1
|
Alvarez-Chávez AL, De Los Santos S, Coral-Vázquez RM, Méndez JP, Palma Flores C, Zambrano E, Canto P. (-)-Epicatechin treatment modify the expression of genes related to atrophy in gastrocnemius muscle of male rats obese by programing. J Dev Orig Health Dis 2024; 15:e21. [PMID: 39370974 DOI: 10.1017/s2040174424000187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The aim of this study is to determine if the offspring of mothers with obesity, present disorders in the expression of genes related to atrophy or protein synthesis in the muscle and if these disorders are modified with the (-)-epicatechin (Epi) treatment. Six male offspring per group were randomly assigned to the control groups [C and offspring of maternal obesity (MO)] or the Epi intervention groups, Epi treatment for 13 weeks (C + Epi long or MO + Epi long), or Epi administration for two weeks (C + Epi short or MO + Epi short). The effect of Epi in the gastrocnemius tissue was evaluated, analyzing mRNA and protein levels of Murf1, MAFbx, Foxo1, NFkB, and p70S6K-alpha. After the analysis by two-way ANOVA, we found an influence of the Epi long treatment over the model, by decreasing the Murf1 gene expression in both groups treated with the flavonoid (C + Epi long and MO + Epi long) (p = 0.036). Besides, Epi long treatment over the NFκB expression, by decreasing the fold increase in both groups treated with the flavonoid (C + Epi long and MO + Epi long) (p = 0.038). We not find any interaction between the variables or changes in the MAFbx, Foxo1 mRNA, neither in the phosphorylated/total protein ratio of NFκB, Foxo1, or p70S6K-alpha. In conclusions, treatment with a long protocol of Epi, reduces the mRNA of the muscle atrophy genes Murf 1 and NFkB, in the gastrocnemius muscle; however, these changes are not maintained at protein level.
Collapse
Affiliation(s)
- Ana Luisa Alvarez-Chávez
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Sergio De Los Santos
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Ramón Mauricio Coral-Vázquez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Juan Pablo Méndez
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Carlos Palma Flores
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Elena Zambrano
- Departamento de Biología de Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Patricia Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| |
Collapse
|
2
|
Tejeda ME, De Los Santos S, Coral-Vázquez RM, Álvarez-Chávez A, Palma Flores C, Zambrano E, Méndez JP, Canto P. (-)-epicatechin treatment did not modify the thermogenic pathway in the gastrocnemius muscle of male rat offspring obeses by programming. J Dev Orig Health Dis 2024; 15:e4. [PMID: 38500346 DOI: 10.1017/s2040174424000072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The aim of this study was to analyse the expression of genes related to the regulation of energy metabolism in skeletal muscle tissue by comparing male offspring in two age groups [at 110 and 245 postnatal days (pnd)] from a mother with obesity induced by a high-fat diet and (-)-epicatechin (Epi) administration. Four groups of six male offspring from different litters were randomly selected for the control groups [C and offspring of mothers with maternal obesity (MO)] or Epi intervention groups. We evaluated the effect of Epi on gastrocnemius tissue by analysing the mRNA and protein expression levels of Fndc5/irisin, Pgc-1α, Ucp3, and Sln. Epi significantly increased the Pgc-1α protein in the MO group of offspring at 110 pnd (p < 0.036, MO vs. MO+Epi), while at 245 pnd, Epi increased Fndc5/irisin mRNA expression in the MO+Epi group versus the MO group (p = 0.006).No differences were detected in Fndc5/irisin, Ucp3 or Sln mRNA or protein levels (including Pgc-1α mRNA) in the offspring at 110 pnd or in Pgc-1α, Ucp3, or Sln mRNA or protein levels (including Fndc5/irisin protein) at 245 pnd among the experimental groups. In conclusion, (-)-epicatechin treatment increased Fndc5/irisin mRNA expression and Pgc-α protein levels in the gastrocnemius muscle of offspring at postnatal days 110 and 245. Furthermore, it is suggested that the flavonoid effect in a model of obesity and its impact on thermogenesis in skeletal muscle are regulated by a different pathway than Fndc5/irisin.
Collapse
Affiliation(s)
- María Elena Tejeda
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Sergio De Los Santos
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Ramón Mauricio Coral-Vázquez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Ana Álvarez-Chávez
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Carlos Palma Flores
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Elena Zambrano
- Departamento de Biología de Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Juan Pablo Méndez
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Patricia Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| |
Collapse
|
3
|
Liu F, Zhang T, He Y, Zhan W, Xie Q, Lou B. Integration of transcriptome and proteome analyses reveals the regulation mechanisms of Larimichthys polyactis liver exposed to heat stress. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108704. [PMID: 36958506 DOI: 10.1016/j.fsi.2023.108704] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Small yellow croaker (Larimichthys polyactis) is one of the most economically important marine fishery species. L. polyactis aquaculture has experienced stress response and the frequent occurrence of diseases, bringing huge losses to the aquaculture industry. Little is known about the regulation mechanism of heat stress response in L. polyactis. In this study, to provide an overview of the heat-tolerance mechanism of L. polyactis, the transcriptome and proteome of the liver of L. polyactis on the 6 h after high temperature (32 °C) treatment were analyzed using Illumina HiSeq 4000 platform and isobaric tag for relative and absolute quantitation (iTRAQ). A total of 3700 upregulated and 1628 downregulated genes (differentially expressed genes, DEGs) were identified after heat stress in L. polyactis. Also, 198 differentially expressed proteins (DEPs), including 117 upregulated and 81 downregulated proteins, were identified. Integrative analysis revealed that 72 genes were significantly differentially expressed at transcriptome and protein levels. Functional analysis showed that arginine biosynthesis, tyrosine metabolism, pentose phosphate pathway, starch and sucrose metabolism, and protein processing in the endoplasmic reticulum were the main pathways responding to heat stress. Among the pathways, protein processing in the endoplasmic reticulum was enriched by most DEGs/DEPs, which suggests that this pathway may play a more important role in the heat stress response. Further insights into the pathway revealed that transcripts and proteins, especially HSPs and PDIs, were differentially expressed in response to heat stress. These findings contribute to existing data describing the fish response to heat stress and provide information about protein levels, which are of great significance to a deeper understanding of the heat stress responding regulation mechanism in L. polyactis and other fish species.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Tianle Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Yu He
- College of Life Sciences, Huzhou Normal University, Huzhou, 313000, China
| | - Wei Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qingping Xie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
4
|
Huang J, Swieringa F, Solari FA, Provenzale I, Grassi L, De Simone I, Baaten CCFMJ, Cavill R, Sickmann A, Frontini M, Heemskerk JWM. Assessment of a complete and classified platelet proteome from genome-wide transcripts of human platelets and megakaryocytes covering platelet functions. Sci Rep 2021; 11:12358. [PMID: 34117303 PMCID: PMC8196183 DOI: 10.1038/s41598-021-91661-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome-wide transcriptomes (57.8 k mRNAs). For 14.8 k protein-coding transcripts, we assigned the proteins to 21 UniProt-based classes, based on their preferential intracellular localization and presumed function. This classified transcriptome-proteome profile of platelets revealed: (i) Absence of 37.2 k genome-wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein-coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43-0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identified proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma-derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identified proteome of nuclear-related, membrane and signaling proteins, as well proteins with low-level transcripts. We then constructed a prediction model, based on protein function, transcript level and (peri)nuclear localization, and calculated the achievable proteome at ~ 10 k proteins. Model validation identified 1.0 k additional proteins in the predicted classes. Network and database analysis revealed the presence of 2.4 k proteins with a possible role in thrombosis and hemostasis, and 138 proteins linked to platelet-related disorders. This genome-wide platelet transcriptome and (non)identified proteome database thus provides a scaffold for discovering the roles of unknown platelet proteins in health and disease.
Collapse
Affiliation(s)
- Jingnan Huang
- Department of Biochemistry, CARIM, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-E.V, Dortmund, Germany.
| | - Frauke Swieringa
- Department of Biochemistry, CARIM, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-E.V, Dortmund, Germany
| | - Fiorella A Solari
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-E.V, Dortmund, Germany
| | - Isabella Provenzale
- Department of Biochemistry, CARIM, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Luigi Grassi
- Department of Haematology, University of Cambridge, National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge, UK
| | - Ilaria De Simone
- Department of Biochemistry, CARIM, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Constance C F M J Baaten
- Department of Biochemistry, CARIM, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH, Aachen, Germany
| | - Rachel Cavill
- Department of Data Science and Knowledge Engineering, FSE, Maastricht University, Maastricht, The Netherlands
| | - Albert Sickmann
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-E.V, Dortmund, Germany
- Medizinische Fakultät, Medizinische Proteom-Center, Ruhr-Universität Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge, UK
- Institute of Biomedical & Clinical Science, College of Medicine and Health, University of Exeter Medical School, Exeter, UK
| | - Johan W M Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
5
|
Gutmann C, Joshi A, Zampetaki A, Mayr M. The Landscape of Coding and Noncoding RNAs in Platelets. Antioxid Redox Signal 2021; 34:1200-1216. [PMID: 32460515 DOI: 10.1089/ars.2020.8139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Levels of platelet noncoding RNAs (ncRNAs) are altered by disease, and ncRNAs may exert functions inside and outside of platelets. Their role in physiologic hemostasis and pathologic thrombosis remains to be explored. Recent Advances: The number of RNA classes identified in platelets has been growing since the past decade. Apart from coding messenger RNAs, the RNA landscape in platelets comprises ncRNAs such as microRNAs, circular RNAs, long ncRNAs, YRNAs, and potentially environmentally derived exogenous ncRNAs. Recent research has focused on the function of platelet RNAs beyond platelets, mediated through protective RNA shuttles or even cellular uptake of entire platelets. Multiple studies have also explored the potential of platelet RNAs as novel biomarkers. Critical Issues: Platelet preparations can contain contaminating leukocytes. Even few leukocytes may contribute a substantial amount of RNA. As biomarkers, platelet RNAs have shown associations with platelet activation, but it remains to be seen whether their measurements could improve diagnostics. It also needs to be clarified whether platelet RNAs influence processes beyond platelets. Future Directions: Technological advances such as single-cell RNA-sequencing might help to identify hyperreactive platelet subpopulations on a single-platelet level, avoid the common problem of leukocyte contamination in platelet preparations, and allow simultaneous profiling of native megakaryocytes and their platelet progeny to clarify to what extent the platelet RNA content reflects their megakaryocyte precursors or changes in the circulation. Antioxid. Redox Signal. 34, 1200-1216.
Collapse
Affiliation(s)
- Clemens Gutmann
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Abhishek Joshi
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Anna Zampetaki
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| |
Collapse
|
6
|
Gutmann C, Joshi A, Mayr M. Platelet "-omics" in health and cardiovascular disease. Atherosclerosis 2020; 307:87-96. [PMID: 32646580 DOI: 10.1016/j.atherosclerosis.2020.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022]
Abstract
The importance of platelets for cardiovascular disease was established as early as the 19th century. Their therapeutic inhibition stands alongside the biggest achievements in medicine. Still, certain aspects of platelet pathophysiology remain unclear. This includes platelet resistance to antiplatelet therapy and the contribution of platelets to vascular remodelling and extends beyond cardiovascular disease to haematological disorders and cancer. To address these gaps in our knowledge, a better understanding of the underlying molecular processes is needed. This will be enabled by technologies that capture dysregulated molecular processes and can integrate them into a broader network of biological systems. The advent of -omics technologies, such as mass spectrometry proteomics, metabolomics and lipidomics; highly multiplexed affinity-based proteomics; microarray- or RNA-sequencing-(RNA-seq)-based transcriptomics, and most recently ribosome footprint-based translatomics, has enabled a more holistic understanding of platelet biology. Most of these methods have already been applied to platelets, and this review will summarise this information and discuss future developments in this area of research.
Collapse
Affiliation(s)
- Clemens Gutmann
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom
| | - Abhishek Joshi
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom.
| |
Collapse
|
7
|
Moritz CP, Mühlhaus T, Tenzer S, Schulenborg T, Friauf E. Poor transcript-protein correlation in the brain: negatively correlating gene products reveal neuronal polarity as a potential cause. J Neurochem 2019; 149:582-604. [PMID: 30664243 DOI: 10.1111/jnc.14664] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/15/2018] [Accepted: 01/02/2019] [Indexed: 01/02/2023]
Abstract
Transcription, translation, and turnover of transcripts and proteins are essential for cellular function. The contribution of those factors to protein levels is under debate, as transcript levels and cognate protein levels do not necessarily correlate due to regulation of translation and protein turnover. Here we propose neuronal polarity as a third factor that is particularly evident in the CNS, leading to considerable distances between somata and axon terminals. Consequently, transcript levels may negatively correlate with cognate protein levels in CNS regions, i.e., transcript and protein levels behave reciprocally. To test this hypothesis, we performed an integrative inter-omics study and analyzed three interconnected rat auditory brainstem regions (cochlear nuclear complex, CN; superior olivary complex, SOC; inferior colliculus, IC) and the rest of the brain as a reference. We obtained transcript and protein sets in these regions of interest (ROIs) by DNA microarrays and label-free mass spectrometry, and performed principal component and correlation analyses. We found 508 transcript|protein pairs and detected poor to moderate transcript|protein correlation in all ROIs, as evidenced by coefficients of determination from 0.34 to 0.54. We identified 57-80 negatively correlating gene products in the ROIs and intensively analyzed four of them for which the correlation was poorest. Three cognate proteins (Slc6a11, Syngr1, Tppp) were synaptic and hence candidates for a negative correlation because of protein transport into axon terminals. Thus, we systematically analyzed the negatively correlating gene products. Gene ontology analyses revealed overrepresented transport/synapse-related proteins, supporting our hypothesis. We present 30 synapse/transport-related proteins with poor transcript|protein correlation. In conclusion, our analyses support that protein transport in polar cells is a third factor that influences the protein level and, thereby, the transcript|protein correlation. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* and *Open Data* because it provided all relevant information to reproduce the study in the manuscript and because it made the data publicly available. The data can be accessed at https://osf.io/ha28n/. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Christian P Moritz
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany.,Synaptopathies and Autoantibodies, Institut NeuroMyoGène INSERM U1217/ CNRS, UMR 5310, Faculty of Medicine, University Jean Monnet, Saint-Étienne, France
| | - Timo Mühlhaus
- Computational Systems Biology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Schulenborg
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany.,Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
8
|
|
9
|
Zhang Q, Hu H, Liu H, Jin J, Zhu P, Wang S, Shen K, Hu Y, Li Z, Zhan P, Zhu S, Fan H, Zhang J, Lv T, Song Y. RNA sequencing enables systematic identification of platelet transcriptomic alterations in NSCLC patients. Biomed Pharmacother 2018; 105:204-214. [PMID: 29857300 DOI: 10.1016/j.biopha.2018.05.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/24/2018] [Accepted: 05/15/2018] [Indexed: 02/02/2023] Open
Abstract
Platelets are implicated as key players in the metastatic dissemination of tumor cells. Previous evidence demonstrated platelets retained cytoplasmic RNAs with physiologically activity, splicing pre-mRNA to mRNA and translating into functional proteins in response to external stimulation. Recently, platelets gene profile of healthy or diseased individuals were characterized with the help of RNA sequencing (RNA-Seq) in some studies, leading to new insights into the mechanisms underlying disease pathogenesis. In this study, we performed RNA-seq in platelets from 7 healthy individuals and 15 non-small cell lung cancer (NSCLC) patients. Our data revealed a subset of near universal differently expressed gene (DEG) profiles in platelets of metastatic NSCLC compared to healthy individuals, including 626 up-regulated RNAs (mRNAs and ncRNAs) and 1497 down-regulated genes. The significant over-expressed genes showed enrichment in focal adhesion, platelets activation, gap junction and adherens junction pathways. The DEGs also included previously reported tumor-related genes such as PDGFR, VEGF, EGF, etc., verifying the consistence and significance of platelet RNA-Seq in oncology study. We also validated several up-regulated DEGs involved in tumor cell-induced platelet aggregation (TCIPA) and tumorigenesis. Additionally, transcriptomic comparison analyses of NSCLC subgroups were conducted. Between non-metastatic and metastatic NSCLC patients, 526 platelet DEGs were identified with the most altered expression. The outcomes from subgroup analysis between lung adenocarcinoma and lung squamous cell carcinoma demonstrated the diagnostic potential of platelet RNA-Seq on distinguishing tumor histological types.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Huan Hu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Hongda Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jiajia Jin
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, 210002, China
| | - Peiyuan Zhu
- Department of Blood Transfusion, Jinling Hospital, Nanjing, 210002, China
| | - Shujun Wang
- Department of Blood Transfusion, Jinling Hospital, Nanjing, 210002, China
| | - Kaikai Shen
- Department of Respiratory Medicine, Jinling Hospital, Wannan Medical College, Wuhu, Anhui, China
| | - Yangbo Hu
- Department of Respiratory Medicine, Jinling Hospital, Southeast University School of Medicine, Nanjing, 210002, China
| | - Zhou Li
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Suhua Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Hang Fan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Jianya Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.
| |
Collapse
|
10
|
Zhang Q, Liu H, Zhu Q, Zhan P, Zhu S, Zhang J, Lv T, Song Y. Patterns and functional implications of platelets upon tumor "education". Int J Biochem Cell Biol 2017; 90:68-80. [PMID: 28754316 DOI: 10.1016/j.biocel.2017.07.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/23/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022]
Abstract
While platelets are traditionally recognized to play a predominant role in hemostasis and thrombosis, increasing evidence verifies its involvement in malignancies. As a component of the tumor microenvironment, platelets influence carcinogenesis, tumor metastasis and chemotherapy efficiency. Platelets status is thus predictable as a hematological biomarker of cancer prognosis and a hot target for therapeutic intervention. On the other hand, the role of circulating tumor cells (CTCs) as an inducer of platelet activation and aggregation has been well acknowledged. The cross-talk between platelets and CTCs is reciprocal on that the CTCs activate platelets while platelets contribute to CTCs' survival and dissemination. This review covers some of the current issues related to the loop between platelets and tumor aggression, including the manners of tumor cells in "educating" platelets and biofunctional alterations of platelets upon tumor "education". We also highlight the potential clinical applications on the interplay between tumors and platelets. Further studies with well-designed prospective multicenter trials may contribute to clinical "liquid biopsy" diagnosis by evaluating the global changes of platelets.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Hongda Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Qingqing Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Suhua Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Jianya Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China.
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China.
| |
Collapse
|
11
|
Mills EW, Green R, Ingolia NT. Slowed decay of mRNAs enhances platelet specific translation. Blood 2017; 129:e38-e48. [PMID: 28213379 PMCID: PMC5409447 DOI: 10.1182/blood-2016-08-736108] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/31/2016] [Indexed: 11/20/2022] Open
Abstract
Platelets are anucleate cytoplasmic fragments that lack genomic DNA, but continue to synthesize protein using a pool of messenger RNAs (mRNAs), ribosomes, and regulatory small RNAs inherited from the precursor megakaryocyte (MK). The regulatory processes that shape the platelet transcriptome and the full scope of platelet translation have remained elusive. Using RNA sequencing (RNA-Seq) and ribosome profiling of primary human platelets, we show the platelet transcriptome encompasses a subset of transcripts detected by RNA-Seq analysis of in vitro-derived MK cells and that these platelet-enriched transcripts are broadly occupied by ribosomes. We use RNA-Seq of synchronized populations of in vitro-derived platelet-like particles to show that mRNA decay strongly shapes the nascent platelet transcriptome. Our data suggest that the decay of platelet mRNAs is slowed by the natural loss of the mRNA surveillance and ribosome rescue factor Pelota.
Collapse
Affiliation(s)
- Eric W Mills
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD; and
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nicholas T Ingolia
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD; and
- Department of Molecular Cell Biology, Center for RNA Systems Biology, Glenn Center for Aging Research, University of California Berkeley, Berkeley, CA
| |
Collapse
|
12
|
Pienimaeki‐Roemer A, Konovalova T, Musri MM, Sigruener A, Boettcher A, Meister G, Schmitz G. Transcriptomic profiling of platelet senescence and platelet extracellular vesicles. Transfusion 2016; 57:144-156. [DOI: 10.1111/trf.13896] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 07/09/2016] [Accepted: 07/17/2016] [Indexed: 12/12/2022]
Affiliation(s)
| | - Tatiana Konovalova
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic of Regensburg
| | - Melina M. Musri
- Institute for Biochemistry I, Faculty of Biology and Preclinical Medicine, University of RegensburgRegensburg Germany
| | - Alexander Sigruener
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic of Regensburg
| | - Alfred Boettcher
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic of Regensburg
| | - Gunter Meister
- Institute for Biochemistry I, Faculty of Biology and Preclinical Medicine, University of RegensburgRegensburg Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic of Regensburg
| |
Collapse
|
13
|
Nishigori M, Yagi H, Mochiduki A, Minamino N. Multiomics approach to identify novel biomarkers for dilated cardiomyopathy: Proteome and transcriptome analyses of 4C30 dilated cardiomyopathy mouse model. Biopolymers 2016; 106:491-502. [DOI: 10.1002/bip.22809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/08/2015] [Accepted: 01/08/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Mitsuhiro Nishigori
- Department of Molecular Pharmacology; National Cerebral and Cardiovascular Center Research Institute; Suita Osaka Japan
| | - Hiroaki Yagi
- Department of Molecular Pharmacology; National Cerebral and Cardiovascular Center Research Institute; Suita Osaka Japan
| | - Akikazu Mochiduki
- Department of Molecular Pharmacology; National Cerebral and Cardiovascular Center Research Institute; Suita Osaka Japan
| | - Naoto Minamino
- Department of Molecular Pharmacology; National Cerebral and Cardiovascular Center Research Institute; Suita Osaka Japan
| |
Collapse
|
14
|
Circular RNA enrichment in platelets is a signature of transcriptome degradation. Blood 2015; 127:e1-e11. [PMID: 26660425 DOI: 10.1182/blood-2015-06-649434] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023] Open
Abstract
In platelets, splicing and translation occur in the absence of a nucleus. However, the integrity and stability of mRNAs derived from megakaryocyte progenitor cells remain poorly quantified on a transcriptome-wide level. As circular RNAs (circRNAs) are resistant to degradation by exonucleases, their abundance relative to linear RNAs can be used as a surrogate marker for mRNA stability in the absence of transcription. Here we show that circRNAs are enriched in human platelets 17- to 188-fold relative to nucleated tissues and 14- to 26-fold relative to samples digested with RNAse R to selectively remove linear RNA. We compare RNAseq read depths inside and outside circRNAs to provide in silico evidence of transcript circularity, show that exons within circRNAs are enriched on average 12.7 times in platelets relative to nucleated tissues and identify 3162 genes significantly enriched for circRNAs, including some where all RNAseq reads appear to be derived from circular molecules. We also confirm that this is a feature of other anucleate cells through transcriptome sequencing of mature erythrocytes, demonstrate that circRNAs are not enriched in cultured megakaryocytes, and demonstrate that linear RNAs decay more rapidly than circRNAs in platelet preparations. Collectively, these results suggest that circulating platelets have lost >90% of their progenitor mRNAs and that translation in platelets occurs against the backdrop of a highly degraded transcriptome. Finally, we find that transcripts previously classified as products of reverse transcriptase template switching are both enriched in platelets and resistant to decay, countering the recent suggestion that up to 50% of rearranged RNAs are artifacts.
Collapse
|
15
|
Best MG, Sol N, Kooi I, Tannous J, Westerman BA, Rustenburg F, Schellen P, Verschueren H, Post E, Koster J, Ylstra B, Ameziane N, Dorsman J, Smit EF, Verheul HM, Noske DP, Reijneveld JC, Nilsson RJA, Tannous BA, Wesseling P, Wurdinger T. RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics. Cancer Cell 2015; 28:666-676. [PMID: 26525104 PMCID: PMC4644263 DOI: 10.1016/j.ccell.2015.09.018] [Citation(s) in RCA: 577] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/02/2015] [Accepted: 09/25/2015] [Indexed: 12/12/2022]
Abstract
Tumor-educated blood platelets (TEPs) are implicated as central players in the systemic and local responses to tumor growth, thereby altering their RNA profile. We determined the diagnostic potential of TEPs by mRNA sequencing of 283 platelet samples. We distinguished 228 patients with localized and metastasized tumors from 55 healthy individuals with 96% accuracy. Across six different tumor types, the location of the primary tumor was correctly identified with 71% accuracy. Also, MET or HER2-positive, and mutant KRAS, EGFR, or PIK3CA tumors were accurately distinguished using surrogate TEP mRNA profiles. Our results indicate that blood platelets provide a valuable platform for pan-cancer, multiclass cancer, and companion diagnostics, possibly enabling clinical advances in blood-based "liquid biopsies".
Collapse
Affiliation(s)
- Myron G Best
- Department of Pathology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Neurosurgery, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Nik Sol
- Department of Neurology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Irsan Kooi
- Department of Clinical Genetics, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Jihane Tannous
- Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Bart A Westerman
- Department of Neurosurgery, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - François Rustenburg
- Department of Pathology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Neurosurgery, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Pepijn Schellen
- Department of Neurosurgery, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; thromboDx B.V., 1098 EA Amsterdam, the Netherlands
| | - Heleen Verschueren
- Department of Neurosurgery, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; thromboDx B.V., 1098 EA Amsterdam, the Netherlands
| | - Edward Post
- Department of Neurosurgery, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; thromboDx B.V., 1098 EA Amsterdam, the Netherlands
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Najim Ameziane
- Department of Clinical Genetics, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Josephine Dorsman
- Department of Clinical Genetics, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Egbert F Smit
- Department of Pulmonary Diseases, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Henk M Verheul
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - David P Noske
- Department of Neurosurgery, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Jaap C Reijneveld
- Department of Neurology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - R Jonas A Nilsson
- Department of Neurosurgery, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; thromboDx B.V., 1098 EA Amsterdam, the Netherlands; Department of Radiation Sciences, Oncology, Umeå University, 90185 Umeå, Sweden
| | - Bakhos A Tannous
- Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Pathology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA; thromboDx B.V., 1098 EA Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Herter JM, Rossaint J, Zarbock A. Platelets in inflammation and immunity. J Thromb Haemost 2014; 12:1764-75. [PMID: 25224706 DOI: 10.1111/jth.12730] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/01/2014] [Indexed: 02/06/2023]
Abstract
The paradigm of platelets as mere mediators of hemostasis has long since been replaced by a dual role: hemostasis and inflammation. Now recognized as key players in innate and adaptive immune responses, platelets have the capacity to interact with almost all known immune cells. These platelet-immune cell interactions represent a hallmark of immunity, as they can potently enhance immune cell functions and, in some cases, even constitute a prerequisite for host defense mechanisms such as NETosis. In addition, recent studies have revealed a new role for platelets in immunity: They are ubiquitous sentinels and rapid first-line immune responders, as platelet-pathogen interactions within the vasculature appear to precede all other host defense mechanisms. Here, we discuss recent advances in our understanding of platelets as inflammatory cells, and provide an exemplary review of their role in acute inflammation.
Collapse
Affiliation(s)
- J M Herter
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
17
|
Hubertus K, Mischnik M, Timmer J, Herterich S, Mark R, Moulard M, Walter U, Geiger J. Reciprocal regulation of human platelet function by endogenous prostanoids and through multiple prostanoid receptors. Eur J Pharmacol 2014; 740:15-27. [PMID: 25003953 DOI: 10.1016/j.ejphar.2014.06.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 11/18/2022]
Abstract
Platelets are permanently exposed to a variety of prostanoids formed by blood cells or the vessel wall. The two major prostanoids, prostacyclin and thromboxane act through well established pathways mediated by their respective G-protein coupled receptors inhibiting or promoting platelet aggregation accordingly. Yet the role of other prostanoids and prostanoid receptors for platelet function regulation has not been thoroughly investigated. We aimed at a comprehensive analysis of prostanoid effects on platelets, the receptors and pathways involved and functional consequences. We analyzed cAMP formation and phosphorylation of proteins pivotal to platelet function as well as functional platelet responses such as secretion, aggregation and phosphorylation. The types of prostanoid receptors contributing and their individual share in signaling pathways were analyzed and indicated a major role for prostanoid IP1 and DP1 receptors followed by prostanoid EP4 and EP3 receptors while prostanoid EP2 receptors appear less relevant. We could show for the first time the reciprocal action of the endogenous prostaglandin PGE2 on platelets by functional responses and phosphorylation events. PGE2 evokes stimulatory as well as inhibitory effects in a concentration dependent manner in platelets via prostanoid EP3 or EP4 and prostanoid DP1 receptors. A mathematical model integrating the pathway components was established which successfully reproduces the observed platelet responses. Additionally we could show that human platelets themselves produce sufficient PGE2 to act in an autocrine or paracrine fashion. These mechanisms may provide a fine tuning of platelet responses in the circulating blood by either promoting or limiting endogenous platelet activation.
Collapse
Affiliation(s)
- Katharina Hubertus
- Institute for Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Marcel Mischnik
- Institut für Physik, University of Freiburg, Freiburg, Germany
| | - Jens Timmer
- Institut für Physik, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Sabine Herterich
- Institute for Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Regina Mark
- Institute for Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Wuerzburg, Germany
| | | | - Ulrich Walter
- Center for Thrombosis & Haemostasis, Universitätsklinikum der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Joerg Geiger
- Institute for Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Wuerzburg, Germany; Interdisciplinary Bank of Biomaterials and Data Wuerzburg, Straubmuehlweg 2a, 97078 Wuerzburg, Germany.
| |
Collapse
|
18
|
Burkhart JM, Gambaryan S, Watson SP, Jurk K, Walter U, Sickmann A, Heemskerk JWM, Zahedi RP. What can proteomics tell us about platelets? Circ Res 2014; 114:1204-19. [PMID: 24677239 DOI: 10.1161/circresaha.114.301598] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
More than 130 years ago, it was recognized that platelets are key mediators of hemostasis. Nowadays, it is established that platelets participate in additional physiological processes and contribute to the genesis and progression of cardiovascular diseases. Recent data indicate that the platelet proteome, defined as the complete set of expressed proteins, comprises >5000 proteins and is highly similar between different healthy individuals. Owing to their anucleate nature, platelets have limited protein synthesis. By implication, in patients experiencing platelet disorders, platelet (dys)function is almost completely attributable to alterations in protein expression and dynamic differences in post-translational modifications. Modern platelet proteomics approaches can reveal (1) quantitative changes in the abundance of thousands of proteins, (2) post-translational modifications, (3) protein-protein interactions, and (4) protein localization, while requiring only small blood donations in the range of a few milliliters. Consequently, platelet proteomics will represent an invaluable tool for characterizing the fundamental processes that affect platelet homeostasis and thus determine the roles of platelets in health and disease. In this article we provide a critical overview on the achievements, the current possibilities, and the future perspectives of platelet proteomics to study patients experiencing cardiovascular, inflammatory, and bleeding disorders.
Collapse
Affiliation(s)
- Julia M Burkhart
- From the Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (J.M.B., A.S., R.P.Z); Institut für Klinische Biochemie und Pathobiochemie, Universitätsklinikum Würzburg, Würzburg, Germany (S.G.); Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia (S.G.); Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.P.W.); Center for Thrombosis and Hemostasis, Universitätsklinikum der Johannes Gutenberg-Universität Mainz, Mainz, Germany (K.J., U.W.); Medizinisches Proteom Center, Ruhr Universität Bochum, Bochum, Germany (A.S.); Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom (A.S.); and Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands (J.W.M.H.)
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Londin ER, Hatzimichael E, Loher P, Edelstein L, Shaw C, Delgrosso K, Fortina P, Bray PF, McKenzie SE, Rigoutsos I. The human platelet: strong transcriptome correlations among individuals associate weakly with the platelet proteome. Biol Direct 2014; 9:3. [PMID: 24524654 PMCID: PMC3937023 DOI: 10.1186/1745-6150-9-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND For the anucleate platelet it has been unclear how well platelet transcriptomes correlate among different donors or across different RNA profiling platforms, and what the transcriptomes' relationship is with the platelet proteome. We profiled the platelet transcriptome of 10 healthy young males (5 white and 5 black) with no notable clinical history using RNA sequencing and by Affymetrix microarray. RESULTS We found that the abundance of platelet mRNA transcripts was highly correlated across the 10 individuals, independently of race and of the employed technology. Our RNA-seq data showed that these high inter-individual correlations extend beyond mRNAs to several categories of non-coding RNAs. Pseudogenes represented a notable exception by exhibiting a difference in expression by race. Comparison of our mRNA signatures to a publicly available quantitative platelet proteome showed that most (87.5%) identified platelet proteins had a detectable corresponding mRNA. However, a high number of mRNAs that were present in the transcriptomes of all 10 individuals had no representation in the proteome. Spearman correlations of the relative abundances for those genes represented by both an mRNA and a protein showed a weak (~0.3) connection. Further analysis of the overlapping and non-overlapping platelet mRNAs and proteins identified gene groups corresponding to distinct cellular processes. CONCLUSIONS The results of our analyses provide novel insights for platelet biology, show only a weak connection between the platelet transcriptome and proteome, and indicate that it is feasible to assemble a platelet mRNA-ome that can serve as a reference for future platelet transcriptomic studies of human health and disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|