical and Research Center—IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Caterina Gregorio
- Department of Mathematics, MOX—Modelling and Scientific Computing Laboratory, Politecnico di Milano, Milano, Italy
- Biostatistics Unit, Department of Medical Sciences, University of Trieste, Trieste, Italy
- Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Marie Robin
- Department of Hematology and Bone Marrow Transplantation, Hôpital Saint-Louis/Assistance Publique-Hôpitaux de Paris (AP-HP)/University Paris 7, Paris, France
| | - Nico Gagelmann
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carmelo Gurnari
- Hematology, Policlinico Tor Vergata & Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Somedeb Ball
- Vanderbilt University School of Medicine; Vanderbilt-Ingram Cancer Center, Nashville, TN
| | | | - Luca Lanino
- Humanitas Clinical and Research Center—IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Marta Spreafico
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| | - Giulia Maggioni
- Humanitas Clinical and Research Center—IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | | | | | - Lin-Pierre Zhao
- Department of Hematology and Bone Marrow Transplantation, Hôpital Saint-Louis/Assistance Publique-Hôpitaux de Paris (AP-HP)/University Paris 7, Paris, France
| | - Alessia Campagna
- Humanitas Clinical and Research Center—IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | | | - Armando Santoro
- Humanitas Clinical and Research Center—IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Najla Al Ali
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - David Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Francesc Sole
- Institut de Recerca Contra la Leucèmia Josep Carreras, Barcelona, Spain
| | | | - Ulrich Germing
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich-Heine-University, University Clinic, Düsseldorf, Germany
| | - Nicolaus Kroger
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shahram Kordasti
- Haematology, Guy's Hospital & Comprehensive Cancer Centre, King's College, London, United Kingdom
- Hematology Department & Stem Cell Transplant Unit, DISCLIMO-Università Politecnica delle Marche, Ancona, Italy
| | - Valeria Santini
- MDS Unit, Azienda Ospedaliero-Universitaria Careggi & University of Florence, Florence, Italy
| | - Guillermo Sanz
- Hematology, Hospital Universitario La Fe, Valencia, Spain
| | | | - Uwe Platzbecker
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany
| | - Maria Diez-Campelo
- Hematology Department, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Lionel Ades
- Department of Hematology and Bone Marrow Transplantation, Hôpital Saint-Louis/Assistance Publique-Hôpitaux de Paris (AP-HP)/University Paris 7, Paris, France
| | - Pierre Fenaux
- Department of Hematology and Bone Marrow Transplantation, Hôpital Saint-Louis/Assistance Publique-Hôpitaux de Paris (AP-HP)/University Paris 7, Paris, France
| | | | - Amer M. Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT
| | - Gastone Castellani
- National Institute of Nuclear Physics (INFN), Bologna, Italy
- Experimental, Diagnostic and Specialty Medicine—DIMES, Bologna, Italy
| | - Rami Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Francesca Ieva
- Department of Mathematics, MOX—Modelling and Scientific Computing Laboratory, Politecnico di Milano, Milano, Italy
- HDS, Health Data Science Center, Human Technopole, Milan, Italy
| | - Matteo Giovanni Della Porta
- Humanitas Clinical and Research Center—IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
20
|
Scheid C, Eikema DJ, van Gelder M, Salmenniemi U, Maertens J, Passweg J, Blaise D, Byrne JL, Kröger N, Sockel K, Chevallier P, Bourhis JH, Cornelissen JJ, Sengeloev H, Finke J, Snowden JA, Gedde-Dahl T, Cornillon J, Schanz U, Patel A, Koster L, de Wreede LC, Hayden P, Raj K, Drozd-Sokolowska J, Gurnari C, Onida F, McLornan DP, Robin M, Yakoub-Agha I. Does IPSS-R downstaging before transplantation improve the prognosis of patients with myelodysplastic neoplasms? Blood 2024; 144:445-456. [PMID: 38728380 DOI: 10.1182/blood.2023022273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT In patients with myelodysplastic syndrome (MDS), higher revised International Prognostic Scoring System (IPSS-R) scores at transplant are associated with worse transplant outcome and, thus, lowering IPSS-R scores by therapeutic intervention before transplantation may seem beneficial. However, there is no evidence, to date, to support this approach. In a retrospective analysis, a total of 1482 patients with MDS with sufficient data to calculate IPSS-R score at diagnosis and at time of transplantation were selected from the European Society for Blood and Marrow Transplantation transplant registry and analyzed for transplant outcome in a multivariable Cox model including IPSS-R score at diagnosis, treatment intervention, change in IPSS-R score before transplant, and several patient and transplant variables. Transplant outcome was unaffected by IPSS-R score change in untreated patients and moderately superior in patients treated with chemotherapy with improved IPSS-R score at transplant. Improved IPSS-R score after hypomethylating agents (HMAs) or other therapies showed no beneficial effect. However, when IPSS-R score progressed after chemotherapy, HMAs, or other therapies, transplant outcome was worse than without any prior treatment. Similar results were found when reduction or increase in bone marrow (BM) blasts between diagnosis and transplantation was considered. The results show a limited benefit of IPSS-R score downstaging or reduction of BM blasts after chemotherapy and no benefit for HMAs or other treatments and thus question the role of prior therapy in patients with MDS scheduled for transplantation. The model-based survival estimates should help inform decision-making for both doctors and patients.
Collapse
Affiliation(s)
- Christof Scheid
- Department I of Medicine, University of Cologne, Cologne, Germany
| | | | | | - Urpu Salmenniemi
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | | | | | | | | | - Nicolaus Kröger
- Department for Stem Cell Transplantation, University Medical Center, Hamburg, Germany
| | | | | | | | | | | | | | - John A Snowden
- Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | | | | | - Urs Schanz
- University Hospital, Zurich, Switzerland
| | - Amit Patel
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | | | | | | | - Kavita Raj
- University College London Hospitals NHS Trust, London, United Kingdom
| | | | | | - Francesco Onida
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Donal P McLornan
- University College London Hospitals NHS Trust, London, United Kingdom
| | | | | |
Collapse
|
21
|
Plander M, Kányási M, Szendrei T, Skrapits J, Timár B. Flow cytometry in the differential diagnosis of myelodysplastic neoplasm with low blasts and cytopenia of other causes. Pathol Oncol Res 2024; 30:1611811. [PMID: 39040799 PMCID: PMC11260641 DOI: 10.3389/pore.2024.1611811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
Background Myelodysplastic neoplasms (MDS) are characterized by cytopenia, morphologic dysplasia, and genetic abnormalities. Multiparameter flow cytometry (FCM) is recommended in the diagnostic work-up of suspected MDS, but alone is not sufficient to establish the diagnosis. Our aim was to investigate the diagnostic power of FCM in a heterogeneous population of patients with cytopenia, excluding cases with increased blast count. Methods We analyzed bone marrow samples from 179 patients with cytopenia (58 MDS, 121 non-MDS) using a standardized 8-color FCM method. We evaluated the sensitivity, specificity, and accuracy of several simple diagnostic approaches, including Ogata score, extended Ogata score, the WHO and ELN iMDSFlow recommended "3 aberrations in two cell compartments method," and the combination of the Ogata score and "3 aberrations in two cell compartments method." The patients were followed until the diagnosis was confirmed, with a median follow-up of 2 months (range 0.2-27). Results The combination of Ogata score and "3 aberrations in two cell compartments method" achieved the highest diagnostic accuracy (78%) with sensitivity and specificity 61% and 86%, respectively. When using only the "3 aberrations in two cell compartments method," the accuracy was 77% with a sensitivity of 72% and a specificity of 79%. The most frequently observed etiologies among the false positive cases were substrate deficiencies, inflammation/infection, or toxic effects. MDS can be excluded in all these cases after a thorough clinical evaluation and a relatively short follow-up. Conclusion FCM remains an important but supplementary part in an integrated diagnostic process of MDS with low blasts. The combination of the Ogata score and the "3 aberrations in two cell compartments method" slightly improves accuracy compared to the detection of "3 aberrations in two cell compartments method" alone.
Collapse
Affiliation(s)
- Márk Plander
- Department of Hematology, Markusovszky University Teaching Hospital, Szombathely, Hungary
- Central Laboratory, Markusovszky University Teaching Hospital, Szombathely, Hungary
| | - Mária Kányási
- Central Laboratory, Markusovszky University Teaching Hospital, Szombathely, Hungary
| | - Tamás Szendrei
- Department of Hematology, Markusovszky University Teaching Hospital, Szombathely, Hungary
| | - Judit Skrapits
- Central Laboratory, Markusovszky University Teaching Hospital, Szombathely, Hungary
| | - Botond Timár
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
22
|
Chatzilygeroudi T, Chondrou V, Boers R, Siamoglou S, Athanasopoulou K, Verigou E, Gribnau J, Alexis S, Labropoulou V, Kourakli A, Patrinos GP, Sgourou A, Symeonidis A. Fetal hemoglobin induction in azacytidine responders enlightens methylation patterns related to blast clearance in higher-risk MDS and CMML. Clin Epigenetics 2024; 16:79. [PMID: 38879530 PMCID: PMC11180405 DOI: 10.1186/s13148-024-01687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/27/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND As new treatment options for patients with higher-risk myelodysplastic syndromes are emerging, identification of prognostic markers for hypomethylating agent (HMA) treatment and understanding mechanisms of their delayed and short-term responses are essential. Early fetal hemoglobin (HbF) induction has been suggested as a prognostic indicator for decitabine-treated patients. Although epigenetic mechanisms are assumed, responding patients' epigenomes have not been thoroughly examined. We aimed to clarify HbF kinetics and prognostic value for azacytidine treated patients, as well as the epigenetic landscape that might influence HbF re-expression and its clinical relevance. RESULTS Serial HbF measurements by high-performance liquid chromatography (n = 20) showed induction of HbF only among responders (p = 0.030). Moreover, HbF increase immediately after the first azacytidine cycle demonstrated prognostic value for progression-free survival (PFS) (p = 0.032, HR = 0.19, CI 0.24-1.63). Changes in methylation patterns were revealed with methylated DNA genome-wide sequencing analysis (n = 7) for FOG-1, RCOR-1, ZBTB7A and genes of the NuRD-complex components. Targeted pyrosequencing methodology (n = 28) revealed a strong inverse correlation between the degree of γ-globin gene (HBG2) promoter methylation and baseline HbF levels (p = 0.003, rs = - 0.663). A potential epigenetic mechanism of HbF re-expression in azacytidine responders was enlightened by targeted methylation analysis, through hypomethylation of site -53 of HBG2 promoter (p = 0.039, rs = - 0.504), which corresponds to MBD2-NuRD binding site, and to hypermethylation of the CpG326 island of ZBTB7A (p = 0.05, rs = 0.482), a known HbF repressor. These changes were associated to blast cell clearance (pHBG2 = 0.011, rs = 0.480/pZBTB7A = 0.026, rs = 0.427) and showed prognostic value for PFS (pZBTB7A = 0.037, HR = 1.14, CI 0.34-3.8). CONCLUSIONS Early HbF induction is featured as an accessible prognostic indicator for HMA treatment and the proposed potential epigenetic mechanism of HbF re-expression in azacytidine responders includes hypomethylation of the γ-globin gene promoter region and hypermethylation of the CpG326 island of ZBTB7A. The association of these methylation patterns with blast clearance and their prognostic value for PFS paves the way to discuss in-depth azacytidine epigenetic mechanism of action.
Collapse
Affiliation(s)
- Theodora Chatzilygeroudi
- School of Health Sciences, Faculty of Medicine, Hematology Division, University of Patras, Patras, Greece
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Vasiliki Chondrou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Ruben Boers
- Department of Developmental Biology, Faculty of Medicine and Health Sciences, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stavroula Siamoglou
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rio, Patras, Greece
| | - Katerina Athanasopoulou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Evgenia Verigou
- School of Health Sciences, Faculty of Medicine, Hematology Division, University of Patras, Patras, Greece
| | - Joost Gribnau
- Department of Developmental Biology, Faculty of Medicine and Health Sciences, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Spyridon Alexis
- School of Health Sciences, Faculty of Medicine, Hematology Division, University of Patras, Patras, Greece
| | - Vassiliki Labropoulou
- School of Health Sciences, Faculty of Medicine, Hematology Division, University of Patras, Patras, Greece
| | - Alexandra Kourakli
- School of Health Sciences, Faculty of Medicine, Hematology Division, University of Patras, Patras, Greece
| | - George P Patrinos
- Department of Developmental Biology, Faculty of Medicine and Health Sciences, Erasmus University Medical Center, Rotterdam, The Netherlands
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rio, Patras, Greece
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Argyro Sgourou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Argiris Symeonidis
- School of Health Sciences, Faculty of Medicine, Hematology Division, University of Patras, Patras, Greece.
| |
Collapse
|
23
|
Kewan T, Stahl M, Bewersdorf JP, Zeidan AM. Treatment of Myelodysplastic Syndromes for Older Patients: Current State of Science, Challenges, and Opportunities. Curr Hematol Malig Rep 2024; 19:138-150. [PMID: 38632155 DOI: 10.1007/s11899-024-00733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE OF REVIEW Myelodysplastic syndromes/neoplasms (MDS) represent a diverse group of pathologically distinct diseases with varying prognoses and risks of leukemia progression. This review aims to discuss current treatment options for elderly patients with MDS, focusing on patients ineligible for intensive chemotherapy or allogenic hematopoietic stem cell transplantation (HSCT). The challenges associated with treatment in this population and emerging therapeutic prospects are also explored. RECENT FINDINGS Recent advancements in molecular diagnostics have enhanced risk stratification by incorporating genetic mutations, notably through the molecular International Prognostic Scoring System (IPSS-M). Lower-risk MDS (LR-MDS) treatment ranges from observation to supportive measures and erythropoiesis-stimulating agents (ESAs), with emerging therapies like luspatercept showing promise. High-risk MDS (HR-MDS) is treated with hypomethylating agents (HMAs) or allogenic HSCT, but outcomes remain poor. Elderly MDS patients, often diagnosed after 70, pose challenges in treatment decision-making. The IPSS-M aids risk stratification, guiding therapeutic choices. For LR-MDS, supportive care, ESAs, and novel agents like luspatercept are considered. Treatment of HR-MDS involves HMAs or allogenic HSCT. Emerging treatments, including oral HMAs and novel agents targeting FLT3, and IDH 1/2 mutations, show promise. Future research should refine treatment strategies for this elderly population focusing on quality-of-life improvement.
Collapse
Affiliation(s)
- Tariq Kewan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, and Yale Comprehensive Cancer Center, Yale University, New Haven, CT, USA
| | - Maximillian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, and Yale Comprehensive Cancer Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
24
|
Feng Z, Liao M, Guo X, Li L, Zhang L. Effects of immune cells in mediating the relationship between gut microbiota and myelodysplastic syndrome: a bidirectional two-sample, two-step Mendelian randomization study. Discov Oncol 2024; 15:199. [PMID: 38819469 PMCID: PMC11143100 DOI: 10.1007/s12672-024-01061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The definitive establishment of a causal relationship between gut microbiota and myelodysplastic syndrome (MDS) has not been achieved. Furthermore, the involvement of immune cells in mediating the connection between gut microbiota and MDS is presently unclear. METHODS To elucidate the bidirectional correlation between gut microbiota and MDS, as well as to investigate the mediating role of immune cells, a bidirectional two-sample, two-step Mendelian randomization (MR) study was conducted. Summary statistics were obtained from genome-wide association studies (GWAS), including MDS (456,348 individuals), gut microbiota (18,340 individuals), and 731 immune cells signatures (3757 individuals). RESULTS Genetically predicted eight gut microbiota traits were significantly associated with MDS risk, but not vice versa. Through biological annotation of host-microbiome shared genes, we found that immune regulation may mediate the impact of gut microbiota on MDS. Subsequently, twenty-three immunophenotypes that exhibited significant associations with MDS risk and five of these immunophenotypes were under the causal influence of gut microbiota. Importantly, the causal effects of gut microbiota on MDS were significantly mediated by five immunophenotypes, including CD4 +T cell %leukocyte, CD127 on CD45RA - CD4 not regulatory T cell, CD45 on CD33 + HLA DR + WHR, CD33 on basophil, and Monocyte AC. CONCLUSIONS Gut microbiota was causally associated with MDS risk, and five specific immunophenotypes served as potential causal mediators of the effect of gut microbiota on MDS. Understanding the causality among gut microbiota, immune cells and MDS is critical in identifying potential targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Zuxi Feng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Minjing Liao
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xuege Guo
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
25
|
Efficace F, Buckstein R, Abel GA, Giesinger JM, Fenaux P, Bewersdorf JP, Brunner AM, Bejar R, Borate U, DeZern AE, Greenberg P, Roboz GJ, Savona MR, Sparano F, Boultwood J, Komrokji R, Sallman DA, Xie Z, Sanz G, Carraway HE, Taylor J, Nimer SD, Della Porta MG, Santini V, Stahl M, Platzbecker U, Sekeres MA, Zeidan AM. Toward a more patient-centered drug development process in clinical trials for patients with myelodysplastic syndromes/neoplasms (MDS): Practical considerations from the International Consortium for MDS (icMDS). Hemasphere 2024; 8:e69. [PMID: 38774655 PMCID: PMC11106800 DOI: 10.1002/hem3.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 05/24/2024] Open
Abstract
Notable treatment advances have been made in recent years for patients with myelodysplastic syndromes/neoplasms (MDS), and several new drugs are under development. For example, the emerging availability of oral MDS therapies holds the promise of improving patients' health-related quality of life (HRQoL). Within this rapidly evolving landscape, the inclusion of HRQoL and other patient-reported outcomes (PROs) is critical to inform the benefit/risk assessment of new therapies or to assess whether patients live longer and better, for what will likely remain a largely incurable disease. We provide practical considerations to support investigators in generating high-quality PRO data in future MDS trials. We first describe several challenges that are to be thoughtfully considered when designing an MDS-focused clinical trial with a PRO endpoint. We then discuss aspects related to the design of the study, including PRO assessment strategies. We also discuss statistical approaches illustrating the potential value of time-to-event analyses and their implications within the estimand framework. Finally, based on a literature review of MDS randomized controlled trials with a PRO endpoint, we note the PRO items that deserve special attention when reporting future MDS trial results. We hope these practical considerations will facilitate the generation of rigorous PRO data that can robustly inform MDS patient care and support treatment decision-making for this patient population.
Collapse
Affiliation(s)
- Fabio Efficace
- Italian Group for Adult Hematologic Diseases (GIMEMA), Health Outcomes Research UnitGIMEMA Data CenterRomeItaly
| | - Rena Buckstein
- Department of Medical Oncology/HematologySunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Gregory A. Abel
- Divisions of Population Sciences and Hematologic MalignanciesDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | | | - Pierre Fenaux
- Hôpital Saint LouisAssistance Publique Hôpitaux de Paris and Paris Cité UniversityParisFrance
| | - Jan Philipp Bewersdorf
- Leukemia Service, Department of MedicineMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Andrew M. Brunner
- Leukemia Program, Harvard Medical SchoolMassachusetts General Hospital Cancer CenterBostonMassachusettsUSA
| | - Rafael Bejar
- Division of Hematology and Oncology, Moores Cancer CenterUC San DiegoLa JollaCaliforniaUSA
| | - Uma Borate
- Ohio State University Comprehensive Cancer Center/James Cancer HospitalOhio State UniversityColumbusOhioUSA
| | - Amy E. DeZern
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins HospitalBaltimoreMarylandUSA
| | - Peter Greenberg
- Department of Medicine, Division of Hematology, Cancer InstituteStanford University School of MedicineStanfordCaliforniaUSA
| | - Gail J. Roboz
- Weill Cornell Medical College and New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Michael R. Savona
- Department of Medicine, Division of Hematology/OncologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Francesco Sparano
- Italian Group for Adult Hematologic Diseases (GIMEMA), Health Outcomes Research UnitGIMEMA Data CenterRomeItaly
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Radcliffe Department of MedicineNuffield Division of Clinical Laboratory SciencesUniversity of OxfordOxfordUK
| | - Rami Komrokji
- Department of Malignant HematologyH. Lee Moffitt Cancer CenterTampaFloridaUSA
| | - David A. Sallman
- Department of Malignant HematologyH. Lee Moffitt Cancer CenterTampaFloridaUSA
| | - Zhuoer Xie
- Department of Malignant HematologyH. Lee Moffitt Cancer CenterTampaFloridaUSA
| | - Guillermo Sanz
- Health Research Institute La Fe, Valencia, SpainHospital Universitario y Politécnico La FeValenciaSpain
| | - Hetty E. Carraway
- Leukemia Program, Hematology and Medical OncologyTaussig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| | - Justin Taylor
- Sylvester Comprehensive Cancer CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Stephen D. Nimer
- Sylvester Comprehensive Cancer CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Matteo Giovanni Della Porta
- Department of Biomedical SciencesIRCCS Humanitas Clinical and Research Center & Humanitas UniversityMilanItaly
| | - Valeria Santini
- Myelodysplastic Syndromes Unit, Department of Experimental and Clinical Medicine, Hematology, Azienda Ospedaliero Universitaria CareggiUniversity of FlorenceFlorenceItaly
| | - Maximilian Stahl
- Department of Medical OncologyDana‐Farber Cancer Institute and Harvard Medical SchoolBostonMassachusettsUSA
| | - Uwe Platzbecker
- Department of Hematology and Cellular TherapyUniversity Hospital LeipzigLeipzigGermany
| | - Mikkael A. Sekeres
- Sylvester Comprehensive Cancer CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Amer M. Zeidan
- Section of Hematology, Department of Internal MedicineYale University School of Medicine and Yale Cancer CenterNew HavenConnecticutUSA
| |
Collapse
|
26
|
Gregorio C, Spreafico M, D'Amico S, Sauta E, Asti G, Lanino L, Tentori CA, Platzbecker U, Haferlach T, Diez-Campelo M, Fenaux P, Komrokji R, Della Porta MG, Ieva F. Personalized Timing for Allogeneic Stem-Cell Transplantation in Hematologic Neoplasms: A Target Trial Emulation Approach Using Multistate Modeling and Microsimulation. JCO Clin Cancer Inform 2024; 8:e2300205. [PMID: 38723213 DOI: 10.1200/cci.23.00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/18/2024] [Accepted: 02/23/2024] [Indexed: 01/07/2025] Open
Abstract
PURPOSE Decision about the optimal timing of a treatment procedure in patients with hematologic neoplasms is critical, especially for cellular therapies (most including allogeneic hematopoietic stem-cell transplantation [HSCT]). In the absence of evidence from randomized trials, real-world observational data become beneficial to study the effect of the treatment timing. In this study, a framework to estimate the expected outcome after an intervention in a time-to-event scenario is developed, with the aim of optimizing the timing in a personalized manner. METHODS Retrospective real-world data are leveraged to emulate a target trial for treatment timing using multistate modeling and microsimulation. This case study focuses on myelodysplastic syndromes, serving as a prototype for rare cancers characterized by a heterogeneous clinical course and complex genomic background. A cohort of 7,118 patients treated according to conventional available treatments/evidence across Europe and United States is analyzed. The primary clinical objective is to determine the ideal timing for HSCT, the only curative option for these patients. RESULTS This analysis enabled us to identify the most appropriate time frames for HSCT on the basis of each patient's unique profile, defined by a combination relevant patients' characteristics. CONCLUSION The developed methodology offers a structured framework to address a relevant clinical issue in the field of hematology. It makes several valuable contributions: (1) novel insights into how to develop decision models to identify the most favorable HSCT timing, (2) evidence to inform clinical decisions in a real-world context, and (3) the incorporation of complex information into decision making. This framework can be applied to provide medical insights for clinical issues that cannot be adequately addressed through randomized clinical trials.
Collapse
Affiliation(s)
- Caterina Gregorio
- MOX-Modelling and Scientific Computing Laboratory, Politecnico di Milano, Department of Mathematics, Milan, Italy
- Biostatistics Unit, Department of Medical Sciences, University of Trieste, Trieste, Italy
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Marta Spreafico
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| | | | | | - Gianluca Asti
- Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Luca Lanino
- Humanitas Clinical and Research Center-IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Cristina Astrid Tentori
- Humanitas Clinical and Research Center-IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Uwe Platzbecker
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany
| | | | - Maria Diez-Campelo
- Hematology Department, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Pierre Fenaux
- Department of Hematology and Bone Marrow Transplantation, Hôpital Saint-Louis/Assistance Publique-Hôpitaux de Paris (AP-HP)/University Paris 7, Paris, France
| | - Rami Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Matteo Giovanni Della Porta
- Humanitas Clinical and Research Center-IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Francesca Ieva
- MOX-Modelling and Scientific Computing Laboratory, Politecnico di Milano, Department of Mathematics, Milan, Italy
- HDS, Health Data Science Center, Human Technopole, Milan, Italy
| |
Collapse
|
27
|
Rosenberg CA, Rodrigues MA, Bill M, Ludvigsen M. Comparative analysis of feature-based ML and CNN for binucleated erythroblast quantification in myelodysplastic syndrome patients using imaging flow cytometry data. Sci Rep 2024; 14:9349. [PMID: 38654058 PMCID: PMC11039460 DOI: 10.1038/s41598-024-59875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Myelodysplastic syndrome is primarily characterized by dysplasia in the bone marrow (BM), presenting a challenge in consistent morphology interpretation. Accurate diagnosis through traditional slide-based analysis is difficult, necessitating a standardized objective technique. Over the past two decades, imaging flow cytometry (IFC) has proven effective in combining image-based morphometric analyses with high-parameter phenotyping. We have previously demonstrated the effectiveness of combining IFC with a feature-based machine learning algorithm to accurately identify and quantify rare binucleated erythroblasts (BNEs) in dyserythropoietic BM cells. However, a feature-based workflow poses challenges requiring software-specific expertise. Here we employ a Convolutional Neural Network (CNN) algorithm for BNE identification and differentiation from doublets and cells with irregular nuclear morphology in IFC data. We demonstrate that this simplified AI workflow, coupled with a powerful CNN algorithm, achieves comparable BNE quantification accuracy to manual and feature-based analysis with substantial time savings, eliminating workflow complexity. This streamlined approach holds significant clinical value, enhancing IFC accessibility for routine diagnostic purposes.
Collapse
Affiliation(s)
- Carina A Rosenberg
- Department of Hematology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, C115, 8200, Aarhus C, Denmark.
| | | | - Marie Bill
- Department of Hematology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, C115, 8200, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, C115, 8200, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
28
|
Zhang L, Deeb G, Deeb KK, Vale C, Peker Barclift D, Papadantonakis N. Measurable (Minimal) Residual Disease in Myelodysplastic Neoplasms (MDS): Current State and Perspectives. Cancers (Basel) 2024; 16:1503. [PMID: 38672585 PMCID: PMC11048433 DOI: 10.3390/cancers16081503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Myelodysplastic Neoplasms (MDS) have been traditionally studied through the assessment of blood counts, cytogenetics, and morphology. In recent years, the introduction of molecular assays has improved our ability to diagnose MDS. The role of Measurable (minimal) Residual Disease (MRD) in MDS is evolving, and molecular and flow cytometry techniques have been used in several studies. In this review, we will highlight the evolving concept of MRD in MDS, outline the various techniques utilized, and provide an overview of the studies reporting MRD and the correlation with outcomes.
Collapse
Affiliation(s)
- Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - George Deeb
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kristin K. Deeb
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Colin Vale
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Deniz Peker Barclift
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nikolaos Papadantonakis
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
29
|
van de Loosdrecht AA, Cremers EMP, Alhan C, Duetz C, In 't Hout FEM, Visser-Wisselaar HA, Chitu DA, Verbrugge A, Cunha SM, Ossenkoppele GJ, Janssen JJWM, Klein SK, Vellenga E, Huls GA, Muus P, Langemeijer SMC, de Greef GE, Te Boekhorst PAW, Raaijmakers MHG, van Marwijk Kooy M, Legdeur MC, Wegman JJ, Deenik W, de Weerdt O, van Maanen-Lamme TM, Jobse P, van Kampen RJW, Beeker A, Wijermans PW, Biemond BJ, Tanis BC, van Esser JWJ, Schaar CG, Noordzij-Nooteboom HS, Jacobs EMG, de Graaf AO, Jongen-Lavrencic M, Stevens-Kroef MJPL, Westers TM, Jansen JH. Determinants of lenalidomide response with or without erythropoiesis-stimulating agents in myelodysplastic syndromes: the HOVON89 trial. Leukemia 2024; 38:840-850. [PMID: 38297135 PMCID: PMC10997501 DOI: 10.1038/s41375-024-02161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
A randomized phase-II study was performed in low/int-1 risk MDS (IPSS) to study efficacy and safety of lenalidomide without (arm A) or with (arm B) ESA/G-CSF. In arm B, patients without erythroid response (HI-E) after 4 cycles received ESA; G-CSF was added if no HI-E was obtained by cycle 9. HI-E served as primary endpoint. Flow cytometry and next-generation sequencing were performed to identify predictors of response. The final evaluation comprised 184 patients; 84% non-del(5q), 16% isolated del(5q); median follow-up: 70.7 months. In arm A and B, 39 and 41% of patients achieved HI-E; median time-to-HI-E: 3.2 months for both arms, median duration of-HI-E: 9.8 months. HI-E was significantly lower in non-del(5q) vs. del(5q): 32% vs. 80%. The same accounted for transfusion independency-at-week 24 (16% vs. 67%), but similar in both arms. Apart from presence of del(5q), high percentages of bone marrow lymphocytes and progenitor B-cells, a low number of mutations, absence of ring sideroblasts, and SF3B1 mutations predicted HI-E. In conclusion, lenalidomide induced HI-E in patients with non-del(5q) and del(5q) MDS without additional effect of ESA/G-CSF. The identified predictors of response may guide application of lenalidomide in lower-risk MDS in the era of precision medicine. (EudraCT 2008-002195-10).
Collapse
Affiliation(s)
- A A van de Loosdrecht
- Department of Hematology, Amsterdam UMC, location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| | - E M P Cremers
- Department of Hematology, Amsterdam UMC, location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - C Alhan
- Department of Hematology, Amsterdam UMC, location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - C Duetz
- Department of Hematology, Amsterdam UMC, location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - F E M In 't Hout
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - D A Chitu
- HOVON Foundation, Rotterdam, The Netherlands
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - A Verbrugge
- HOVON Foundation, Rotterdam, The Netherlands
| | - S M Cunha
- HOVON Foundation, Rotterdam, The Netherlands
| | - G J Ossenkoppele
- Department of Hematology, Amsterdam UMC, location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - J J W M Janssen
- Department of Hematology, Amsterdam UMC, location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - S K Klein
- Department of Hematology, Meander Medisch Centrum, Amersfoort, The Netherlands
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - E Vellenga
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - G A Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - P Muus
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Haematology, St. James University Hospital, Leeds, UK
| | - S M C Langemeijer
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - G E de Greef
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - P A W Te Boekhorst
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - M H G Raaijmakers
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - M C Legdeur
- Department of Hematology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - J J Wegman
- Department of Hematology, Deventer Ziekenhuis, Deventer, The Netherlands
- Department of Hematology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - W Deenik
- Department of Internal Medicine, Tergooi Ziekenhuis, Hilversum, The Netherlands
- Department of Internal Medicine, Rijnstate, Arnhem, the Netherlands
| | - O de Weerdt
- Department of Internal Medicine, St. Antonius Ziekenhuis, Nieuwegein, The Netherlands
| | | | - P Jobse
- Department of Internal Medicine, Admiraal de Ruyter Ziekenhuis, Goes, The Netherlands
| | - R J W van Kampen
- Department of Internal Medicine, Zuyderland Ziekenhuis, Geleen, The Netherlands
| | - A Beeker
- Department of Hematology, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - P W Wijermans
- Department of Hematology, Haaglanden Ziekenhuis, Den Haag, The Netherlands
| | - B J Biemond
- Department of Hematology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - B C Tanis
- Department of Internal Medicine, Groene Hart Ziekenhuis, Gouda, The Netherlands
- Department of General Practice Erasmus MC, Rotterdam, The Netherlands
| | - J W J van Esser
- Department of Internal Medicine, Amphia Ziekenhuis, Breda, The Netherlands
| | - C G Schaar
- Department of Internal Medicine, Gelre Ziekenhuis, Apeldoorn, The Netherlands
| | - H S Noordzij-Nooteboom
- Department of Internal Medicine, Van Weel Bethesda Ziekenhuis, Dirksland, The Netherlands
| | - E M G Jacobs
- Department of Internal Medicine, Elkerliek Ziekenhuis, Helmond, The Netherlands
| | - A O de Graaf
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Jongen-Lavrencic
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - M J P L Stevens-Kroef
- Department of human genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - T M Westers
- Department of Hematology, Amsterdam UMC, location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - J H Jansen
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Shahzad M, Iqbal Q, Tariq E, Ammad-Ud-Din M, Butt A, Mushtaq AH, Ali F, Chaudhary SG, Anwar I, Gonzalez-Lugo JD, Abdelhakim H, Ahmed N, Hematti P, Singh AK, McGuirk JP, Mushtaq MU. Outcomes with allogeneic hematopoietic stem cell transplantation in TP53-mutated myelodysplastic syndrome: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2024; 196:104310. [PMID: 38423375 DOI: 10.1016/j.critrevonc.2024.104310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
We conducted a systematic review and meta-analysis to evaluate outcomes after allogeneic hematopoietic stem cell transplantation (Allo-HSCT) in TP53-mutated myelodysplastic syndromes (MDS). A literature search was performed on PubMed, Cochrane, Embase, and Clinicaltrials.gov. After screening 626 articles, eight studies were included. Data were extracted following the PRISMA guidelines and analyzed using the meta-package by Schwarzer et al. We analyzed 540 patients. The pooled median 3 (1-5) year overall survival was 21% (95% CI 0.08-0.37, I2=91%, n=540). The pooled relapse rate was 58.9% (95% CI 0.38-0.77, I2=93%, n=487) at a median of 1.75 (1-3) years. The pooled 4-year progression- free survival was 34.8% (95% CI 0.15-0.57, I2=72%, n=105). Outcomes of Allo-HSCT for TP53-mutated MDS patients remain poor, with 21% OS at three years; however, Allo-HSCT confers a survival advantage as compared to non-transplant palliative therapies. Our findings suggest the need to explore novel therapeutic agents in prospective clinical trials.
Collapse
Affiliation(s)
- Moazzam Shahzad
- Department of Hematology/Oncology, H. Lee Moffitt Cancer and Research Institute, University of South Florida, Tampa, FL, USA
| | - Qamar Iqbal
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ezza Tariq
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mohammad Ammad-Ud-Din
- Department of Hematology/Oncology, H. Lee Moffitt Cancer and Research Institute, University of South Florida, Tampa, FL, USA
| | - Atif Butt
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ali Hassan Mushtaq
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Fatima Ali
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sibgha Gull Chaudhary
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Iqra Anwar
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jesus D Gonzalez-Lugo
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Haitham Abdelhakim
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nausheen Ahmed
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Peiman Hematti
- Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anurag K Singh
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Joseph P McGuirk
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Muhammad Umair Mushtaq
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
31
|
Sutandyo N, Kosasih AS, Sari RM, Setiawan L, Rinaldi I, Maskito VJ, Prayitno YH. Cytogenetic profile and risk of transformation to acute myeloid leukemia (AML) in Indonesian patients with myelodysplastic syndrome (MDS): a pilot study. F1000Res 2024; 13:167. [PMID: 39600341 PMCID: PMC11589415 DOI: 10.12688/f1000research.143170.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 11/29/2024] Open
Abstract
Background Cytogenetics is a fundamental examination in the course and management of myelodysplastic syndrome (MDS) since it is widely used as a diagnostic and prognostic indicator for the disease. Some cytogenetic profiles are associated with a higher risk of acute myeloid leukemia (AML) transformation. This is the first study to evaluate the cytogenetic profile of Indonesian patients with MDS. Methods This prospective cohort study was conducted at the Cancer Center and several other referral hospitals. Patients with primary MDS aged >18 years were included in the study. Clinical examination, peripheral blood smear, and bone marrow aspiration were performed, followed by cytogenetic examination. The results were further categorized into revised international prognostic scoring system (IPSS-R) scores, and cytogenetic profiles were descriptively presented. Patients were followed up for one year to evaluate AML transformation. Results A total of 28 MDS patients, aged 66±12 years, were included in this study. The majority of the patients were male (n=17;60.7%), aged 65 years or above (n=19;67.9%), diagnosed with MDS-MLD (n=14;50%), and had an intermediate cytogenetic group (n=4;14.3%). The IPSS-R score was high in 6 (21.4%) patients and very high risk in 3 (10.7%) patients. During one-year follow-up, AML transformation occurred in 3 (10.7%) patients, and 10 (35.7%) patients ceased. Monosomy 7 was observed in 6 (21.4%) patients but in one metaphase each. Deletion of chromosome 5 (del(5)(q31)), del (16)(q21.1), and del (16)(q11.2) were found in a male patient with MDS-EB1. Conclusions Monosomy 7 and deletion of chromosome 5 have been identified in Indonesian patients with MDS. MDS-EB has the highest risk of AML transformation.
Collapse
Affiliation(s)
- Noorwati Sutandyo
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Department of Hematology and Medical Oncology, Dharmais National Cancer Center Hospital, Jakarta, Indonesia
| | - Agus Susanto Kosasih
- Department of Integrated Laboratory, Dharmais National Cancer Center Hospital, Jakarta, Indonesia
| | - Resti Mulya Sari
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Department of Hematology and Medical Oncology, Dharmais National Cancer Center Hospital, Jakarta, Indonesia
| | - Lyana Setiawan
- Department of Integrated Laboratory, Dharmais National Cancer Center Hospital, Jakarta, Indonesia
| | - Ikhwan Rinaldi
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Hematology and Medical Oncology Division, Department of Internal Medicine, Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| | - Veronika Juanita Maskito
- Department of Integrated Laboratory, Dharmais National Cancer Center Hospital, Jakarta, Indonesia
| | - Yuniar Harris Prayitno
- Medical Research Staff, Department of Hematology and Medical Oncology, Dharmais National Cancer Center Hospital, Jakarta, Indonesia
| |
Collapse
|
32
|
Kasprzak A, Andresen J, Nachtkamp K, Kündgen A, Schulz F, Strupp C, Kobbe G, MacKenzie C, Timm J, Dietrich S, Gattermann N, Germing U. Infectious Complications in Patients with Myelodysplastic Syndromes: A Report from the Düsseldorf MDS Registry. Cancers (Basel) 2024; 16:808. [PMID: 38398198 PMCID: PMC10887010 DOI: 10.3390/cancers16040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Despite notable advancements in infection prevention and treatment, individuals with hematologic malignancies still face the persistent threat of frequent and life-threatening complications. Those undergoing chemotherapy or other disease-modifying therapies are particularly vulnerable to developing infectious complications, increasing the risk of mortality. Myelodysplastic syndromes (MDS) predominantly affect the elderly, with the incidence rising with age and peaking at around 70 years. Patients with MDS commonly present with unexplained low blood-cell counts, primarily anemia, and often experience varying degrees of neutropenia as the disease progresses. In our subsequent retrospective study involving 1593 patients from the Düsseldorf MDS Registry, we aimed at outlining the incidence of infections in MDS patients and identifying factors contributing to heightened susceptibility to infectious complications in this population.
Collapse
Affiliation(s)
- Annika Kasprzak
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, 40225 Duesseldorf, Germany (A.K.); (G.K.); (N.G.); (U.G.)
| | - Julia Andresen
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, 40225 Duesseldorf, Germany (A.K.); (G.K.); (N.G.); (U.G.)
| | - Kathrin Nachtkamp
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, 40225 Duesseldorf, Germany (A.K.); (G.K.); (N.G.); (U.G.)
| | - Andrea Kündgen
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, 40225 Duesseldorf, Germany (A.K.); (G.K.); (N.G.); (U.G.)
| | - Felicitas Schulz
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, 40225 Duesseldorf, Germany (A.K.); (G.K.); (N.G.); (U.G.)
| | - Corinna Strupp
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, 40225 Duesseldorf, Germany (A.K.); (G.K.); (N.G.); (U.G.)
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, 40225 Duesseldorf, Germany (A.K.); (G.K.); (N.G.); (U.G.)
| | - Colin MacKenzie
- Institute of Medical Microbiology and Hospital Hygiene, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Jörg Timm
- Institute of Virology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, 40225 Duesseldorf, Germany (A.K.); (G.K.); (N.G.); (U.G.)
| | - Norbert Gattermann
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, 40225 Duesseldorf, Germany (A.K.); (G.K.); (N.G.); (U.G.)
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, 40225 Duesseldorf, Germany (A.K.); (G.K.); (N.G.); (U.G.)
| |
Collapse
|
33
|
Tang F, Wang Y, Wang Y, Jin J, Han W, Chen Y, Yan C, Xu L, Zhang X, Huang X. The clinical outcomes of haploidentical stem cell transplantation (haplo-HSCT) for patients with therapy-related myelodysplastic syndrome: comparable to de novo myelodysplastic syndrome. Clin Exp Med 2024; 24:33. [PMID: 38329593 PMCID: PMC10853308 DOI: 10.1007/s10238-023-01287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/04/2023] [Indexed: 02/09/2024]
Abstract
Therapy-related myelodysplastic syndrome (t-MDS) is defined as a complication in patients with cancer following exposure to chemotherapy and/or radiotherapy and has an inferior outcome compared with de novo myelodysplastic syndrome (de novo MDS). This study aimed to estimate and compare the clinical outcomes of haploidentical stem cell transplantation (haplo-HSCT) for t-MDS and de novo MDS. We retrospectively analyzed 96 patients with MDS who received haplo-HSCT between January 2015 and December 2021. Eleven patients with t-MDS and 85 patients with de novo MDS were matched using the case-pair method in a 1:8 ratio with the following pairing criteria: (1) sex, (2) age (± 5 years), (3) year of haplo-HSCT (± 2 years), and (4) blast cell counts (≥ 5% or not). The 3-year overall survival and disease-free survival after haplo-HSCT for t-MDS versus de novo MDS patients were 72.7% versus 75.1% (P = 0.99) and 54.5% versus 67.0% (P = 0.50), respectively. The 3-year cumulative incidence of relapse was 36.4% versus 15.5% (P = 0.08), respectively. In multivariate analysis, there was no difference in relapse between t-MDS and de novo MDS. The 3-year cumulative non-relapse mortality rates were 9.1% versus 17.6% (P = 0.45), respectively. This study confirmed the comparable clinical outcomes of haplo-HSCT on the prognosis of t-MDS and de novo MDS.
Collapse
Affiliation(s)
- Feifei Tang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yunqi Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jian Jin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Wei Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yuhong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chenhua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lanping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Beijing, China.
| |
Collapse
|
34
|
Merz AMA, Platzbecker U. Beyond the horizon: emerging therapeutic approaches in myelodysplastic neoplasms. Exp Hematol 2024; 130:104130. [PMID: 38036096 DOI: 10.1016/j.exphem.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Management of myelodysplastic neoplasms (MDS) requires a personalized approach, with a focus on improving quality of life and extending lifespan. The International Prognostic Scoring System-Revised and the molecular International Prognostic Scoring System are key tools for risk stratification and management of MDS. They provide a framework for predicting survival and the risk of transformation to acute myeloid leukemia. However, a major challenge in MDS management remains the limited therapeutic options available, especially after the failure of first-line therapies. In lower-risk MDS, the failure of erythropoietin-stimulating agents often leaves few alternatives, although in higher-risk MDS, the prognosis after hypomethylating agent failure is dismal. This highlights the urgent need for novel, more personalized therapeutic approaches. In this review, we discuss emerging novel therapeutic approaches in the treatment of MDS. Several new therapeutic targets are currently being evaluated, offering hope for improved management of MDS in the future.
Collapse
Affiliation(s)
- Almuth Maria Anni Merz
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University Hospital of Leipzig, University of Leipzig Faculty of Medicine Leipzig, Germany.
| | - Uwe Platzbecker
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University Hospital of Leipzig, University of Leipzig Faculty of Medicine Leipzig, Germany.
| |
Collapse
|
35
|
Merz AMA, Sébert M, Sonntag J, Kubasch AS, Platzbecker U, Adès L. Phase to phase: Navigating drug combinations with hypomethylating agents in higher-risk MDS trials for optimal outcomes. Cancer Treat Rev 2024; 123:102673. [PMID: 38176221 DOI: 10.1016/j.ctrv.2023.102673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
Recent developments in high-risk Myelodysplastic Neoplasms (HR MDS) treatment are confronted with challenges in study design due to evolving drug combinations with Hypomethylating Agents (HMAs). The shift from the International Prognostic Scoring System (IPSS) to its molecular revision (IPSS-M) has notably influenced research and clinical practice. Introducing concepts like the MDS/AML overlap complicate classifications and including chronic myelomonocytic leukemia (CMML) in MDS studies introduces another layer of complexity. The International Consortium for MDS emphasizes aligning HR MDS criteria with the 2022 ELN criteria for AML. Differences in advancements between AML and MDS treatments and hematological toxicity in HR MDS underline the importance of detailed trial designs. Effective therapeutic strategies require accurate reporting of adverse events, highlighting the need for clarity in criteria like the Common Terminology Criteria for Adverse Events (CTCAE). We provide an overview on negative clinical trials in HR MDS, analyze possible reasons and explore possibilities to optimize future clinical trials in this challenging patient population.
Collapse
Affiliation(s)
- Almuth Maria Anni Merz
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University Hospital of Leipzig, Leipzig, Germany
| | - Marie Sébert
- Service Hématologie Séniors, Hôpital Saint-Louis (AP-HP), Paris Cité University and INSERM U944, Paris, France
| | - Jan Sonntag
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University Hospital of Leipzig, Leipzig, Germany
| | - Anne Sophie Kubasch
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University Hospital of Leipzig, Leipzig, Germany
| | - Uwe Platzbecker
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University Hospital of Leipzig, Leipzig, Germany.
| | - Lionel Adès
- Service Hématologie Séniors, Hôpital Saint-Louis (AP-HP), Paris Cité University and INSERM U944, Paris, France.
| |
Collapse
|
36
|
Moura PL, Mortera-Blanco T, Hofman IJ, Todisco G, Kretzschmar WW, Björklund AC, Creignou M, Hagemann-Jensen M, Ziegenhain C, Cabrerizo Granados D, Barbosa I, Walldin G, Jansson M, Ashley N, Mead AJ, Lundin V, Dimitriou M, Yoshizato T, Woll PS, Ogawa S, Sandberg R, Jacobsen SEW, Hellström-Lindberg E. Erythroid Differentiation Enhances RNA Mis-Splicing in SF3B1-Mutant Myelodysplastic Syndromes with Ring Sideroblasts. Cancer Res 2024; 84:211-225. [PMID: 37921711 PMCID: PMC10790130 DOI: 10.1158/0008-5472.can-23-3038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
Myelodysplastic syndromes with ring sideroblasts (MDS-RS) commonly develop from hematopoietic stem cells (HSC) bearing mutations in the splicing factor SF3B1 (SF3B1mt). Direct studies into MDS-RS pathobiology have been limited by a lack of model systems that fully recapitulate erythroid biology and RS development and the inability to isolate viable human RS. Here, we combined successful direct RS isolation from patient samples, high-throughput multiomics analysis of cells encompassing the SF3B1mt stem-erythroid continuum, and functional assays to investigate the impact of SF3B1mt on erythropoiesis and RS accumulation. The isolated RS differentiated, egressed into the blood, escaped traditional nonsense-mediated decay (NMD) mechanisms, and leveraged stress-survival pathways that hinder wild-type hematopoiesis through pathogenic GDF15 overexpression. Importantly, RS constituted a contaminant of magnetically enriched CD34+ cells, skewing bulk transcriptomic data. Mis-splicing in SF3B1mt cells was intensified by erythroid differentiation through accelerated RNA splicing and decreased NMD activity, and SF3B1mt led to truncations in several MDS-implicated genes. Finally, RNA mis-splicing induced an uncoupling of RNA and protein expression, leading to critical abnormalities in proapoptotic p53 pathway genes. Overall, this characterization of erythropoiesis in SF3B1mt RS provides a resource for studying MDS-RS and uncovers insights into the unexpectedly active biology of the "dead-end" RS. SIGNIFICANCE Ring sideroblast isolation combined with state-of-the-art multiomics identifies survival mechanisms underlying SF3B1-mutant erythropoiesis and establishes an active role for erythroid differentiation and ring sideroblasts themselves in SF3B1-mutant myelodysplastic syndrome pathogenesis.
Collapse
Affiliation(s)
- Pedro L. Moura
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Teresa Mortera-Blanco
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Isabel J. Hofman
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Gabriele Todisco
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Warren W. Kretzschmar
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Ann-Charlotte Björklund
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Maria Creignou
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Medicine, Division of Hematology, Karolinska University Hospital, Huddinge, Sweden
| | - Michael Hagemann-Jensen
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
- Xpress Genomics AB, Stockholm, Sweden
| | - Christoph Ziegenhain
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
- Xpress Genomics AB, Stockholm, Sweden
| | - David Cabrerizo Granados
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Indira Barbosa
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Gunilla Walldin
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Monika Jansson
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Neil Ashley
- Hematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Adam J. Mead
- Hematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Vanessa Lundin
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Marios Dimitriou
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Tetsuichi Yoshizato
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Petter S. Woll
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Seishi Ogawa
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Rickard Sandberg
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
- Xpress Genomics AB, Stockholm, Sweden
| | - Sten Eirik W. Jacobsen
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Division of Hematology, Karolinska University Hospital, Huddinge, Sweden
- Hematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Eva Hellström-Lindberg
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Medicine, Division of Hematology, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
37
|
Cargo C, Bernard E, Beinortas T, Bolton KL, Glover P, Warren H, Payne D, Ali R, Khan A, Short M, Van Hoppe S, Smith A, Taylor J, Evans P, Papaemmanuil E, Crouch S. Predicting cytopenias, progression, and survival in patients with clonal cytopenia of undetermined significance: a prospective cohort study. Lancet Haematol 2024; 11:e51-e61. [PMID: 38135373 DOI: 10.1016/s2352-3026(23)00340-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Somatic mutations are frequently reported in individuals with cytopenia but without a confirmed haematological diagnosis (clonal cytopenia of undetermined significance; CCUS). These patients have an increased risk of progression to a myeloid malignancy and worse overall survival than those with no such mutations. To date, studies have been limited by retrospective analysis or small patient numbers. We aimed to establish the natural history of CCUS by prospectively investigating outcome in a large, well defined patient cohort. METHODS This prospective cohort study was conducted at the Haematological Malignancy Diagnostic Service, a diagnostic laboratory in Leeds, UK. Patients aged at least 18 years who were referred for investigation of cytopenia were eligible for inclusion; those with a history of myeloid malignancy were not eligible. Targeted sequencing was conducted alongside routine clinical testing. Baseline mutation analysis was then correlated with the main study outcomes: longitudinal blood counts, disease progression to a myeloid malignancy, and overall survival with a median follow-up of 4·54 years (IQR 4·03-5·04). Data were collected manually from hospital records or extracted from laboratory or clinical outcome databases. FINDINGS Bone marrow samples from 2348 patients were received at the Haematological Malignancy Diagnostic Service between July 1, 2014, and July 31, 2016. Of these, 2083 patients (median age 72 years [IQR 63-80, range 18-99]; 854 [41·0%] female and 1229 [59·0%] male) met the inclusion criteria and had samples of sufficient quality for further analysis. 598 (28·7%) patients received a diagnosis on the basis of their biopsy sample, whereas 1485 (71·3%) samples were classified as non-diagnostic; of these, CCUS was confirmed in 400 (26·9%) patients (256 [64·0%] male and 144 [36·0%] female). TET2, SRSF2, and DNMT3A were the most frequently mutated genes in patients with CCUS, with 320 (80%) of 400 patients harbouring a mutation in at least one of these genes. Age (p<0·0001), sex (p=0·0027), and mutations in ASXL1 (p=0·0009), BCOR (p=0·0056), and TP53 (p=0·0055) correlated with a worse overall survival; however, the number of mutations was the strongest predictor for progression to a myeloid malignancy (two mutations, p=0·0024; three or more mutations, p=0·0004). Extended sequencing of samples from a subgroup of patients with sequential samples and no mutations in the initial myeloid gene panel showed recurrent mutations in both DDX41 and UBA1, suggesting that these genes should be included in clinical test panels. INTERPRETATION Mutation analysis is advised in patients who have undergone bone marrow examination and have an otherwise-unexplained cytopenia. High-risk genetic mutations and increased numbers of mutations are predictive of both survival and progression within 5 years of presentation, warranting clinical surveillance and, when necessary, intervention. FUNDING MDS Foundation.
Collapse
Affiliation(s)
- Catherine Cargo
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK.
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tumas Beinortas
- St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Kelly L Bolton
- Washington University School of Medicine, St Louis, MO, USA
| | - Paul Glover
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Helen Warren
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Daniel Payne
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Rukhsaar Ali
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Alesia Khan
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Mike Short
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Suzan Van Hoppe
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Alex Smith
- Epidemiology and Cancer Statistics Group, University of York, York, UK
| | - Jan Taylor
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Paul Evans
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon Crouch
- Epidemiology and Cancer Statistics Group, University of York, York, UK
| |
Collapse
|
38
|
Hasserjian RP, Germing U, Malcovati L. Diagnosis and classification of myelodysplastic syndromes. Blood 2023; 142:2247-2257. [PMID: 37774372 DOI: 10.1182/blood.2023020078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
ABSTRACT Myelodysplastic syndromes (MDSs) are neoplastic myeloid proliferations characterized by ineffective hematopoiesis resulting in peripheral blood cytopenias. MDS is distinguished from nonneoplastic clonal myeloid proliferations by the presence of morphologic dysplasia and from acute myeloid leukemia by a blast threshold of 20%. The diagnosis of MDS can be challenging because of the myriad other causes of cytopenias: accurate diagnosis requires the integration of clinical features with bone marrow and peripheral blood morphology, immunophenotyping, and genetic testing. MDS has historically been subdivided into several subtypes by classification schemes, the most recent of which are the International Consensus Classification and World Health Organization Classification (fifth edition), both published in 2022. The aim of MDS classification is to identify entities with shared genetic underpinnings and molecular pathogenesis, and the specific subtype can inform clinical decision-making alongside prognostic risk categorization. The current MDS classification schemes incorporate morphologic features (bone marrow and blood blast percentage, degree of dysplasia, ring sideroblasts, bone marrow fibrosis, and bone marrow hypocellularity) and also recognize 3 entities defined by genetics: isolated del(5q) cytogenetic abnormality, SF3B1 mutation, and TP53 mutation. It is anticipated that with advancing understanding of the genetic basis of MDS pathogenesis, future MDS classification will be based increasingly on genetic classes. Nevertheless, morphologic features in MDS reflect the phenotypic expression of the underlying abnormal genetic pathways and will undoubtedly retain importance to inform prognosis and guide treatment.
Collapse
Affiliation(s)
| | - Ulrich Germing
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich-Heine University, Dusseldorf, Germany
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| |
Collapse
|
39
|
Merkel D, Soffer S, Filanovsky K, Braester A, Fibach E, Dana M, Ofran Y, Greenbaum U, Nagler A, Amitai I, Mittelman M. The Effect of Oral Iron Chelator Deferiprone on Iron Overload and Oxidative Stress in Patients with Myelodysplastic Syndromes: A Study by the Israeli MDS Working Group. Acta Haematol 2023; 147:427-434. [PMID: 38104534 PMCID: PMC11296558 DOI: 10.1159/000535749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Most patients with lower risk myelodysplastic neoplasms or syndromes (MDSs) become RBC transfusion-dependent, resulting in iron overload, which is associated with an increased oxidative stress state. Iron-chelation therapy is applied to attenuate the toxic effects of this state. Deferiprone (DFP) is an oral iron chelator, which is not commonly used in this patient population, due to safety concerns, mainly agranulocytosis. The purpose of this study was to assess the effect of DFP, on oxidative stress parameters in iron-overloaded RBC transfusion-dependent patients with lower risk MDSs. METHODS Adult lower risk MDS patients with a cumulative transfusion burden of >20 red blood cell units and evidence of iron overload (serum ferritin >1,000 ng/mL) were included in this study. DFP was administered (100 mg/kg/day) for 4 months. Blood samples for oxidative stress parameters and iron overload parameters were done at baseline and monthly: reactive oxygen species (ROS), phosphatidylserine, reduced glutathione, membrane lipid peroxidation, serum ferritin, and cellular labile iron pool. The primary efficacy variable was ROS. Tolerability and side effects were recorded as well. A paired t test was applied for statistical analyses. RESULTS Eighteen patients were treated with DFP. ROS significantly decreased in all cell lineages: median decrease of 58.6% in RBC, 33.3% in PMN, and 39.8% in platelets (p < 0.01 for all). Other oxidative stress markers improved: phosphatidylserine decreased by 57.95%, lipid peroxidase decreased by 141.3%, and reduced gluthathione increased by 72.8% (p < 0.01 for all). The iron-overload marker and cellular labile iron pool decreased by 35% in RBCs, 44.3% in PMN, and 46.3% in platelets (p < 0.01 for all). No significant changes were observed in SF levels. There were no events of agranulocytosis. All AEs were grades 1-2. CONCLUSIONS Herein, we showed preliminary evidence that DFP decreases iron-induced oxidative stress in MDS patients with a good tolerability profile (albeit a short follow-up period). No cases of severe neutropenia or agranulocytosis were reported. The future challenge is to prove that reduction in iron toxicity will eventually be translated into a clinically meaningful improvement.
Collapse
Affiliation(s)
- Drorit Merkel
- Chaim Sheba Medical Center, Tel Hashomer, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shelly Soffer
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kalman Filanovsky
- Kaplan Medical Center, Rehovot, Israel
- Hadassah Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andrei Braester
- Galilee Medical Center, Faculty of Medicine, "AZRIELI", Bar-Ilan University, Nahariya, Israel
| | - Eitan Fibach
- Hadassah Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mutaz Dana
- Hadassah Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yishai Ofran
- Hadassah Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Shaare Zedek Medical Center, Jerusalem, Israel
| | - Uri Greenbaum
- Soroka Medical Center, Beer Sheba, Israel
- Ben-Gurion University, Beer Sheba, Israel
| | - Arnon Nagler
- Chaim Sheba Medical Center, Tel Hashomer, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Irina Amitai
- Chaim Sheba Medical Center, Tel Hashomer, Israel,
- School of Medicine, Tel Aviv University, Tel Aviv, Israel,
| | - Moshe Mittelman
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
40
|
Ravandi F, Cloos J, Buccisano F, Dillon R, Döhner K, Freeman SD, Hourigan CS, Ossenkoppele GJ, Roboz GJ, Subklewe M, Thiede C, Arnhardt I, Valk PJM, Venditti A, Wei AH, Walter RB, Heuser M. Measurable residual disease monitoring in patients with acute myeloid leukemia treated with lower-intensity therapy: Roadmap from an ELN-DAVID expert panel. Am J Hematol 2023; 98:1847-1855. [PMID: 37671649 PMCID: PMC10841357 DOI: 10.1002/ajh.27087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
With the availability of effective targeted agents, significant changes have occurred in the management of patients with acute myeloid leukemia (AML) over the past several years, particularly for those considered unfit for intensive chemotherapy. While testing for measurable residual disease (MRD) is now routinely performed in patients treated with intensive chemotherapy to refine prognosis and, possibly, inform treatment decision-making, its value in the context of lower-intensity regimens is unclear. As such regimens have gained in popularity and can be associated with higher response rates, the need to better define the role of MRD assessment and the appropriate time points and assays used for this purpose has increased. This report outlines a roadmap for MRD testing in patients with AML treated with lower-intensity regimens. Experts from the European LeukemiaNet (ELN)-DAVID AML MRD working group reviewed all available data to propose a framework for MRD testing in future trials and clinical practice. A Delphi poll served to optimize consensus. Establishment of uniform standards for MRD assessments in lower-intensity regimens used in treating patients with AML is clinically relevant and important for optimizing testing and, ultimately, improving treatment outcomes of these patients.
Collapse
Affiliation(s)
- Farhad Ravandi
- Department of Leukemia, The University of Texas - MD Anderson Cancer Center, Houston
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Francesco Buccisano
- Department of Biomedicine and Prevention, Hematology, University Tor Vergata, Rome, Italy
| | - Richard Dillon
- Department of Medical and Molecular Genetics, King’s College, London, United Kingdom
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Sylvie D Freeman
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Christopher S Hourigan
- Laboratory of Myeloid Malignancy, Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda
| | - Gerrit J Ossenkoppele
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Gail J Roboz
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University Munich, Germany
| | - Christian Thiede
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Isabell Arnhardt
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Peter J M Valk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Adriano Venditti
- Department of Biomedicine and Prevention, Hematology, University Tor Vergata, Rome, Italy
| | - Andrew H Wei
- Department of Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, University of Melbourne and Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Roland B Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
41
|
Siddon AJ, Weinberg OK. Diagnosis and Classification of Myelodysplastic Syndromes with Mutated TP53. Clin Lab Med 2023; 43:607-614. [PMID: 37865506 DOI: 10.1016/j.cll.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
The genetic underpinnings of myeloid neoplasms are becoming increasingly well understood. The accessibility to sequencing technology, in particular next-generation sequencing (NGS), has highlighted the importance of gene mutations in myelodysplastic syndromes (MDS) in conjunction with traditional cytogenetics. With the relatively recent influx of molecular information to complement known cytogenetic abnormalities, the diagnosis, classification, and prognosis of MDS and acute myeloid leukemia (AML) have been increasingly refined, which has also led to therapeutic advancements. It has been shown that TP53 mutations have a significant impact in cases of MDS, as well as AML, and have led to TP53-defined myeloid disease. TP53 mutations are also now incorporated into prognostic scoring systems, as patients have been shown to have aggressive disease and poor outcomes. With the increased understanding of the importance of TP53 disruption in myeloid neoplasia, it is likely that the critical role of TP53 will continue to be highlighted by an individual's disease classification and personalized therapeutic management.
Collapse
Affiliation(s)
- Alexa J Siddon
- Department of Laboratory Medicine, Yale School of Medicine, 330 Cedar Street, PO Box 208035, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, 330 Cedar Street, PO Box 208035, New Haven, CT 06520, USA.
| | - Olga K Weinberg
- Department of Pathology, University of Texas Southwestern Medical Center, BioCenter, 2230 Inwood Road, EB03.220G, Dallas, TX 75235, USA
| |
Collapse
|
42
|
Yuen LD, Hasserjian RP. Morphologic Characteristics of Myelodysplastic Syndromes. Clin Lab Med 2023; 43:577-596. [PMID: 37865504 DOI: 10.1016/j.cll.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Morphologic characterization remains a cornerstone in the diagnosis and classification of myelodysplastic syndromes (MDS) in the updated International Consensus Classification (ICC) and 5th edition World Health Organization Classification of Myeloid Neoplasms (Arber, Orazi, & Hasserjian, 2022; Khoury & Solary, 2022). The presence of dysplasia is one of the key diagnostic criteria required for establishing a diagnosis of MDS, and the percentage of myeloblasts in the blood and bone marrow impacts both disease classification and prognostication. Morphologic features also aid in distinguishing MDS from a myriad of other myeloid neoplasms and non-neoplastic mimics. Additional key morphologic features that should be recorded in any MDS case are the bone marrow cellularity and the degree of reticulin fibrosis. In this review, the morphologic assessment of the bone marrow biopsy, bone marrow aspirate, and peripheral blood smear as it pertains to the diagnosis and up-to-date classification of MDS will be described. The implications of the findings on classification and prognosis will also be discussed.
Collapse
Affiliation(s)
- Lisa D Yuen
- Department of Pathology-WRN 244, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Robert P Hasserjian
- Department of Pathology-WRN 244, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
43
|
Guarente J, Tormey C. Transfusion Support of Patients with Myelodysplastic Syndromes. Clin Lab Med 2023; 43:669-683. [PMID: 37865510 DOI: 10.1016/j.cll.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Patients with MDS often suffer from anemia, and less often thrombocytopenia, and thus are a frequently transfused population. Red blood cell (RBC) transfusion may be used to improve functional capacity and quality of life in this population, while platelet transfusion is typically used to decrease bleeding risk. Despite the frequency of transfusion in patients with MDS, there are few well-defined guidelines for RBC and platelet transfusion support in this patient population. Transfusion is not without risk-patients with MDS who are frequently transfused may develop alloantibodies to RBC antigens, which can lead to hemolytic transfusion reactions and delays in obtaining compatible RBCs. Regular communication between clinicians and blood bank physicians is crucial to ensure that patients with MDS receive the most appropriate blood products.
Collapse
Affiliation(s)
- Juliana Guarente
- Department of Pathology and Genomic Medicine, Pathology Residency Program, Thomas Jefferson University Hospital, 111 South 11th Street Gibbon Building, Room 8220, Philadelphia, PA 19107, USA
| | - Christopher Tormey
- Department of Laboratory Medicine, Transfusion Medicine Fellowship, Yale University School of Medicine, Yale-New Haven Hospital, 55 Park Street, Floor 3, Room 329D, New Haven, CT 06511, USA
| |
Collapse
|
44
|
Yang T, Jiang B, Luo Y, Zhao Y, Ouyang G, Yu J, Lan J, Lu Y, Lai X, Ye B, Chen Y, Liu L, Xu Y, Shi P, Xiao H, Hu H, Guo Q, Fu H, Ye Y, Wang X, Sun J, Zheng W, He J, Zhao Y, Wu W, Cai Z, Wei G, Huang H, Shi J. Comparison of the prognostic predictive value of Molecular International Prognostic Scoring System and Revised International Prognostic Scoring System in patients undergoing allogeneic hematopoietic stem cell transplantation for myelodysplastic neoplasms. Am J Hematol 2023; 98:E391-E394. [PMID: 37728241 DOI: 10.1002/ajh.27099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/21/2023]
Affiliation(s)
- Tingting Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Binqian Jiang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Jian Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jianping Lan
- Department of Hematology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Ying Lu
- Department of Hematology, Yinzhou People's Hospital, Ningbo, China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Baodong Ye
- Department of Hematology, The First Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yang Xu
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengfei Shi
- Department of Hematology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huixian Hu
- Department of Hematology, Jinhua Central Hospital, Jinhua, China
| | - Qunyi Guo
- Department of Hematology, Taizhou Hospital of Zhejiang, Wenzhou Medical College, Taizhou, China
| | - Huarui Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Xinyu Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jie Sun
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Weiyan Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yi Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Wenjun Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| |
Collapse
|
45
|
Hogg G, Severson EA, Cai L, Hoffmann HM, Holden KA, Fitzgerald K, Kenyon A, Zeng Q, Mooney M, Gardner S, Chen W, Nagan N, Boles D, Parker S, Richman TJ, Letovsky S, Dong H, Anderson SM, Ramkissoon S, Reddy P, Eisenberg M, Chenn A, Jensen TJ. Clinical characterization of the mutational landscape of 24,639 real-world samples from patients with myeloid malignancies. Cancer Genet 2023; 278-279:38-49. [PMID: 37586297 DOI: 10.1016/j.cancergen.2023.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 08/18/2023]
Abstract
Myeloid neoplasms represent a broad spectrum of hematological disorders for which somatic mutation status in key driver genes is important for diagnosis, prognosis and treatment. Here we summarize the findings of a targeted, next generation sequencing laboratory developed test in 24,639 clinical myeloid samples. Data were analyzed comprehensively and as part of individual cohorts specific to acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and myeloproliferative neoplasms (MPN). Overall, 48,015 variants were detected, and variants were found in all 50 genes in the panel. The mean number of mutations per patient was 1.95. Mutation number increased with age (Spearman's rank correlation coefficient, ρ = 0.29, P < 0.0001) and was higher in patients with AML than MDS or MPN (Student's t-test, P < 0.0001). TET2 was the most common mutation detected (19.1% of samples; 4,695/24,639) including 7.7% (1,908/24,639) with multi-hit TET2 mutations. Mutation frequency was correlated between patients with cytopenias and MDS (Spearman's, ρ = 0.97, P < 2.2×10-16) with the MDS diagnostic gene SF3B1 being the only notable outlier. This large retrospective study shows the utility of NGS testing to inform clinical decisions during routine clinical care and highlights the mutational landscape of a broad population of myeloid patients.
Collapse
Affiliation(s)
| | | | - Li Cai
- Labcorp Durham, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Shakti Ramkissoon
- Labcorp Durham, Durham, NC, USA; Wake Forest Comprehensive Cancer Center and Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | | | - Taylor J Jensen
- Labcorp San Diego, San Diego, CA, USA; Labcorp Durham, Durham, NC, USA
| |
Collapse
|
46
|
Todisco G, Creignou M, Bernard E, Björklund AC, Moura PL, Tesi B, Mortera-Blanco T, Sander B, Jansson M, Walldin G, Barbosa I, Reinsbach SE, Hofman IJ, Nilsson C, Yoshizato T, Dimitriou M, Chang D, Olafsdottir S, Venckute Larsson S, Tobiasson M, Malcovati L, Woll P, Jacobsen SEW, Papaemmanuil E, Hellström-Lindberg E. Integrated Genomic and Transcriptomic Analysis Improves Disease Classification and Risk Stratification of MDS with Ring Sideroblasts. Clin Cancer Res 2023; 29:4256-4267. [PMID: 37498312 PMCID: PMC10570683 DOI: 10.1158/1078-0432.ccr-23-0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE Ring sideroblasts (RS) define the low-risk myelodysplastic neoplasm (MDS) subgroup with RS but may also reflect erythroid dysplasia in higher risk myeloid neoplasm. The benign behavior of MDS with RS (MDSRS+) is limited to SF3B1-mutated cases without additional high-risk genetic events, but one third of MDSRS+ carry no SF3B1 mutation, suggesting that different molecular mechanisms may underlie RS formation. We integrated genomic and transcriptomic analyses to evaluate whether transcriptome profiles may improve current risk stratification. EXPERIMENTAL DESIGN We studied a prospective cohort of MDSRS+ patients irrespective of World Health Organization (WHO) class with regard to somatic mutations, copy-number alterations, and bone marrow CD34+ cell transcriptomes to assess whether transcriptome profiles add to prognostication and provide input on disease classification. RESULTS SF3B1, SRSF2, or TP53 multihit mutations were found in 89% of MDSRS+ cases, and each mutation category was associated with distinct clinical outcome, gene expression, and alternative splicing profiles. Unsupervised clustering analysis identified three clusters with distinct hemopoietic stem and progenitor (HSPC) composition, which only partially overlapped with mutation groups. IPSS-M and the transcriptome-defined proportion of megakaryocyte/erythroid progenitors (MEP) independently predicted survival in multivariable analysis. CONCLUSIONS These results provide essential input on the molecular basis of SF3B1-unmutated MDSRS+ and propose HSPC quantification as a prognostic marker in myeloid neoplasms with RS.
Collapse
Affiliation(s)
- Gabriele Todisco
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Unit of Precision Hematology Oncology, IRCCS S. Matteo Hospital Foundation, Pavia, Italy
| | - Maria Creignou
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Phase I Unit, Center for Clinical Cancer Studies, Karolinska University Hospital, Stockholm, Sweden
| | - Elsa Bernard
- Computational Oncology Service, Department of Epidemiology & Biostatistics and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ann-Charlotte Björklund
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pedro Luis Moura
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bianca Tesi
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Teresa Mortera-Blanco
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Sander
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Monika Jansson
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Medical Unit Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Walldin
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Medical Unit Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Indira Barbosa
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Susanne E. Reinsbach
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Isabel Juliana Hofman
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christer Nilsson
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Medical Unit Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Tetsuichi Yoshizato
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marios Dimitriou
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David Chang
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Svannildur Olafsdottir
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sigita Venckute Larsson
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Tobiasson
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Medical Unit Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Unit of Precision Hematology Oncology, IRCCS S. Matteo Hospital Foundation, Pavia, Italy
| | - Petter Woll
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sten Eirik W. Jacobsen
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Elli Papaemmanuil
- Computational Oncology Service, Department of Epidemiology & Biostatistics and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eva Hellström-Lindberg
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Medical Unit Hematology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
47
|
Mukherjee S, Dong W, Schiltz NK, Stange KC, Cullen J, Gerds AT, Carraway HE, Singh A, Advani AS, Sekeres MA, Koroukian SM. Patterns of Diagnostic Evaluation and Determinants of Treatment in Older Patients With Non-transfusion Dependent Myelodysplastic Syndromes. Oncologist 2023; 28:901-910. [PMID: 37120291 PMCID: PMC10546824 DOI: 10.1093/oncolo/oyad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 03/20/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Older patients with myelodysplastic syndromes (MDS), particularly those with no or one cytopenia and no transfusion dependence, typically have an indolent course. Approximately, half of these receive the recommended diagnostic evaluation (DE) for MDS. We explored factors determining DE in these patients and its impact on subsequent treatment and outcomes. PATIENTS AND METHODS We used 2011-2014 Medicare data to identify patients ≥66 years of age diagnosed with MDS. We used Classification and Regression Tree (CART) analysis to identify combinations of factors associated with DE and its impact on subsequent treatment. Variables examined included demographics, comorbidities, nursing home status, and investigative procedures performed. We conducted a logistic regression analysis to identify correlates associated with receipt of DE and treatment. RESULTS Of 16 851 patients with MDS, 51% underwent DE. patients with MDS with no cytopenia (n = 3908) had the lowest uptake of DE (34.7%). Compared to patients with no cytopenia, those with any cytopenia had nearly 3 times higher odds of receiving DE [adjusted odds ratio (AOR), 2.81: 95% CI, 2.60-3.04] and the odds were higher for men than for women [AOR, 1.39: 95%CI, 1.30-1.48] and for Non-Hispanic Whites [vs. everyone else (AOR, 1.17: 95% CI, 1.06-1.29)]. The CART showed DE as the principal discriminating node, followed by the presence of any cytopenia for receiving MDS treatment. The lowest percentage of treatment was observed in patients without DE, at 14.6%. CONCLUSION In this select older patients with MDS, we identified disparities in accurate diagnosis by demographic and clinical factors. Receipt of DE influenced subsequent treatment but not survival.
Collapse
Affiliation(s)
- Sudipto Mukherjee
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Weichuan Dong
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Population Cancer Analytics Shared Resource, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Nicholas K Schiltz
- Frances P. Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | - Kurt C Stange
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jennifer Cullen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Aaron T Gerds
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hetty E Carraway
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Abhay Singh
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anjali S Advani
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mikkael A Sekeres
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Florida, Miami, FL, USA
| | - Siran M Koroukian
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Population Cancer Analytics Shared Resource, Case Comprehensive Cancer Center, Cleveland, OH, USA
| |
Collapse
|
48
|
Zhu Y, Han S, Chen X, Wu S, Xiong B. Improving the diagnosis of myelodysplastic syndrome by red blood cell parameters. Clin Transl Oncol 2023; 25:2983-2990. [PMID: 37081223 DOI: 10.1007/s12094-023-03166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE To investigate the value of red blood cell parameters in Myelodysplastic syndrome (MDS) diagnosis and their relations to MDS subtypes and risk groups. METHODS The red blood cell parameter [mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC) and red cell distribution width (RDW)] levels [203 MDS, 99 aplastic anemia (AA), 145 megaloblastic anemia (MA)] were collected from a single-center retrospective cohort. The cut-off values, area under the receiver operating characteristic curve (ROC) curve (AUC), sensitivity and specificity of the four parameters were calculated from the ROC. Furthermore, Kruskal-Wallis test and Dunn's Test were performed to determine erythrocyte parameters in different subtypes and prognostic risks MDS. RESULTS There are significant statistic differences in RDW (P < 0.001), MCH (P = 0.036) and MCHC (P < 0.001) (MDS vs AA); RDW (P = 0.009), MCV (P < 0.001), MCH (P < 0.001) and MCHC (P = 0.001) (MDS vs MA); MCV (P = 0.011) and MCH (P = 0.008) (higher-risk MDS vs lower-risk MDS). Between MDS and MA, the area under the receiver operating characteristic curve (ROC) curve (AUC) values of MCV, MCH, MCHC, RDW were 0.846, 0.855, 0.617, and 0.593. Between MDS and AA, the AUC values of MCH, MCHC, RDW were 0.609, 0.671, and 0.662, respectively. CONCLUSIONS The red blood cell parameters contribute to the differential diagnosis of MDS, AA and MA and are related to MDS subtypes and risk groups.
Collapse
Affiliation(s)
- Ying Zhu
- The Second Clinical School of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Suyang Han
- The Second Clinical School of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xue Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sanyun Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bei Xiong
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
49
|
Mo A, Wood E, Shortt J, Hu E, McQuilten Z. Platelet transfusions and predictors of bleeding in patients with myelodysplastic syndromes. Eur J Haematol 2023; 111:592-600. [PMID: 37452616 PMCID: PMC10952506 DOI: 10.1111/ejh.14049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVES This study aimed to describe the burden of thrombocytopenia, supportive care practices, bleeding complications and predictors of bleeding in MDS patients within a large Australian hospital network, to better understand the use and effectiveness of platelet transfusions in MDS. METHODS A retrospective cohort study of patients aged ≥18 years with MDS, chronic myelomonocytic leukaemia or MDS/myeloproliferative overlap neoplasm admitted from 2016 to 2018 was conducted. Data were obtained from hospital medical records. RESULTS One hundred seventy-nine patients (median age 78 years, 61.5% male) were identified. The median platelet count at first admission was 90 × 109 /L. Twenty-eight (15.6%) patients had severe thrombocytopenia (platelet count <20 × 109 /L), of whom nine (32.1%) received prophylactic platelet transfusions, five (17.9%) received tranexamic acid (TXA), seven (25%) received both platelet transfusions and TXA, and seven (25%) received no treatment. Bleeding events requiring hospitalisation occurred in 20 (11.2%) patients. Bleeding was not predicted by presenting platelet count, TXA use, platelet transfusion or anticoagulant/antiplatelet therapies. Three patients died of bleeding, at varying platelet counts (18, 38 and 153 × 109 /L). CONCLUSION Thrombocytopenia is common in MDS. Although guidelines recommend otherwise, prophylactic platelet transfusions were commonly used for severe thrombocytopenia. Despite the majority of patients receiving platelet transfusions and/or TXA, 11% developed major bleeding occurring at a wide range of platelet counts.
Collapse
Affiliation(s)
- Allison Mo
- Transfusion Research Unit, School of Public Health & Preventive MedicineMonash UniversityMelbourneVictoriaAustralia
- Monash HaematologyMonash HealthMelbourneVictoriaAustralia
- Austin Pathology and Department of HaematologyAustin HealthMelbourneVictoriaAustralia
| | - Erica Wood
- Transfusion Research Unit, School of Public Health & Preventive MedicineMonash UniversityMelbourneVictoriaAustralia
- Monash HaematologyMonash HealthMelbourneVictoriaAustralia
| | - Jake Shortt
- Monash HaematologyMonash HealthMelbourneVictoriaAustralia
- School of Clinical Sciences, Faculty of Medicine, Nursing & Health SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Erin Hu
- Pharmacy DepartmentMonash HealthMelbourneVictoriaAustralia
| | - Zoe McQuilten
- Transfusion Research Unit, School of Public Health & Preventive MedicineMonash UniversityMelbourneVictoriaAustralia
- Monash HaematologyMonash HealthMelbourneVictoriaAustralia
| |
Collapse
|
50
|
Haring Y, Goldschmidt N, Taha S, Stemer G, Filanovsky K, Hellman I, Okasha D, Krayem B, Levi I, Rosenbaum H, Koren-Michowitz M, Yagna S, Nemets A, Gino-Moor S, Saban R, Cohen J, Halperin E, Wolach O, Dally N, Merkel D, Oster HS, Mittelman M. MDS-Related Anemia Is Associated with Impaired Quality of Life but Improvement Is Not Always Achieved by Increased Hemoglobin Level. J Clin Med 2023; 12:5865. [PMID: 37762806 PMCID: PMC10532166 DOI: 10.3390/jcm12185865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Quality of life is impaired in MDS, but the role of hemoglobin level is unclear. To study the Hb-QoL correlation at diagnosis and 1 year later, patients filled out the EQ-5D questionnaire, assessing their mobility, self care, daily activities, pain/discomfort, and anxiety/depression, using scores of 0 (normal), 1 (mild/moderate), or 2 (poor). They also evaluated their health using a visual analogue scale, scoring from 0 (poor) to 100 (excellent). The anemia subgroups were: none/normal (Hb ≥ 12.5 g/dL), mild (10 ≤ Hb < 12.5), moderate (9 ≤ Hb < 10), severe (8 ≤ Hb < 9), or very severe (Hb < 8). LR-MDS patients (n = 127) and inpatient controls (n = 141) participated. The anemic patients had a poor QoL and the MDS patients had a lower QoL with a lower Hb. The controls had no QoL difference among the various anemia subgroups. In addition, the MDS QoL sharply decreased with an Hb of < 9. The MDS patients showed a wide QoL variability, i.e., different QoL scores in the same Hb subgroup, suggesting that other factors affect QoL (e.g., age and comorbidities). After 1 year (n = 61), the QoL was still poor for most MDS patients (including 27 patients with an increased Hb). In summary: (1) a poor QoL in MDS-anemia is non-linear, suggesting other influencing factors on QoL. (2) The sharp QoL drop with Hb < 9 g/dL challenges the transfusion Hb threshold. (3) The QoL in anemic MDS patients might differ from that in non-MDS patients. (4) Raising Hb, while recommended, does not guarantee an improved QoL.
Collapse
Affiliation(s)
- Yael Haring
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (Y.H.); (N.G.)
- MDS Center, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (S.T.); (D.M.)
| | - Noa Goldschmidt
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (Y.H.); (N.G.)
- MDS Center, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Shaimaa Taha
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (S.T.); (D.M.)
- Department of Internal Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Galia Stemer
- Galillee Medical Center, Bar-Ilan University, Nahariya 5290002, Israel;
| | | | | | - Doaa Okasha
- Haemek Medical Center, Afula 1834111, Israel;
| | - Baher Krayem
- Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Itai Levi
- Soroka Medical Center, Be’er Sheva 84101, Israel;
| | | | | | - Shai Yagna
- Baruch Pade-Poriya Medical Center, Tiberias 1528001, Israel
| | | | | | | | - Joseph Cohen
- Laniado Medical Center, Netanya 4290200, Israel;
| | - Erez Halperin
- Davidoff Cancer Center, Rabin Medical Center, Petah Tikva 4941492, Israel; (E.H.); (O.W.)
| | - Ofir Wolach
- Davidoff Cancer Center, Rabin Medical Center, Petah Tikva 4941492, Israel; (E.H.); (O.W.)
| | - Najib Dally
- Ziv Medical Center, Bar-Ilan University, Zefad 5290002, Israel;
| | - Drorit Merkel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (S.T.); (D.M.)
- MDS Center, Sheba Medical Center, Ramat Gan 5262000, Israel
| | - Howard S. Oster
- MDS Center, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (S.T.); (D.M.)
| | - Moshe Mittelman
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (Y.H.); (N.G.)
- MDS Center, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (S.T.); (D.M.)
| |
Collapse
|