1
|
Mato S, Castrejón-de-Anta N, Colmenero A, Carità L, Salmerón-Villalobos J, Ramis-Zaldivar JE, Nadeu F, Garcia N, Wang L, Verdú-Amorós J, Andrés M, Conde N, Celis V, Ortega MJ, Galera A, Astigarraga I, Perez-Alonso V, Quiroga E, Jiang A, Scott DW, Campo E, Balagué O, Salaverria I. MYC-rearranged mature B-cell lymphomas in children and young adults are molecularly Burkitt Lymphoma. Blood Cancer J 2024; 14:171. [PMID: 39375391 PMCID: PMC11458770 DOI: 10.1038/s41408-024-01153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Aggressive B-cell non-Hodgkin lymphomas (NHL) in children, adolescents, and young adults (CAYA) include Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), and a subset of high-grade tumors with features intermediate between these entities whose genetic and molecular profiles have not been completely elucidated. In this study, we have characterized 37 aggressive B-NHL in CAYA, 33 with high-grade morphology, and 4 DLBCL with MYC rearrangement (MYC-R), using targeted next-generation sequencing and the aggressive lymphoma gene expression germinal center B-cell-like (GCB), activated B-cell-like (ABC), and dark zone signatures (DZsig). Twenty-two tumors had MYC-R without BCL2 breaks, and two MYC-non-R cases had BCL6 translocations. MYC-R cases, including DLBCL, carried BL-related mutations and copy number alterations. Conversely, MYC-non-R lymphomas had alterations in the B-cell receptor signaling/NF-κB pathway (71%). DZsig was expressed in 12/13 of MYC-R tumors but only in 2/10 of MYC-non-R GCB tumors (P < 0.001). The 3-year event-free survival (EFS) of the whole cohort was 79.6%. TP53 and KMT2C mutations conferred inferior outcome (3-year EFS P < 0.05). Overall, MYC-R lymphomas in CAYA have a molecular profile similar to BL regardless of their high-grade or DLBCL morphology, whereas MYC-non-R has more heterogeneous genetic alterations closer to that of DLBCL.
Collapse
Affiliation(s)
- Sara Mato
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Natalia Castrejón-de-Anta
- University of Barcelona (UB), Barcelona, Spain
- Hematopathology Section, Laboratory of Pathology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Ariadna Colmenero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Lorenzo Carità
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Joan Enric Ramis-Zaldivar
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Noelia Garcia
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Luojun Wang
- Hematopathology Section, Laboratory of Pathology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Jaime Verdú-Amorós
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Pediatric Oncology Department, Hospital Clínico Universitario, Biomedical Research Institute INCLIVA de Valencia, Valencia, Spain
| | - Mara Andrés
- Pediatric Oncology Department, Hospital La Fe, Valencia, Spain
| | - Nuria Conde
- Pediatric Oncology Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Verónica Celis
- Pediatric Oncology Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Maria José Ortega
- Pediatric Oncology Department, Hospital Virgen de las Nieves, Granada, Spain
| | - Ana Galera
- Pediatric Oncohematology Department, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Itziar Astigarraga
- Pediatric Oncology Unit, Hospital Universitario Cruces Osakidetza, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Vanesa Perez-Alonso
- Pediatric Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Eduardo Quiroga
- Pediatric Oncology Department, Hospital Virgen del Rocio, Sevilla, Spain
| | - Aixiang Jiang
- BC Cancer's Centre for Lymphoid, Vancouver, BC, Canada
| | - David W Scott
- BC Cancer's Centre for Lymphoid, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
- Hematopathology Section, Laboratory of Pathology, Hospital Clinic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Olga Balagué
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- University of Barcelona (UB), Barcelona, Spain.
- Hematopathology Section, Laboratory of Pathology, Hospital Clinic de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
2
|
Chang J, Liang Y, Gao Y, Wu M, Lv F, Liu H, Sun L, Yue Z, Meng L, Zhang Y, Jin M. High-grade B-cell lymphoma with 11q aberration in the HIV setting: a clinicopathological study of 10 cases and literature review. Infect Agent Cancer 2024; 19:42. [PMID: 39261841 PMCID: PMC11391791 DOI: 10.1186/s13027-024-00604-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
High-grade B-cell lymphoma with 11q aberration (HGBL-11q) is a distinct lymphoma entity according to the 5th edition of the WHO classification of hematolymphoid tumors. It lacks MYC translocation but carries proximal gains and/or telomeric losses of chromosome 11q. This rare type of B-cell lymphoma is less frequently reported in people living with HIV (PLWH), and its exact frequency remains unclear. Our goal was to retrospectively analyze its frequency in a cohort of aggressive B-cell lymphomas in PLWH, including Burkitt lymphoma (BL, n = 35), diffuse large B-cell lymphoma (DLBCL, n = 48), high-grade B-cell lymphoma, not otherwise specified (HGBL-NOS, n = 13), which was diagnosed as AIDS-related lymphoma (ARL) at our institution. In total, 10/96 (10.4%) cases harbored the typical 11q aberration pattern, predominantly those that had been classified as BL (6/35, 17.1%), DLBCL (2/48, 4.2%), and HGBL, NOS (2/13, 15.4%). We also evaluated 7 cases of AIDS-related HGBL-11q (AR-HGBL-11q) reported in the literature. The median age of our cohort was 35 years, and all the patients were male. Most cases (70%) had a history of HIV infection for over 1 year, and all were involved in lymph nodes (100%), frequently involved extranodal sites (60%), and Ann Arbor stage III/IV. In histomorphology, the cases exhibited diverse cytological features, reminiscent of BL (6 cases), DLBCL (2 cases), and HGBL (2 cases). A comparison of the combined cohort of 17 AR-HGBL-11q cases with 11 ARL cases that lacked both MYC rearrangement and 11q aberration at our institution showed that HGBL-11q cases were characterized by strikingly coarse apoptotic debris (P < 0.001), background rich in eosinophils (P = 0.002), higher expression of the germinal centre marker LMO2 (P = 0.080), lower expression of MUM1 (P = 0.004), BCL2 (P = 0.007), and LEF1 (P = 0.080), and lower positivity for EBER in situ hybridisation (P = 0.027). Notably, one case in our series was EBV-positive, a finding not previously reported in the literature. Furthermore, comparing the prognosis between these two groups, AR-HGBL-11q showed a relatively favorable prognosis (P = 0.15), although the difference was not statistically significant. We analyzed this rare lymphoma entity in the HIV setting and highlighted the importance of integrating histomorphological and immunophenotypic features in its diagnosis and classification.
Collapse
Affiliation(s)
- Jing Chang
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ying Liang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuxue Gao
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Menghua Wu
- Department of Urology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fudong Lv
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hui Liu
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lin Sun
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhujun Yue
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lingjia Meng
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Mulan Jin
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Brand MVD, Tzankov A, Scheijde-Vermeulen M, Barbé E, Dirnhofer S, Stenner F, Hebeda K, Chamuleau M, Jong DD. The diagnosis of Burkitt lymphoma: how do pathologists apply criteria in daily practice? Leuk Lymphoma 2024:1-4. [PMID: 39205632 DOI: 10.1080/10428194.2024.2396542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Michiel van den Brand
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
- Pathology-DNA, location Rijnstate Hospital, Arnhem, the Netherlands
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Ellis Barbé
- Department of Pathology, AmsterdamUMC, location VU University Medical Center, Amsterdam, the Netherlands
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Frank Stenner
- Department of Oncology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Konnie Hebeda
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martine Chamuleau
- Department of Haematology, AmsterdamUMC, location VU University Medical Center, Amsterdam, the Netherlands
| | - Daphne de Jong
- Department of Pathology, AmsterdamUMC, location VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Sun W, Huang A, Wen S, Yang R, Liu X. Temporal Assessment of Protein Stability in Dried Blood Spots. J Proteome Res 2024; 23:3585-3597. [PMID: 38950347 DOI: 10.1021/acs.jproteome.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The use of protein biomarkers in blood for clinical settings is limited by the cost and accessibility of traditional venipuncture sampling. The dried blood spot (DBS) technique offers a less invasive and more accessible alternative. However, protein stability in DBS has not been well evaluated. Herein, we deployed a quantitative LC-MS/MS system to construct proteomic atlases of whole blood, DBSs, plasma, and blood cells. Approximately 4% of detected proteins' abundance was significantly altered during blood drying into blood spots, with overwhelming disturbances in cytoplasmic fraction. We also reported a novel finding suggesting a decrease in the level of membrane/cytoskeletal proteins (SLC4A1, RHAG, DSC1, DSP, and JUP) and an increase in the level of proteins (ATG3, SEC14L4, and NRBP1) related to intracellular trafficking. Furthermore, we identified 19 temporally dynamic proteins in DBS samples stored at room temperature for up to 6 months. There were three declined cytoskeleton-related proteins (RDX, SH3BGRL3, and MYH9) and four elevated proteins (XPO7, RAN, SLC2A1, and SLC29A1) involved in cytoplasmic transport as representatives. The instability was governed predominantly by hydrophilic proteins and enhanced significantly with an increasing storage time. Our analyses provide comprehensive knowledge of both short- and long-term storage stability of DBS proteins, forming the foundation for the widespread use of DBS in clinical proteomics and other analytical applications.
Collapse
Affiliation(s)
- Weifen Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science Ministry of Justice, Shanghai 200063, China
| | - Ao Huang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science Ministry of Justice, Shanghai 200063, China
- Department of Forensic Science, Medical School of Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Shubo Wen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science Ministry of Justice, Shanghai 200063, China
- Department of Forensic Science, Medical School of Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Ruicong Yang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science Ministry of Justice, Shanghai 200063, China
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Xiling Liu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science Ministry of Justice, Shanghai 200063, China
| |
Collapse
|
5
|
Ho CC, Naresh K, Liu Y, Wu Y, Gopal AK, Eckel AM. Assessment for 11q and other chromosomal aberrations in large B-cell/high-grade B cell lymphomas of germinal center phenotype lacking BCL2 expression. Cancer Genet 2024; 284-285:30-33. [PMID: 38520765 DOI: 10.1016/j.cancergen.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/05/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The WHO classifications of hematolymphoid malignancies have recognized several distinct entities within the large B cell lymphomas, including the more recently described high-grade B cell lymphoma with 11q aberration (HGBCL-11q). We utilized genomic array to assess for chromosome 11q abnormalities in a broad set of aggressive B cell lymphomas from 27 patients with a focus on younger adults. The findings suggest more frequent alterations of 11q in diffuse large B cell lymphoma (DLBCL)/HGBCL-GC BCL2-, in comparison to cases of Burkitt lymphoma (BL) or DLBCL-GC BCL2+, and confirm a low genomic complexity score of BL. Variability identified in patterns of 11q alterations suggests genomic array studies may afford value over FISH testing as we continue to understand HGBCL-11q as a distinct entity, and interrogate cases of DLBCL/HGBCL-GC BCL2-.
Collapse
Affiliation(s)
- Chia-Chen Ho
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St. Box 357470, Seattle, WA, USA; Fred Hutchinson Cancer Center, Clinical Research Division, 1100 Fairview Avenue N., Seattle, WA 98109, USA
| | - Kikkeri Naresh
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St. Box 357470, Seattle, WA, USA; Fred Hutchinson Cancer Center, Clinical Research Division, 1100 Fairview Avenue N., Seattle, WA 98109, USA
| | - Yajuan Liu
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St. Box 357470, Seattle, WA, USA
| | - Yu Wu
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St. Box 357470, Seattle, WA, USA
| | - Ajay K Gopal
- Fred Hutchinson Cancer Center, Clinical Research Division, 1100 Fairview Avenue N., Seattle, WA 98109, USA; Division of Medical Oncology, Department of Medicine, University of Washington, Fred Hutchinson Cancer Center, 825 Eastlake Ave. E, 98109-1023, Seattle, WA, USA
| | - Ashley M Eckel
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St. Box 357470, Seattle, WA, USA.
| |
Collapse
|
6
|
Attygalle AD, Chan JKC, Coupland SE, Du MQ, Ferry JA, de Jong D, Gratzinger D, Lim MS, Nicolae A, Ott G, Rosenwald A, Schuh A, Siebert R. What is new in the 5th edition of the World Health Organization classification of mature B and T/NK cell tumors and stromal neoplasms? J Hematop 2024; 17:71-89. [PMID: 38683440 DOI: 10.1007/s12308-024-00585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
The classification of tumors is essential in the diagnosis and clinical management of patients with malignant neoplasms. The World Health Organization (WHO) provides a globally applicable classification scheme of neoplasms and it was updated several times. In this review, we briefly outline the cornerstones of the upcoming 5th edition of the World Health Organization Classification of Haematolymphoid Tumours on lymphoid neoplasms. As is adopted throughout the 5th edition of the WHO classification of tumors of all organ systems, entities are listed by a hierarchical system. For the first time, tumor-like lesions have been included in the classification, and modifications of nomenclature for some entities, revisions of diagnostic criteria or subtypes, deletion of certain entities, and introduction of new entities are presented along with mesenchymal lesions specific to the stroma of lymph nodes and the spleen. In addition to specific outlines on constitutional and somatic genetic changes associated with given entities, a separate chapter on germline predisposition syndromes related to hematologic neoplasms has been added.
Collapse
Affiliation(s)
- Ayoma D Attygalle
- Department of Histopathology, The Royal Marsden Hospital, London, SW3 6JJ, UK
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Sarah E Coupland
- Department of Molecular and Clinical Cancer Medicine, ISMIB, University of Liverpool, Liverpool, UK
- Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Ming-Qing Du
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Judith A Ferry
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
| | - Daphne de Jong
- Department of Pathology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Dita Gratzinger
- Department of Pathology, Stanford University School of Medicine, Stanford, USA
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Alina Nicolae
- Department of Pathology, Hautepierre, University Hospital of Strasbourg, Strasbourg, France
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Auerbachstr. 110, 70376, Stuttgart, Germany.
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- Cancer Center Mainfranken, Würzburg, Germany
| | - Anna Schuh
- Department of Oncology, University of Oxford, Oxford, UK
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
7
|
Crane GM. Cancer Biomarkers V: Update on B-Cell Lymphoma Biomarkers. Arch Pathol Lab Med 2024; 148:e90-e95. [PMID: 37776258 DOI: 10.5858/arpa.2023-0056-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 10/02/2023]
Abstract
CONTEXT Pathologists play an increasingly critical role in optimizing testing on scant specimens to ensure patients not only receive a correct and timely diagnosis, but also that the appropriate evaluation of biologic markers, or "biomarkers," is performed to inform prognosis and best guide therapeutic options. Advances in biomarkers have been particularly impactful in the field of hematopathology, where the identification of cytogenetic abnormalities, specific mutations, morphologic features, and/or protein expression may help guide clinical decision-making, including type and intensity of therapy and eligibility for clinical trials. OBJECTIVE To stay up to date with advances in relevant biomarkers for diagnosis, prognosis, and therapy. The Cancer Biomarkers Conference (CBC) has been developed as a highly focused meeting to provide key biomarker updates across medical fields with the inclusion of industry partners, to reach a broader audience, and cross-pollinate emerging areas for biomarker application and future discovery. The objective of this article is to raise awareness of the potential utility of such meetings for improving patient care and facilitating collaboration. DATA SOURCES Recently released guidelines related to B-cell lymphoma diagnosis from the World Health Organization and International Consensus Classification and associated manuscripts are reviewed. Material presented at the CBC conference is summarized. CONCLUSIONS This article covers highlights of the updates presented on B-cell lymphoma biomarkers at the most recent Cancer Biomarkers Conference in Flowood, Mississippi, in September 2022.
Collapse
Affiliation(s)
- Genevieve M Crane
- From the Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
8
|
Attygalle AD, Chan JKC, Coupland SE, Du MQ, Ferry JA, Jong DD, Gratzinger D, Lim MS, Naresh KN, Nicolae A, Ott G, Rosenwald A, Schuh A, Siebert R. The 5th edition of the World Health Organization Classification of mature lymphoid and stromal tumors - an overview and update. Leuk Lymphoma 2024; 65:413-429. [PMID: 38189838 DOI: 10.1080/10428194.2023.2297939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 01/09/2024]
Abstract
The purpose of this review is to give an overview on the conceptual framework and major developments of the upcoming 5th edition of the World Health Organization (WHO) Classification of Haematolymphoid tumours (WHO-HAEM5) and to highlight the most significant changes made in WHO-HAEM5 compared with the revised 4th edition (WHO-HAEM4R) of lymphoid and stromal neoplasms. The changes from the revised 4th edition include the reorganization of entities by means of a hierarchical system that is realized throughout the 5th edition of the WHO classification of tumors of all organ systems, a modification of nomenclature for some entities, the refinement of diagnostic criteria or subtypes, deletion of certain entities, and introduction of new entities. For the first time, tumor-like lesions, mesenchymal lesions specific to lymph node and spleen, and germline predisposition syndromes associated with the lymphoid neoplasms are included in the classification.
Collapse
Affiliation(s)
- Ayoma D Attygalle
- Department of Histopathology, The Royal Marsden Hospital, London, UK
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong, SAR China
| | - Sarah E Coupland
- Department of Molecular and Clinical Cancer Medicine, ISMIB, University of Liverpool, Liverpool, UK
- Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Ming-Qing Du
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Judith A Ferry
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daphne de Jong
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Dita Gratzinger
- Department of Pathology, Stanford University School of Medicine, Stanford, USA
| | - Megan S Lim
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Kikkeri N Naresh
- Fred Hutchinson Cancer Center, University of Washington, Seattle, USA
| | - Alina Nicolae
- Department of Pathology, University Hospital of Strasbourg, Strasbourg, France
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-UniversitätWürzburg, and Cancer Center Mainfranken, Würzburg, Germany
| | - Anna Schuh
- Department of Oncology, University of Oxford, Oxford, UK
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
9
|
Akkari Y, Baughn LB, Kim A, Karaca E, Raca G, Shao L, Mikhail FM. Section E6.1-6.6 of the American College of Medical Genetics and Genomics (ACMG) Technical Laboratory Standards: Cytogenomic studies of acquired chromosomal abnormalities in neoplastic blood, bone marrow, and lymph nodes. Genet Med 2024; 26:101054. [PMID: 38349293 DOI: 10.1016/j.gim.2023.101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 04/09/2024] Open
Abstract
Cytogenomic analyses of acquired clonal chromosomal abnormalities in neoplastic blood, bone marrow, and/or lymph nodes are instrumental in the clinical management of patients with hematologic neoplasms. Cytogenetic analyses assist in the diagnosis of such disorders and can provide important prognostic information. Furthermore, cytogenetic studies can provide crucial information regarding specific genetically defined subtypes of these neoplasms that may have targeted therapies. At time of relapse, cytogenetic analysis can confirm recurrence of the original neoplasm, detect clonal disease evolution, or uncover a new unrelated neoplastic process. This section deals specifically with the technical standards applicable to cytogenomic studies of acquired clonal chromosomal abnormalities in neoplastic blood, bone marrow, and/or lymph nodes. This updated Section E6.1-6.6 supersedes the previous Section E6 in Section E: Clinical Cytogenetics of the American College of Medical Genetics and Genomics Technical Standards for Clinical Genetics Laboratories.
Collapse
Affiliation(s)
- Yassmine Akkari
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Linda B Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Annette Kim
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Ender Karaca
- Department of Pathology, Baylor University Medical Center, Dallas, TX; Texas A&M School of Medicine, Texas A&M University, Dallas, TX
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA; Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Lina Shao
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Fady M Mikhail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
10
|
Iorgulescu JB, Medeiros LJ, Patel KP. Predictive and prognostic molecular biomarkers in lymphomas. Pathology 2024; 56:239-258. [PMID: 38216400 DOI: 10.1016/j.pathol.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
Recent advances in molecular diagnostics have markedly expanded our understanding of the genetic underpinnings of lymphomas and catalysed a transformation in not just how we classify lymphomas, but also how we treat, target, and monitor affected patients. Reflecting these advances, the World Health Organization Classification, International Consensus Classification, and National Comprehensive Cancer Network guidelines were recently updated to better integrate these molecular insights into clinical practice. We summarise here the molecular biomarkers of lymphomas with an emphasis on biomarkers that have well-supported prognostic and predictive utility, as well as emerging biomarkers that show promise for clinical practice. These biomarkers include: (1) diagnostic entity-defining genetic abnormalities [e.g., B-cell acute lymphoblastic leukaemia (B-ALL) with KMT2A rearrangement]; (2) molecular alterations that guide patients' prognoses (e.g., TP53 loss frequently conferring worse prognosis); (3) mutations that serve as the targets of, and often a source of acquired resistance to, small molecular inhibitors (e.g., ABL1 tyrosine kinase inhibitors for B-ALL BCR::ABL1, hindered by ABL1 kinase domain resistance mutations); (4) the growing incorporation of molecular measurable residual disease (MRD) in the management of lymphoma patients (e.g., molecular complete response and sequencing MRD-negative criteria in multiple myeloma). Altogether, our review spans the spectrum of lymphoma types, from the genetically defined subclasses of precursor B-cell lymphomas to the highly heterogeneous categories of small and large cell mature B-cell lymphomas, Hodgkin lymphomas, plasma cell neoplasms, and T/NK-cell lymphomas, and provides an expansive summary of our current understanding of their molecular pathology.
Collapse
Affiliation(s)
- J Bryan Iorgulescu
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
11
|
Coupland SE, Du MQ, Ferry JA, de Jong D, Khoury JD, Leoncini L, Naresh KN, Ott G, Siebert R, Xerri L. The fifth edition of the WHO classification of mature B-cell neoplasms: open questions for research. J Pathol 2024; 262:255-270. [PMID: 38180354 DOI: 10.1002/path.6246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
The fifth edition of the World Health Organization Classification of Haematolymphoid Tumours (WHO-HAEM5) is the product of an evidence-based evolution of the revised fourth edition with wide multidisciplinary consultation. Nonetheless, while every classification incorporates scientific advances and aims to improve upon the prior version, medical knowledge remains incomplete and individual neoplasms may not be easily subclassified in a given scheme. Thus, optimal classification requires ongoing study, and there are certain aspects of some entities and subtypes that require further refinements. In this review, we highlight a selection of these challenging areas to prompt more research investigations. These include (1) a 'placeholder term' of splenic B-cell lymphoma/leukaemia with prominent nucleoli (SBLPN) to accommodate many of the splenic lymphomas previously classified as hairy cell leukaemia variant and B-prolymphocytic leukaemia, a clear new start to define their pathobiology; (2) how best to classify BCL2 rearrangement negative follicular lymphoma including those with BCL6 rearrangement, integrating the emerging new knowledge on various germinal centre B-cell subsets; (3) what is the spectrum of non-IG gene partners of MYC translocation in diffuse large B-cell lymphoma/high-grade B-cell lymphoma and how they impact MYC expression and clinical outcome; how best to investigate this in a routine clinical setting; and (4) how best to define high-grade B-cell lymphoma not otherwise specified and high-grade B-cell lymphoma with 11q aberrations to distinguish them from their mimics and characterise their molecular pathogenetic mechanism. Addressing these questions would provide more robust evidence to better define these entities/subtypes, improve their diagnosis and/or prognostic stratification, leading to better patient care. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sarah E Coupland
- Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Ming-Qing Du
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Judith A Ferry
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daphne de Jong
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joseph D Khoury
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Kikkeri N Naresh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Luc Xerri
- Institut Paoli-Calmettes, CRCM and Aix-Marseille University, Marseille, France
| |
Collapse
|
12
|
Fend F, van den Brand M, Groenen PJ, Quintanilla-Martinez L, Bagg A. Diagnostic and prognostic molecular pathology of lymphoid malignancies. Virchows Arch 2024; 484:195-214. [PMID: 37747559 PMCID: PMC10948535 DOI: 10.1007/s00428-023-03644-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
With the explosion in knowledge about the molecular landscape of lymphoid malignancies and the increasing availability of high throughput techniques, molecular diagnostics in hematopathology has moved from isolated marker studies to a more comprehensive approach, integrating results of multiple genes analyzed with a variety of techniques on the DNA and RNA level. Although diagnosis of lymphoma still relies on the careful integration of clinical, morphological, phenotypic, and, if necessary molecular features, and only few entities are defined strictly by genetic features, genetic profiling has contributed profoundly to our current understanding of lymphomas and shaped the two current lymphoma classifications, the International Consensus Classification and the fifth edition of the WHO classification of lymphoid malignancies. In this review, the current state of the art of molecular diagnostics in lymphoproliferations is summarized, including clonality analysis, mutational studies, and gene expression profiling, with a focus on practical applications for diagnosis and prognostication. With consideration for differences in accessibility of high throughput techniques and cost limitations, we tried to distinguish between diagnostically relevant and in part disease-defining molecular features and optional, more extensive genetic profiling, which is usually restricted to clinical studies, patients with relapsed or refractory disease or specific therapeutic decisions. Although molecular diagnostics in lymphomas currently is primarily done for diagnosis and subclassification, prognostic stratification and predictive markers will gain importance in the near future.
Collapse
Affiliation(s)
- Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany.
| | - Michiel van den Brand
- Pathology-DNA, Location Rijnstate Hospital, Arnhem, the Netherlands
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Patricia Jta Groenen
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image Guided and Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, Tübingen, Germany
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Luchtel RA. ETS1 Function in Leukemia and Lymphoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:359-378. [PMID: 39017852 DOI: 10.1007/978-3-031-62731-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
ETS proto-oncogene 1 (ETS1) is a transcription factor (TF) critically involved in lymphoid cell development and function. ETS1 expression is tightly regulated throughout differentiation and activation in T-cells, natural killer (NK) cells, and B-cells. It has also been described as an oncogene in a range of solid and hematologic cancer types. Among hematologic malignancies, its role has been best studied in T-cell acute lymphoblastic leukemia (T-ALL), adult T-cell leukemia/lymphoma (ATLL), and diffuse large B-cell lymphoma (DLBCL). Aberrant expression of ETS1 in these malignancies is driven primarily by chromosomal amplification and enhancer-driven transcriptional regulation, promoting the ETS1 transcriptional program. ETS1 also facilitates aberrantly expressed or activated transcriptional complexes to drive oncogenic pathways. Collectively, ETS1 functions to regulate cell growth, differentiation, signaling, response to stimuli, and viral interactions in these malignancies. A tumor suppressor role has also been indicated for ETS1 in select lymphoma types, emphasizing the importance of cellular context in ETS1 function. Research is ongoing to further characterize the clinical implications of ETS1 dysregulation in hematologic malignancies, to further resolve binding complexes and transcriptional targets, and to identify effective therapeutic targeting approaches.
Collapse
Affiliation(s)
- Rebecca A Luchtel
- Division of Hematology and Oncology, Department of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
14
|
Rodriguez-Pinilla SM, Dojcinov S, Dotlic S, Gibson SE, Hartmann S, Klimkowska M, Sabattini E, Tousseyn TA, de Jong D, Hsi ED. Aggressive B-cell non-Hodgkin lymphomas: a report of the lymphoma workshop of the 20th meeting of the European Association for Haematopathology. Virchows Arch 2024; 484:15-29. [PMID: 37530792 PMCID: PMC10791773 DOI: 10.1007/s00428-023-03579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 08/03/2023]
Abstract
Aggressive B-cell non-Hodgkin lymphomas are a heterogeneous group of diseases and our concepts are evolving as we learn more about their clinical, pathologic, molecular genetic features. Session IV of the 2020 EAHP Workshop covered aggressive, predominantly high-grade B-cell lymphomas, many that were difficult to classify. In this manuscript, we summarize the features of the submitted cases and highlight differential diagnostic difficulties. We specifically review issues related to high-grade B-cell lymphomas (HGBCLs) with MYC and BCL2 and/or BCL6 rearrangements including TdT expression in these cases, HGBCL, not otherwise specified, large B-cell lymphomas with IRF4 rearrangement, high-grade/large B-cell lymphomas with 11q aberration, Burkitt lymphoma, and pleomorphic mantle cell lymphoma. Since the workshop, the 5th edition of the WHO Classification for Haematolymphoid Tumours (WHO-HAEM5) and International Consensus Classification (ICC) 2022 were published. We endeavor to use the updated terminology.
Collapse
Affiliation(s)
| | - Stefan Dojcinov
- Department of Pathology, Morriston Hospital, Swansea Bay University Health Board, Swansea, UK
| | - Snjezana Dotlic
- Department of Pathology and Cytology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Sarah E Gibson
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, USA
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt Am Main, Frankfurt Am Main, Germany
| | - Monika Klimkowska
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Thomas A Tousseyn
- Department of Imaging and Pathology, Translational Cell and Tissue Research Lab, KU Leuven, Leuven, Belgium
| | - Daphne de Jong
- Department of Pathology, Amsterdam UMC, Location VUMC, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
| | - Eric D Hsi
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
15
|
Scheijde-Vermeulen MA, Kester LA, Westera L, Tops BBJ, Meyer-Wentrup FAG. Integration of RNA Sequencing, Whole Exome Sequencing, and Flow Cytometry Into Routine Diagnostic Workup of Pediatric Lymphomas. J Transl Med 2024; 104:100267. [PMID: 37898291 DOI: 10.1016/j.labinv.2023.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/13/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
The study was conducted to assess the feasibility of integrating state-of-the-art sequencing techniques and flow cytometry into diagnostic workup of pediatric lymphoma. RNA sequencing (RNAseq), whole exome sequencing, and flow cytometry were implemented into routine diagnostic workup of pediatric biopsies with lymphoma in the differential diagnosis. Within 1 year, biopsies from 110 children (122 specimens) were analyzed because of suspected malignant lymphoma. The experience with a standardized workflow combining histology and immunohistochemistry, flow cytometry, and next-generation sequencing technologies is reported. Flow cytometry was performed with fresh tissue in 83% (102/122) of specimens and allowed rapid diagnosis of T-cell and B-cell non-Hodgkin lymphomas. RNAseq was performed in all non-Hodgkin lymphoma biopsies and 42% (19/45) of Hodgkin lymphoma samples. RNAseq detected all but one of the translocations found by fluorescence in situ hybridization and PCR. RNAseq and whole exome sequencing identified additional genetic abnormalities not detected by conventional approaches. Finally, 3 cases are highlighted to exemplify how synergy between different diagnostic techniques and specialists can be achieved. This study demonstrates the feasibility and discusses the added value of integrating modern sequencing techniques and flow cytometry into a workflow for routine diagnostic workup of lymphoma. The inclusion of RNA and DNA sequencing not only supports diagnostics but also will lay the ground for the development of novel research-based treatment strategies for pediatric lymphoma patients.
Collapse
Affiliation(s)
| | - Lennart A Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Liset Westera
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Bastiaan B J Tops
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | |
Collapse
|
16
|
Grau M, López C, Martín-Subero JI, Beà S. Cytogenomics of B-cell non-Hodgkin lymphomas: The "old" meets the "new". Best Pract Res Clin Haematol 2023; 36:101513. [PMID: 38092483 DOI: 10.1016/j.beha.2023.101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 12/18/2023]
Abstract
For the routine diagnosis of haematological neoplasms an integrative approach is used considering the morphology, and the immunophenotypic, and molecular features of the tumor sample, along with clinical information. The identification and characterization of recurrent chromosomal aberrations mainly detected by conventional and molecular cytogenetics in the tumor cells has a major impact on the classification of lymphoid neoplasms. Some of the B-cell non-Hodgkin lymphomas are characterized by particular chromosomal aberrations, highlighting the relevance of conventional and molecular cytogenetic studies in their diagnosis and prognosis. In the current genomics era, next generation sequencing provides relevant information as the mutational profiles of haematological malignancies, improving their classification and also the clinical management of the patients. In addition, other new technologies have emerged recently, such as the optical genome mapping, which can overcome some of the limitations of conventional and molecular cytogenetics and may become more widely used in the cytogenetic laboratories in the upcoming years. Moreover, epigenetic alterations may complement genetic changes for a deeper understanding of the pathogenesis underlying B-cell neoplasms and a more precise risk-based patient stratification. Overall, here we describe the current state of the genomic data integrating chromosomal rearrangements, copy number alterations, and somatic variants, as well as a succinct overview of epigenomic changes, which altogether constitute a comprehensive diagnostic approach in B-cell non-Hodgkin lymphomas.
Collapse
Affiliation(s)
- Marta Grau
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina López
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain
| | - José Ignacio Martín-Subero
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Sílvia Beà
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain; Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain.
| |
Collapse
|
17
|
Zhang N, Duan YL, Zhou CJ, Jin L, Yang J, Huang S, Zhang M, Li N. [Clinical study of mature B-cell lymphoma in 11 children with chromosome 11 long-arm abnormalities]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:924-929. [PMID: 38185522 PMCID: PMC10753258 DOI: 10.3760/cma.j.issn.0253-2727.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 01/09/2024]
Abstract
Objective: To explore the clinical, pathological, diagnostic, treatment, and prognostic features of children with mature B-cell lymphoma (MBCL) . Methods: This retrospective study included pediatric patients with MBCL with chromosome 11 long-arm abnormalities who were diagnosed and treated at our hospital from December 2018 to February 2023. Results: Among the 11 pediatric patients with MBCL, nine were male and two were female, with a median age of 9 (2-13) years and a median disease course of 1.8 (0.5-24) months. The clinical manifestations were cervical lymph node enlargement in four patients, nasal congestion and snoring in four patients, abdominal pain in two patients, and difficulty breathing in one patient. There were seven cases of Burkitt's lymphoma, two of follicular lymphoma, and two of advanced B-cell lymphoma according to the pathological morphology examination. No patients had central nervous system or bone marrow involvement, and no extensive metastasis was observed on B-ultrasound or positron emission tomography-computed tomography (PET/CT). One patient had a huge tumor lesion. The Revised International Pediatric Non-Hodgkin Lymphoma Staging System classified four patients as stage Ⅱ, five as stage Ⅲ, and two as stage Ⅳ. 11q probe detection showed five cases of 11q gain, three of 11q loss, and three of both gain and loss. FISH showed positive MYC expression in three patients, including eight with advanced B-cell lymphoma with 11q abnormalities and three with Burkitt's lymphoma with 11q abnormalities. According to the 2019 edition of the National Health Commission's diagnostic and treatment guidelines for invasive MBCL in children, one patient was classified as Group A, two as Group B, and eight as Group C. Early evaluation of the efficacy showed complete remission. After mid-term evaluation, the intensity of chemotherapy was reduced in Group B and Group C. Among two cases of chemotherapy, the remaining nine cases had a median follow-up of 32 (6-45) months, and none had event-related survival. Conclusion: The incidence of MBCL with 11q abnormalities in children is low, clinical symptoms are mild, and progression is slow. The absence of MYC, BCL2, BCL6 rearrangements, C-MYC negative and 11q abnormalities on FISH is an important diagnostic indicator, and reducing the intensity of chemotherapy can improve prognosis.
Collapse
Affiliation(s)
- N Zhang
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
| | - Y L Duan
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
| | - C J Zhou
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Department of Pathology
| | - L Jin
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
| | - J Yang
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
| | - S Huang
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
| | - M Zhang
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
| | - N Li
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
| |
Collapse
|
18
|
Woroniecka R, Rymkiewicz G, Bystydzienski Z, Pienkowska-Grela B, Rygier J, Malawska N, Wojtkowska K, Goral N, Blachnio K, Chmielewski M, Bartnik-Glaska M, Grygalewicz B. Cytogenomic features of Richter transformation. Mol Cytogenet 2023; 16:31. [PMID: 37941034 PMCID: PMC10631075 DOI: 10.1186/s13039-023-00662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Richter transformation (RT) is the development of aggressive lymphoma in patients with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL). This rare disease is characterised by dismal prognosis. In recent years, there has been a deeper understanding of RT molecular pathogenesis, and disruptions of apoptosis (TP53) and proliferation (CDKN2A, MYC, NOTCH1) has been described as typical aberrations in RT. RESULTS A single-institution cohort of 33 RT patients were investigated by karyotyping, fluorescence in situ hybridization and single nucleotide polymorphism/copy number (CN) arrays. Most of RTs were typically manifested by diffuse large B-cell lymphoma, not otherwise specified, among the remaining cases one was classified as high-grade B-cell lymphoma with 11q aberrations. The most frequent alterations (40-60% of cases) were represented by MYC rearrangement/gain, deletions of TP53 and CDKN2A, IGH rearrangement and 13q14 deletion. Several other frequent lesions included losses of 14q24.1-q32.33, 7q31.33-q36.3, and gain of 5q35.2. Analysis of 13 CLL/SLL-RT pairs showed that RT arised from the CLL/SLL by acquiring of 10 ~ 12 cytogenetic or CN lesions/case, but without acquisition of loss of heterozygosity regions. Our result affirmed the higher genetic complexity in RT than CLL/SLL and confirmed the linear features of RT clonal evolution as predominant. CONCLUSIONS Cytogenomic profile was concordant with the literature data, however the role of IGH rearrangement, 14q deletion and 5q35.2 gain need to be explored. We anticipate that further characterization of RT lesions will probably facilitate better understanding of the RT clonal evolution.
Collapse
Affiliation(s)
- Renata Woroniecka
- Cytogenetic Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Street, Warsaw, Poland.
| | - Grzegorz Rymkiewicz
- Flow Cytometry Laboratory, Department of Cancer Pathomorphology, Maria Sklodowska - Curie National Research Institute of Oncology, Warsaw, Poland
| | - Zbigniew Bystydzienski
- Flow Cytometry Laboratory, Department of Cancer Pathomorphology, Maria Sklodowska - Curie National Research Institute of Oncology, Warsaw, Poland
| | - Barbara Pienkowska-Grela
- Cytogenetic Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Street, Warsaw, Poland
| | - Jolanta Rygier
- Cytogenetic Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Street, Warsaw, Poland
| | - Natalia Malawska
- Cytogenetic Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Street, Warsaw, Poland
| | - Katarzyna Wojtkowska
- Cytogenetic Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Street, Warsaw, Poland
| | - Nikolina Goral
- Cytogenetic Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Street, Warsaw, Poland
| | - Katarzyna Blachnio
- Flow Cytometry Laboratory, Department of Cancer Pathomorphology, Maria Sklodowska - Curie National Research Institute of Oncology, Warsaw, Poland
| | - Marcin Chmielewski
- Flow Cytometry Laboratory, Department of Cancer Pathomorphology, Maria Sklodowska - Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Beata Grygalewicz
- Cytogenetic Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Street, Warsaw, Poland
| |
Collapse
|
19
|
Klapper W. [Lymphomas in children and adolescents]. PATHOLOGIE (HEIDELBERG, GERMANY) 2023; 44:338-347. [PMID: 37608069 DOI: 10.1007/s00292-023-01216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Lymphomas in children and adolescents differ from adulthood in relative frequency and variety of entities. In addition, young patients are cared for according to the specific standards of pediatric lymphoma study groups. OBJECTIVE To present lymphomas of diagnostic and clinical relevance in the pediatric and adolescent group. MATERIAL AND METHODS Selective literature research ( http://www.ncbi.nlm.nih.gov ) was combined with clinico-pathological experience of the authors. RESULTS Children and adolescents are much more likely to suffer from aggressive and precursor cell lymphoma than is the case in adulthood. Unlike adult patients, Burkitt lymphomas and diffuse large B‑cell lymphomas are not treated fundamentally differently. Entities that have been described relatively recently and are particularly common in young patients are high-grade B‑cell lymphoma with 11q aberrations and large-cell B‑cell lymphoma with IRF4 translocations. CONCLUSION Lymphoma diagnosis in children and adolescents is characterized by the particular spectrum of diseases that occur at this age. Special knowledge about the clinical relevance of the diagnoses in childhood is helpful in order to enable rapid clinical decision making.
Collapse
Affiliation(s)
- Wolfram Klapper
- Institut für Pathologie, Sektion Hämatopathologie und Lymphknotenregister, Universitätsklinikum Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Str. 3, Haus U33, 24105, Kiel, Deutschland.
| |
Collapse
|
20
|
Singh A, Obiorah IE. Aggressive non-Hodgkin lymphoma in the pediatric and young adult population; diagnostic and molecular pearls of wisdom. Semin Diagn Pathol 2023; 40:392-400. [PMID: 37400280 DOI: 10.1053/j.semdp.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
Mature non-Hodgkin lymphomas (NHLs) of the pediatric and young adults(PYA), including Burkitt lymphoma (BL), diffuse large B cell lymphoma (DLBCL), high-grade B cell lymphoma (HGBCL), primary mediastinal large B cell lymphoma (PMBL) and anaplastic large cell lymphoma (ALCL), generally have excellent prognosis compared to the adult population. BL, DLBCL and HGBCL are usually of germinal center (GCB) origin in the PYA population. PMBL neither belongs to the GCB nor the activated B cell subtype and is associated with a poorer outcome than BL or DLBCL of comparable stage. Anaplastic large cell lymphoma is the most frequent peripheral T cell lymphoma occurring in the PYA and accounts for 10-15% of childhood NHL. Most pediatric ALCL, unlike in the adult, demonstrate expression of anaplastic lymphoma kinase (ALK). In recent years, the understanding of the biology and molecular features of these aggressive lymphomas has increased tremendously. This has led to reclassification of newer PYA entities including Burkitt-like lymphoma with 11q aberration. In this review, we will discuss the current progress discovered in frequently encountered aggressive NHLs in the PYA, highlighting the clinical, pathologic and molecular features that aid in the diagnosis of these aggressive lymphomas. We will be updating the new concepts and terminologies used in the new classification systems.
Collapse
Affiliation(s)
- Amrit Singh
- Department of Pathology , University of Virginia Health, Charlottesville, VA, 22903, United States
| | - Ifeyinwa E Obiorah
- Department of Pathology , University of Virginia Health, Charlottesville, VA, 22903, United States.
| |
Collapse
|
21
|
Lefebvre C, Veronese L, Nadal N, Gaillard JB, Penther D, Daudignon A, Chauzeix J, Nguyen-Khac F, Chapiro E. Cytogenetics in the management of mature B-cell non-Hodgkin lymphomas: Guidelines from the Groupe Francophone de Cytogénétique Hematologique (GFCH). Curr Res Transl Med 2023; 71:103425. [PMID: 38016420 DOI: 10.1016/j.retram.2023.103425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/30/2023]
Abstract
Non-Hodgkin lymphomas (NHL) consist of a wide range of clinically, phenotypically and genetically distinct neoplasms. The accurate diagnosis of mature B-cell non-Hodgkin lymphoma relies on a multidisciplinary approach that integrates morphological, phenotypical and genetic characteristics together with clinical features. Cytogenetic analyses remain an essential part of the diagnostic workup for mature B-cell lymphomas. Karyotyping is particularly useful to identify hallmark translocations, typical cytogenetic signatures as well as complex karyotypes, all bringing valuable diagnostic and/or prognostic information. Besides the well-known recurrent chromosomal abnormalities such as, for example, t(14;18)(q32;q21)/IGH::BCL2 in follicular lymphoma, recent evidences support a prognostic significance of complex karyotype in mantle cell lymphoma and Waldenström macroglobulinemia. Fluorescence In Situ Hybridization is also a key analysis playing a central role in disease identification, especially in genetically-defined entities, but also in predicting transformation risk or prognostication. This can be exemplified by the pivotal role of MYC, BCL2 and/or BCL6 rearrangements in the diagnostic of aggressive or large B-cell lymphomas. This work relies on the World Health Organization and the International Consensus Classification of hematolymphoid tumors together with the recent cytogenetic advances. Here, we review the various chromosomal abnormalities that delineate well-established mature B-cell non-Hodgkin lymphoma entities as well as newly recognized genetic subtypes and provide cytogenetic guidelines for the diagnostic management of mature B-cell lymphomas.
Collapse
Affiliation(s)
- C Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble, France.
| | - L Veronese
- Service de Cytogénétique Médicale, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand; EA7453 CHELTER, Université Clermont Auvergne, France
| | - N Nadal
- Service de génétique chromosomique et moléculaire, CHU Dijon, Dijon, France
| | - J-B Gaillard
- Unité de Génétique Chromosomique, Service de Génétique moléculaire et cytogénomique, CHU Montpellier, Montpellier, France
| | - D Penther
- Laboratoire de Génétique Oncologique, Centre Henri Becquerel, Rouen, France
| | - A Daudignon
- Laboratoire de Génétique Médicale - Hôpital Jeanne de Flandre - CHRU de Lille, France
| | - J Chauzeix
- Service d'Hématologie biologique CHU de Limoges - CRIBL, UMR CNRS 7276/INSERM 1262, Limoges, France
| | - F Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS_1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013 Paris, France
| | - E Chapiro
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS_1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013 Paris, France
| |
Collapse
|
22
|
Quintanilla-Martinez L, Laurent C, Soma L, Ng SB, Climent F, Ondrejka SL, Zamo A, Wotherspoon A, de Leval L, Dirnhofer S, Leoncini L. Emerging entities: high-grade/large B-cell lymphoma with 11q aberration, large B-cell lymphoma with IRF4 rearrangement, and new molecular subgroups in large B-cell lymphomas. A report of the 2022 EA4HP/SH lymphoma workshop. Virchows Arch 2023; 483:281-298. [PMID: 37555980 PMCID: PMC10541818 DOI: 10.1007/s00428-023-03590-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023]
Abstract
Emerging entities and molecular subgroups in large B-cell lymphomas (LBCLs) were discussed during the 2022 European Association for Haematopathology/Society for Hematopathology workshop in Florence, Italy. This session focused on newly recognized diseases and their diagnostic challenges. High-grade/large B-cell lymphoma with 11q aberration (HG/LBCL-11q) is defined by chromosome 11q-gains and telomeric loss. FISH analysis is recommended for the diagnosis. HG/LBCL-11q can occur in the setting of immunodeficiency, including ataxia-telangiectasia, and predominates in children. The morphological spectrum of these cases is broader than previously thought with often Burkitt-like morphology and coarse apoptotic bodies. It has a Burkitt-like immunophenotype (CD10+, BCL6+, BCL2-) but MYC expression is weak or negative, lacks MYC rearrangement, and is in contrast to Burkitt lymphoma 50% of the cases express LMO2. LBCL with IRF4 rearrangement (LBCL-IRF4) occurs mainly in the pediatric population but also in adults. LBCL-IRF4 has an excellent prognosis, with distinguishing molecular findings. IRF4 rearrangements, although characteristic of this entity, are not specific and can be found in association with other chromosomal translocations in other large B-cell lymphomas. Other molecular subgroups discussed included primary bone diffuse large B-cell lymphoma (PB-DLBCL), which has distinctive clinical presentation and molecular findings, and B-acute lymphoblastic leukemia (B-ALL) with IGH::MYC translocation recently segregated from Burkitt lymphoma with TdT expression. This latter disorder has molecular features of precursor B-cells, often tetrasomy 1q and recurrent NRAS and KRAS mutations. In this report, novel findings, recommendations for diagnosis, open questions, and diagnostic challenges raised by the cases submitted to the workshop will be discussed.
Collapse
Affiliation(s)
- Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard-Karls-University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Liebermeisterstrasse 8, 72076, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC2180) "Image-guided and functionally Instructed Tumor therapies" Eberhard-Karls-University, Tübingen, Germany.
| | - Camille Laurent
- Department of Pathology, Toulouse University Hospital Center, Cancer Institute, University of Toulouse-Oncopole, Toulouse, France
| | - Lorinda Soma
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Siok-Bian Ng
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Fina Climent
- Department of Pathology, Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sarah L Ondrejka
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alberto Zamo
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| |
Collapse
|
23
|
Kaulen LD, Denisova E, Hinz F, Hai L, Friedel D, Henegariu O, Hoffmann DC, Ito J, Kourtesakis A, Lehnert P, Doubrovinskaia S, Karschnia P, von Baumgarten L, Kessler T, Baehring JM, Brors B, Sahm F, Wick W. Integrated genetic analyses of immunodeficiency-associated Epstein-Barr virus- (EBV) positive primary CNS lymphomas. Acta Neuropathol 2023; 146:499-514. [PMID: 37495858 PMCID: PMC10412493 DOI: 10.1007/s00401-023-02613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Immunodeficiency-associated primary CNS lymphoma (PCNSL) represents a distinct clinicopathological entity, which is typically Epstein-Barr virus-positive (EBV+) and carries an inferior prognosis. Genetic alterations that characterize EBV-related CNS lymphomagenesis remain unclear precluding molecular classification and targeted therapies. In this study, a comprehensive genetic analysis of 22 EBV+ PCNSL, therefore, integrated clinical and pathological information with exome and RNA sequencing (RNASeq) data. EBV+ PCNSL with germline controls carried a median of 55 protein-coding single nucleotide variants (SNVs; range 24-217) and 2 insertions/deletions (range 0-22). Genetic landscape was largely shaped by aberrant somatic hypermutation with a median of 41.01% (range 31.79-53.49%) of SNVs mapping to its target motifs. Tumors lacked established SNVs (MYD88, CD79B, PIM1) and copy number variants (CDKN2A, HLA loss) driving EBV- PCNSL. Instead, EBV+ PCNSL were characterized by SOCS1 mutations (26%), predicted to disinhibit JAK/STAT signaling, and mutually exclusive gain-of-function NOTCH pathway SNVs (26%). Copy number gains were enriched on 11q23.3, a locus directly targeted for chromosomal aberrations by EBV, that includes SIK3 known to protect from cytotoxic T-cell responses. Losses covered 5q31.2 (STING), critical for sensing viral DNA, and 17q11 (NF1). Unsupervised clustering of RNASeq data revealed two distinct transcriptional groups, that shared strong expression of CD70 and IL1R2, previously linked to tolerogenic tumor microenvironments. Correspondingly, deconvolution of bulk RNASeq data revealed elevated M2-macrophage, T-regulatory cell, mast cell and monocyte fractions in EBV+ PCNSL. In addition to novel insights into the pathobiology of EBV+ PCNSL, the data provide the rationale for the exploration of targeted therapies including JAK-, NOTCH- and CD70-directed approaches.
Collapse
Affiliation(s)
- Leon D Kaulen
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Evgeniya Denisova
- Division of Applied Bioinformatics, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Felix Hinz
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Ling Hai
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Dennis Friedel
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Octavian Henegariu
- Department of Neurosurgery, Yale School of Medicine, New Haven, USA
- Department of Genetics, Yale School of Medicine, New Haven, USA
| | - Dirk C Hoffmann
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Jakob Ito
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Alexandros Kourtesakis
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Pascal Lehnert
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Sofia Doubrovinskaia
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, Munich University Hospital, Ludwig Maximilians University (LMU) Munich, and German Cancer Consortium (DKTK) Partner Site, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, Munich University Hospital, Ludwig Maximilians University (LMU) Munich, and German Cancer Consortium (DKTK) Partner Site, Munich, Germany
| | - Tobias Kessler
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Joachim M Baehring
- Department of Neurosurgery, Yale School of Medicine, New Haven, USA
- Department of Neurology, Yale School of Medicine, New Haven, USA
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| | - Wolfgang Wick
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
24
|
Hurwitz SN, Lockhart B, Önder Ö, Wu R, Sethi S, Aypar U, Siebert R, Dogan A, Pillai V, Elenitoba-Johnson KSJ, Lim MS. Proteogenomic Profiling of High-Grade B-Cell Lymphoma With 11q Aberrations and Burkitt Lymphoma Reveals Lymphoid Enhancer Binding Factor 1 as a Novel Biomarker. Mod Pathol 2023; 36:100170. [PMID: 36997001 DOI: 10.1016/j.modpat.2023.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
High-grade B-cell lymphomas with 11q aberrations (HGBL-11q) represent a World Health Organization-defined group of lymphomas that harbor recurrent chromosome 11q aberrations involving proximal gains and telomeric losses. Although a limited number of HGBL-11q cases evaluated thus far appear to show a similar course and prognosis as Burkitt lymphoma (BL), many molecular differences have been appreciated, most notably the absence of MYC rearrangement. Despite biological differences between BL and HGBL-11q, histomorphologic and immunophenotypic distinction remains challenging. Here, we provide a comparative whole proteomic profile of BL- and HGBL-11q-derived cell lines, identifying numerous shared and differentially expressed proteins. Transcriptome profiling performed on paraffin-embedded tissue samples from primary BL and HGBL-11q lymphomas was additionally performed to provide further molecular characterization. Overlap of proteomic and transcriptomic data sets identified several potential novel biomarkers of HGBL-11q, including diminished lymphoid enhancer-binding factor 1 expression, which was validated by immunohistochemistry staining in a cohort of 23 cases. Altogether, these findings provide a comprehensive multimodal and comparative molecular profiling of BL and HGBL-11q and suggest the use of enhancer-binding factor 1 as an immunohistochemistry target to distinguish between these aggressive lymphomas.
Collapse
Affiliation(s)
- Stephanie N Hurwitz
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian Lockhart
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Özlem Önder
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rui Wu
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shenon Sethi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Umut Aypar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vinodh Pillai
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kojo S J Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
25
|
Iyer AR, Gurumurthy A, Kodgule R, Aguilar AR, Saari T, Ramzan A, Rausch D, Gupta J, Hall CN, Runge JS, Weiss M, Rahmat M, Anyoha R, Fulco CP, Ghobrial IM, Engreitz J, Cieslik MP, Ryan RJH. Selective Enhancer Dependencies in MYC -Intact and MYC -Rearranged Germinal Center B-cell Diffuse Large B-cell Lymphoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.538892. [PMID: 37205448 PMCID: PMC10187217 DOI: 10.1101/2023.05.02.538892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
High expression of MYC and its target genes define a subset of germinal center B-cell diffuse large B-cell lymphoma (GCB-DLBCL) associated with poor outcomes. Half of these high-grade cases show chromosomal rearrangements between the MYC locus and heterologous enhancer-bearing loci, while focal deletions of the adjacent non-coding gene PVT1 are enriched in MYC -intact cases. To identify genomic drivers of MYC activation, we used high-throughput CRISPR-interference (CRISPRi) profiling of candidate enhancers in the MYC locus and rearrangement partner loci in GCB-DLBCL cell lines and mantle cell lymphoma (MCL) comparators that lacked common rearrangements between MYC and immunoglobulin (Ig) loci. Rearrangements between MYC and non-Ig loci were associated with unique dependencies on specific enhancer subunits within those partner loci. Notably, fitness dependency on enhancer modules within the BCL6 super-enhancer ( BCL6 -SE) cluster regulated by a transcription factor complex of MEF2B, POU2F2, and POU2AF1 was higher in cell lines bearing a recurrent MYC::BCL6 -SE rearrangement. In contrast, GCB-DLBCL cell lines without MYC rearrangement were highly dependent on a previously uncharacterized 3' enhancer within the MYC locus itself (GCBME-1), that is regulated in part by the same triad of factors. GCBME-1 is evolutionarily conserved and active in normal germinal center B cells in humans and mice, suggesting a key role in normal germinal center B cell biology. Finally, we show that the PVT1 promoter limits MYC activation by either native or heterologous enhancers and demonstrate that this limitation is bypassed by 3' rearrangements that remove PVT1 from its position in cis with the rearranged MYC gene. Key points CRISPR-interference screens identify a conserved germinal center B cell MYC enhancer that is essential for GCB-DLBCL lacking MYC rearrangements. Functional profiling of MYC partner loci reveals principles of MYC enhancer-hijacking activation by non-immunoglobulin rearrangements.
Collapse
|
26
|
Hori D, Kobayashi R, Nakazawa A, Iwafuchi H, Klapper W, Osumi T, Ohk K, Sekimizu M. Non-germinal center B-cell subtype of pediatric diffuse large B-cell lymphoma in Japan: A retrospective cohort study. Pediatr Blood Cancer 2023; 70:e30279. [PMID: 36860130 DOI: 10.1002/pbc.30279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is classified into two molecular subtypes according to its cell of origin: germinal center B-cell (GCB) subtype and activated B-cell/non-GCB subtype. This latter subtype shows a poorer prognosis in adults. However, in pediatric DLBCL, the prognostic impact of the subtype is yet to be clarified. OBJECTIVES This study sought to compare the prognosis between GCB and non-GCB DLBCL in a large number of cases in children and adolescents. In addition, this study intended to describe the clinical, immunohistochemical, and cytogenetic characteristics of these two molecular subtypes of DLBCL, and consider differences in the biology, frequency, and prognosis of GCB and non-GCB subtypes in pediatric versus adult DLBCL or in Japanese versus Western pediatric DLBCL patients. DESIGN/METHODS We selected mature B-cell lymphoma/leukemia patients for whom specimens had been submitted to the central pathology review in Japan between June 2005 and November 2019. We referred the past studies on Asian adult patients and Western pediatric patients to compare with our results. RESULTS Data were obtained from 199 DLBCL patients. The median age of all patients was 10 years, with 125 patients (62.8%) in the GCB group and 49 (24.6%) in the non-GCB group other than 25 cases whose immunohistochemical data were insufficient. Overall, the percentage of translocation of MYC (1.4%) and BCL6 (6.3%) was lower than in adult and Western pediatric DLBCL cases. The non-GCB group showed a significantly higher proportion of females (44.9%), a higher incidence of stage III disease (38.8%), and B-cell lymphoma 2 (BCL2)-positivity in immunohistochemistry (79.6%) compared to the GCB group; however, no BCL2 rearrangement was observed in both GCB and non-GCB groups. The prognosis did not differ significantly between the GCB and non-GCB groups. CONCLUSION This study including a large number of non-GCB patients showed the same prognosis between GCB and non-GCB groups and suggested a difference in the biology of pediatric and adolescent DLBCL compared to adult DLBCL as well as between Asian and Western DLBCL.
Collapse
Affiliation(s)
- Daiki Hori
- Lymphoma and Pathology Committee, JCCG (Japan Children's Cancer Group)/JPLSG (Japan Pediatric Leukemia/Lymphoma Study Group), Tokyo, Japan
- Department of Hematology/Oncology for Children and Adolescents, Sapporo Hokuyu Hospital, Sapporo, Hokkaido, Japan
| | - Ryoji Kobayashi
- Lymphoma and Pathology Committee, JCCG (Japan Children's Cancer Group)/JPLSG (Japan Pediatric Leukemia/Lymphoma Study Group), Tokyo, Japan
- Department of Hematology/Oncology for Children and Adolescents, Sapporo Hokuyu Hospital, Sapporo, Hokkaido, Japan
| | - Atsuko Nakazawa
- Lymphoma and Pathology Committee, JCCG (Japan Children's Cancer Group)/JPLSG (Japan Pediatric Leukemia/Lymphoma Study Group), Tokyo, Japan
- Department of Clinical Research, Saitama Children's Medical Center, Saitama, Japan
| | - Hideto Iwafuchi
- Lymphoma and Pathology Committee, JCCG (Japan Children's Cancer Group)/JPLSG (Japan Pediatric Leukemia/Lymphoma Study Group), Tokyo, Japan
- Department of Pathology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Wolfram Klapper
- Department of Pathology, General Pathology and Hematopathology, University Hospitals Schleswig-Holstein, Kiel, Germany
| | - Tomoo Osumi
- National Center for Child Health and Development, Children's Cancer Center, Tokyo, Japan
| | - Kentaro Ohk
- Lymphoma and Pathology Committee, JCCG (Japan Children's Cancer Group)/JPLSG (Japan Pediatric Leukemia/Lymphoma Study Group), Tokyo, Japan
- Department of Pediatric Hematology and Oncology Research, Research Institute, National Center for Child Health and Development, Tokyo, Japan
| | - Masahiro Sekimizu
- Lymphoma and Pathology Committee, JCCG (Japan Children's Cancer Group)/JPLSG (Japan Pediatric Leukemia/Lymphoma Study Group), Tokyo, Japan
- Department of Pediatrics, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| |
Collapse
|
27
|
Kurz KS, Ott M, Kalmbach S, Steinlein S, Kalla C, Horn H, Ott G, Staiger AM. Large B-Cell Lymphomas in the 5th Edition of the WHO-Classification of Haematolymphoid Neoplasms-Updated Classification and New Concepts. Cancers (Basel) 2023; 15:cancers15082285. [PMID: 37190213 DOI: 10.3390/cancers15082285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The family/class of the large B-cell lymphomas (LBCL) in the 5th edition of the World Health Organization (WHO) classification of haematolymphoid tumors (WHO-HAEM5) features only a few major changes as compared to the 4th edition. In most entities, there are only subtle changes, many of them only representing some minor modifications in diagnostic terms. Major changes have been made in the diffuse large B-cell lymphomas (DLBCL)/high-grade B-cell lymphomas (HGBL) associated with MYC and BCL2 and/or BCL6 rearrangements. This category now consists of MYC and BCL2 rearranged cases exclusively, while the MYC/BCL6 double hit lymphomas now constitute genetic subtypes of DLBCL, not otherwise specified (NOS) or of HGBL, NOS. Other major changes are the conceptual merger of lymphomas arising in immune-privileged sites and the description of LBCL arising in the setting of immune dysregulation/deficiency. In addition, novel findings concerning underlying biological mechanisms in the pathogenesis of the different entities are provided.
Collapse
Affiliation(s)
- Katrin S Kurz
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
| | - Michaela Ott
- Department of Pathology, Marienhospital, 70199 Stuttgart, Germany
| | - Sabrina Kalmbach
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Sophia Steinlein
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Claudia Kalla
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Heike Horn
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
| | - Annette M Staiger
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| |
Collapse
|
28
|
Lim MS, Foley M, Mussolin L, Siebert R, Turner S. Biopathology of childhood, adolescent and young adult non-Hodgkin lymphoma. Best Pract Res Clin Haematol 2023; 36:101447. [PMID: 36907637 DOI: 10.1016/j.beha.2023.101447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Mature non-Hodgkin lymphomas (NHL) in the childhood, adolescent and young adult (CAYA) population are rare and exhibit unique clinical, immunophenotypic and genetic characteristics. Application of large-scale unbiased genomic and proteomic technologies such as gene expression profiling and next generation sequencing (NGS) have led to enhanced understanding of the genetic basis for many lymphomas in adults. However, studies to investigate the pathogenetic events in CAYA population are relatively sparse. Enhanced understanding of the pathobiologic mechanisms involved in non-Hodgkin lymphomas in this unique population will allow for improved recognition of these rare lymphomas. Elucidation of the pathobiologic differences between CAYA and adult lymphomas will also lead to the design of more rational and much needed, less toxic therapies for this population. In this review, we summarize recent insights gained from the proceedings of the recent 7th International CAYA NHL Symposium held in New York City, New York October 20-23, 2022.
Collapse
Affiliation(s)
- Megan S Lim
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center,417 East 68th New York City, NY, USA.
| | - Michelle Foley
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Howard 14, New York City, NY, USA New York City, NY, USA.
| | - Lara Mussolin
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, University Hospital of Padova, via Giustiniani 3, 35128 Padova, Italy.
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Albert-Einstein-Allee 11, D-89081 Ulm, Germany.
| | - Suzanne Turner
- Department of Pathology, University of Cambridge, Lab Block Level 3, Box 231, Addenbrookes Hospital, Hills Road, Cambridge CB20QQ, UK; CEITEC, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
29
|
Shestakova A, Shao L, Smith LB, Ryan R, Bedell V, Murata-Collins J, Zhang W, Perry AM, Song JY. High-grade B-cell lymphoma with concurrent MYC rearrangement and 11q aberrations: Clinicopathologic, cytogenetic and molecular characterization of 4 cases. Hum Pathol 2023; 136:34-43. [PMID: 36997031 DOI: 10.1016/j.humpath.2023.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
High-grade B-cell lymphoma with 11q aberrations (LBL-11q) resembles Burkitt lymphoma (BL), is negative for MYC rearrangement, and harbors chromosome 11q aberrations. Rare cases of high-grade B-cell lymphoma with concurrent MYC rearrangement and 11q aberrations (HGBCL-MYC-11q) have been described. In this study we report the clinicopathologic, cytogenetic, and molecular findings in 4 such cases. Diagnoses were made on tissue or bone marrow biopsies. Karyotype, fluorescence in situ hybridization, genomic microarray analyses, and next-generation sequencing were performed. All patients were male (median age 39 years). Three cases were diagnosed as BL, while one was diagnosed as diffuse large B-cell lymphoma. Karyotypes (available in 2 patients) were complex. In one patient, copy number analysis showed gains at 1q21.1-q44 and 13q31.3, and loss of 13q34, abnormalities typically seen in BL. All of our cases showed two or more mutations that are recurrent in BL, including ID3, TP53, DDX3X, CCND3, FBXO1, and MYC. Two cases showed a GNA13 mutation, commonly seen in LBL-11q. Cases of HGBCL-MYC-11q display overlapping morphologic and immunophenotypic, as well as cytogenetic and molecular features between BL and LBL-11q, with a mutational landscape enriched for mutations recurrent in BL. Concurrent MYC rearrangement with 11q abnormalities is important to recognize especially since it has implications for their classification.
Collapse
|
30
|
Donzel M, Fontaine J, Traverse-Glehen A. [Histoseminar: "The contribution of new molecular biology techniques in the diagnosis of lymphoma: Myth or reality?". Case 1: High grade B-cell lymphoma with 11q aberration]. Ann Pathol 2023; 43:121-125. [PMID: 36822907 DOI: 10.1016/j.annpat.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/24/2023]
Affiliation(s)
- Marie Donzel
- Service de Pathologie Multi-Site, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Site Sud, 69310 Pierre-Bénite, France.
| | - Juliette Fontaine
- Service de Pathologie Multi-Site, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Site Sud, 69310 Pierre-Bénite, France
| | - Alexandra Traverse-Glehen
- Service de Pathologie Multi-Site, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Site Sud, 69310 Pierre-Bénite, France; Université Claude Bernard Lyon-1, Faculté de Médecine Lyon-Sud, CRCL, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| |
Collapse
|
31
|
Yamada S, Oka Y, Muramatsu M, Hashimoto Y. High-grade B-cell lymphoma with 11q aberrations: A single-center study. J Clin Exp Hematop 2023; 63:121-131. [PMID: 37380468 PMCID: PMC10410621 DOI: 10.3960/jslrt.23007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 06/30/2023] Open
Abstract
High-grade B-cell lymphoma with 11q aberrations (HGBL-11q) has been classified for the first time as a high-grade mature B-cell neoplasm according to the 5th edition of the World Health Organization Classification of Tumors of Hematopoietic and Lymphoid Tissues. HGBL-11q is morphologically and immunohistochemically similar to Burkitt lymphoma (BL) or HGBL; it is characterized by gain in the 11q23.2-11q23.3 region and loss in the 11q24.1-qter region but it lacks MYC translocation. HGBL-11q is a rare tumor, and its exact frequency in Japan remains unclear. In this study, we classified 113 Germinal center B-cell (GCB) type aggressive B-cell lymphomas (BCLs), which were divided into BL, high-grade (HG), and large cell (LC) morphologies. We performed fluorescence in situ hybridization (FISH) to identify 11q aberrations. Nine patients had 11q aberrations (7.96%, 9/113), including six HGBL-11q. The age range was from 8 to 87 years, and all were male. Six out of 14 patients with HG morphology were diagnosed with HGBL-11q (6/14, 42.9%). HGBL-11q has been found to occur primarily in children and young adults but also in middle-aged and older adults. Patients with HG morphology without MYC translocation should undergo FISH for 11q aberrations regardless of age. However, the pathogenesis, clinical findings, and prognosis of HGBL-11q remain unclear. The accumulation of cases with an accurate HGBL-11q diagnosis in daily practice and accurate and detailed data on HGBL-11q will contribute to further understanding of 11q aberrations.
Collapse
Affiliation(s)
- Shoki Yamada
- Department of Diagnostic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuka Oka
- Department of Diagnostic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Moe Muramatsu
- Department of Diagnostic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuko Hashimoto
- Department of Diagnostic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
32
|
Azad F, Miranda CJ, Zhang J, Gravina M. Early orbital involvement in a rare diagnosis of Burkitt-like lymphoma with 11q aberration. Proc AMIA Symp 2023; 36:240-242. [PMID: 36876257 PMCID: PMC9980705 DOI: 10.1080/08998280.2023.2164916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Burkitt-like lymphoma with 11q aberration is a rare condition that poses a diagnostic challenge due to similarities with Burkitt's lymphoma. Due to the rarity of cases, no specific guidelines exist for therapy, and it is treated the same way as Burkitt's lymphoma. We present such a case with initial orbital involvement, an unusual manifestation. Our patient achieved remission with induction chemotherapy, although he will need regular follow-up given the paucity of information on long-term monitoring in these patients.
Collapse
Affiliation(s)
- Farhan Azad
- Department of Medicine, University at Buffalo, Buffalo, New York
| | | | - Jiahua Zhang
- Department of Medicine, Mercy Hospital St. Louis, St. Louis, Missouri
| | - Matthew Gravina
- Department of Medicine, University at Buffalo, Buffalo, New York
| |
Collapse
|
33
|
Falini B, Martino G, Lazzi S. A comparison of the International Consensus and 5th World Health Organization classifications of mature B-cell lymphomas. Leukemia 2023; 37:18-34. [PMID: 36460764 PMCID: PMC9883170 DOI: 10.1038/s41375-022-01764-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022]
Abstract
Several editions of the World Health Organization (WHO) classifications of lympho-hemopoietic neoplasms in 2001, 2008 and 2017 served as the international standard for diagnosis. Since the 4th WHO edition, here referred as WHO-HAEM4, significant clinico-pathological, immunophenotypic and molecular advances have been made in the field of lymphomas, contributing to refining diagnostic criteria of several diseases, to upgrade entities previously defined as provisional and to identify new entities. This process has resulted in two recent classifying proposals of lymphoid neoplasms, the International Consensus Classification (ICC) and the 5th edition of the WHO classification (WHO-HAEM5). In this paper, we review and compare the two classifications in terms of diagnostic criteria and entity definition, with focus on mature B-cell neoplasms. The main aim is to provide a tool to facilitate the work of pathologists, hematologists and researchers involved in the diagnosis and treatment of lymphomas.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Hematology and CREO, University of Perugia, Perugia, Italy.
| | - Giovanni Martino
- Institute of Hematology and CREO, University of Perugia, Perugia, Italy
| | - Stefano Lazzi
- Institute of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| |
Collapse
|
34
|
Panda D, Das N, Thakral D, Gupta R. Genomic landscape of mature B-cell non-Hodgkin lymphomas - an appraisal from lymphomagenesis to drug resistance. J Egypt Natl Canc Inst 2022; 34:52. [PMID: 36504392 DOI: 10.1186/s43046-022-00154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mature B-cell non-Hodgkin lymphomas are one of the most common hematological malignancies with a divergent clinical presentation, phenotype, and course of disease regulated by underlying genetic mechanism. MAIN BODY Genetic and molecular alterations are not only critical for lymphomagenesis but also largely responsible for differing therapeutic response in these neoplasms. In recent years, advanced molecular tools have provided a deeper understanding regarding these oncogenic drives for predicting progression as well as refractory behavior in these diseases. The prognostic models based on gene expression profiling have also been proved effective in various clinical scenarios. However, considerable overlap does exist between the genotypes of individual lymphomas and at the same time where additional molecular lesions may be associated with each entity apart from the key genetic event. Therefore, genomics is one of the cornerstones in the multimodality approach essential for classification and risk stratification of B-cell non-Hodgkin lymphomas. CONCLUSION We hereby in this review discuss the wide range of genetic aberrancies associated with tumorigenesis, immune escape, and chemoresistance in major B-cell non-Hodgkin lymphomas.
Collapse
Affiliation(s)
- Devasis Panda
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, 110029, India
| | - Nupur Das
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, 110029, India
| | - Deepshi Thakral
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, 110029, India
| | - Ritu Gupta
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, 110029, India.
| |
Collapse
|
35
|
de Leval L, Alizadeh AA, Bergsagel PL, Campo E, Davies A, Dogan A, Fitzgibbon J, Horwitz SM, Melnick AM, Morice WG, Morin RD, Nadel B, Pileri SA, Rosenquist R, Rossi D, Salaverria I, Steidl C, Treon SP, Zelenetz AD, Advani RH, Allen CE, Ansell SM, Chan WC, Cook JR, Cook LB, d’Amore F, Dirnhofer S, Dreyling M, Dunleavy K, Feldman AL, Fend F, Gaulard P, Ghia P, Gribben JG, Hermine O, Hodson DJ, Hsi ED, Inghirami G, Jaffe ES, Karube K, Kataoka K, Klapper W, Kim WS, King RL, Ko YH, LaCasce AS, Lenz G, Martin-Subero JI, Piris MA, Pittaluga S, Pasqualucci L, Quintanilla-Martinez L, Rodig SJ, Rosenwald A, Salles GA, San-Miguel J, Savage KJ, Sehn LH, Semenzato G, Staudt LM, Swerdlow SH, Tam CS, Trotman J, Vose JM, Weigert O, Wilson WH, Winter JN, Wu CJ, Zinzani PL, Zucca E, Bagg A, Scott DW. Genomic profiling for clinical decision making in lymphoid neoplasms. Blood 2022; 140:2193-2227. [PMID: 36001803 PMCID: PMC9837456 DOI: 10.1182/blood.2022015854] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/15/2022] [Indexed: 01/28/2023] Open
Abstract
With the introduction of large-scale molecular profiling methods and high-throughput sequencing technologies, the genomic features of most lymphoid neoplasms have been characterized at an unprecedented scale. Although the principles for the classification and diagnosis of these disorders, founded on a multidimensional definition of disease entities, have been consolidated over the past 25 years, novel genomic data have markedly enhanced our understanding of lymphomagenesis and enriched the description of disease entities at the molecular level. Yet, the current diagnosis of lymphoid tumors is largely based on morphological assessment and immunophenotyping, with only few entities being defined by genomic criteria. This paper, which accompanies the International Consensus Classification of mature lymphoid neoplasms, will address how established assays and newly developed technologies for molecular testing already complement clinical diagnoses and provide a novel lens on disease classification. More specifically, their contributions to diagnosis refinement, risk stratification, and therapy prediction will be considered for the main categories of lymphoid neoplasms. The potential of whole-genome sequencing, circulating tumor DNA analyses, single-cell analyses, and epigenetic profiling will be discussed because these will likely become important future tools for implementing precision medicine approaches in clinical decision making for patients with lymphoid malignancies.
Collapse
Affiliation(s)
- Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Ash A. Alizadeh
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
- Stanford Cancer Institute, Stanford University, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - P. Leif Bergsagel
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ
| | - Elias Campo
- Haematopathology Section, Hospital Clínic, Institut d'Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Andrew Davies
- Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jude Fitzgibbon
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Steven M. Horwitz
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ari M. Melnick
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - William G. Morice
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Ryan D. Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
| | - Bertrand Nadel
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Stefano A. Pileri
- Haematopathology Division, IRCCS, Istituto Europeo di Oncologia, IEO, Milan, Italy
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden
| | - Davide Rossi
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | | | - Andrew D. Zelenetz
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Ranjana H. Advani
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Carl E. Allen
- Division of Pediatric Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | | | - Wing C. Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - James R. Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Lucy B. Cook
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Francesco d’Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Kieron Dunleavy
- Division of Hematology and Oncology, Georgetown Lombardi Comprehensive Cancer Centre, Georgetown University Hospital, Washington, DC
| | - Andrew L. Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Falko Fend
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Philippe Gaulard
- Department of Pathology, University Hospital Henri Mondor, AP-HP, Créteil, France
- Faculty of Medicine, IMRB, INSERM U955, University of Paris-Est Créteil, Créteil, France
| | - Paolo Ghia
- Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy
| | - John G. Gribben
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Olivier Hermine
- Service D’hématologie, Hôpital Universitaire Necker, Université René Descartes, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Daniel J. Hodson
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Eric D. Hsi
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Elaine S. Jaffe
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Toyko, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Wolfram Klapper
- Hematopathology Section and Lymph Node Registry, Department of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Won Seog Kim
- Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Rebecca L. King
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Young H. Ko
- Department of Pathology, Cheju Halla General Hospital, Jeju, Korea
| | | | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - José I. Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Miguel A. Piris
- Department of Pathology, Jiménez Díaz Foundation University Hospital, CIBERONC, Madrid, Spain
| | - Stefania Pittaluga
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY
- Department of Pathology & Cell Biology, Columbia University, New York, NY
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | | | - Gilles A. Salles
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jesus San-Miguel
- Clínica Universidad de Navarra, Navarra, Cancer Center of University of Navarra, Cima Universidad de NavarraI, Instituto de Investigacion Sanitaria de Navarra, Centro de Investigación Biomédica en Red de Céncer, Pamplona, Spain
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | - Laurie H. Sehn
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | - Gianpietro Semenzato
- Department of Medicine, University of Padua and Veneto Institute of Molecular Medicine, Padova, Italy
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steven H. Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Judith Trotman
- Haematology Department, Concord Repatriation General Hospital, Sydney, Australia
| | - Julie M. Vose
- Department of Internal Medicine, Division of Hematology-Oncology, University of Nebraska Medical Center, Omaha, NE
| | - Oliver Weigert
- Department of Medicine III, LMU Hospital, Munich, Germany
| | - Wyndham H. Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jane N. Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Pier L. Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istitudo di Ematologia “Seràgnoli” and Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Emanuele Zucca
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| |
Collapse
|
36
|
Yang HJ, Wang ZM. Burkitt-like lymphoma with 11q aberration confirmed by needle biopsy of the liver: A case report. World J Clin Cases 2022; 10:9470-9477. [PMID: 36159440 PMCID: PMC9477696 DOI: 10.12998/wjcc.v10.i26.9470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/12/2022] [Accepted: 07/31/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Burkitt-like lymphoma with 11q aberration (BLL-11q) is a rare provisional lymphoma, and the majority of cases are usually diagnosed by excisional lymph node biopsy. Here we report a case of BLL-11q diagnosed by needle biopsy of the liver in order to improve further understanding of the disease, reduce misdiagnosis, and identify treatment regimens.
CASE SUMMARY The patient was a 67-year-old male. He complained of increased frequency of stools for more than one year, periumbilical pain and discomfort exceeding 3 mo. A computed tomography scan suggested an appendiceal malignant tumor with multiple metastases of the peritoneum, omentum, and liver. Needle biopsy of liver nodules showed that the tumor cells were of median size, the shape was consistent, a small number of tumor cells were large, the “starry sky” pattern was evident, and some tissue cells showed multiple apoptotic debris with coarse particles. Immunohistochemistry was positive for CD20, CD10, BCL6, and MYC. The Ki-67 proliferation index was more than 95%. Molecular biological detection indicated a lack of MYC, BCL2 and BCL6 gene rearrangement with 11q aberration. Therefore, the diagnosis was BLL-11q of the liver. After eight courses of chemotherapy, the abdominal and pelvic peritoneal masses and liver nodules had almost disappeared. The patient recovered well after a follow-up period of more than 13 mo.
CONCLUSION BLL-11q is rare, but patients treated with standard chemotherapy for Burkitt lymphoma can have a good prognosis. Reducing the dose of chemotherapy or developing specific therapies to prevent overtreatment may be considered, but more case studies are needed.
Collapse
Affiliation(s)
- Han-Jin Yang
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Zhao-Ming Wang
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
37
|
Loeffler-Wirth H, Kreuz M, Schmidt M, Ott G, Siebert R, Binder H. Classifying Germinal Center Derived Lymphomas-Navigate a Complex Transcriptional Landscape. Cancers (Basel) 2022; 14:3434. [PMID: 35884496 PMCID: PMC9321060 DOI: 10.3390/cancers14143434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Classification of lymphoid neoplasms is based mainly on histologic, immunologic, and (rarer) genetic features. It has been supplemented by gene expression profiling (GEP) in the last decade. Despite the considerable success, particularly in associating lymphoma subtypes with specific transcriptional programs and classifier signatures of up- or downregulated genes, competing molecular classifiers were often proposed in the literature by different groups for the same classification tasks to distinguish, e.g., BL versus DLBCL or different DLBCL subtypes. Moreover, rarer sub-entities such as MYC and BCL2 "double hit lymphomas" (DHL), IRF4-rearranged large cell lymphoma (IRF4-LCL), and Burkitt-like lymphomas with 11q aberration pattern (mnBLL-11q) attracted interest while their relatedness regarding the major classes is still unclear in many respects. We explored the transcriptional landscape of 873 lymphomas referring to a wide spectrum of subtypes by applying self-organizing maps (SOM) machine learning. The landscape reveals a continuum of transcriptional states activated in the different subtypes without clear-cut borderlines between them and preventing their unambiguous classification. These states show striking parallels with single cell gene expression of the active germinal center (GC), which is characterized by the cyclic progression of B-cells. The expression patterns along the GC trajectory are discriminative for distinguishing different lymphoma subtypes. We show that the rare subtypes take intermediate positions between BL, DLBCL, and FL as considered by the 5th edition of the WHO classification of haemato-lymphoid tumors in 2022. Classifier gene signatures extracted from these states as modules of coregulated genes are competitive with literature classifiers. They provide functional-defined classifiers with the option of consenting redundant classifiers from the literature. We discuss alternative classification schemes of different granularity and functional impact as possible avenues toward personalization and improved diagnostics of GC-derived lymphomas.
Collapse
Affiliation(s)
- Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics, University Leipzig (IZBI), 04107 Leipzig, Germany; (H.L.-W.); (M.S.)
| | - Markus Kreuz
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany;
| | - Maria Schmidt
- Interdisciplinary Centre for Bioinformatics, University Leipzig (IZBI), 04107 Leipzig, Germany; (H.L.-W.); (M.S.)
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany;
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89073 Ulm, Germany;
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University Leipzig (IZBI), 04107 Leipzig, Germany; (H.L.-W.); (M.S.)
| |
Collapse
|
38
|
Huisman EJ, Brooimans AR, Mayer S, Joosten M, de Bont L, Dekker M, Rammeloo ELM, Smiers FJ, van Hagen PM, Zwaan CM, de Haas M, Cnossen MH, Dalm VASH. Patients with Chromosome 11q Deletions Are Characterized by Inborn Errors of Immunity Involving both B and T Lymphocytes. J Clin Immunol 2022; 42:1521-1534. [PMID: 35763218 DOI: 10.1007/s10875-022-01303-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 06/04/2022] [Indexed: 11/30/2022]
Abstract
Disorders of the long arm of chromosome 11 (11q) are rare and involve various chromosomal regions. Patients with 11q disorders, including Jacobsen syndrome, often present with a susceptibility for bacterial and prolonged viral and fungal infections partially explained by hypogammaglobulinemia. Additional T lymphocyte or granular neutrophil dysfunction may also be present. In order to evaluate infectious burden and immunological function in patients with 11q disorders, we studied a cohort of 14 patients with 11q deletions and duplications. Clinically, 12 patients exhibited prolonged and repetitive respiratory tract infections, frequently requiring (prophylactic) antibiotic treatment (n = 7), ear-tube placement (n = 9), or use of inhalers (n = 5). Complicated varicella infections (n = 5), chronic eczema (n = 6), warts (n = 2), and chronic fungal infections (n = 4) were reported. Six patients were on immunoglobulin replacement therapy. We observed a high prevalence of low B lymphocyte counts (n = 8), decreased T lymphocyte counts (n = 5) and abnormal T lymphocyte function (n = 12). Granulocyte function was abnormal in 29% without a clinical phenotype. Immunodeficiency was found in patients with terminal and interstitial 11q deletions and in one patient with terminal 11q duplication. Genetically, FLI1 and ETS1 are seen as causative for the immunodeficiency, but these genes were deleted nor duplicated in 4 of our 14 patients. Alternative candidate genes on 11q may have a role in immune dysregulation. In conclusion, we present evidence that inborn errors of immunity are present in patients with 11q disorders leading to clinically relevant infections. Therefore, broad immunological screening and necessary treatment is of importance in this patient group.
Collapse
Affiliation(s)
- Elise J Huisman
- Department of Pediatric Hematology, Erasmus Medical Center Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, the Netherlands.,Unit of Transfusion Medicine, Sanquin Blood Supply, Amsterdam, the Netherlands
| | - A Rick Brooimans
- Laboratory Medical Immunological, Department of Immunology, Erasmus Medical Center, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Samone Mayer
- Department of Pediatric Hematology, Erasmus Medical Center Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Marieke Joosten
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Louis de Bont
- Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mariëlle Dekker
- Department of Pediatrics, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | | | - Frans J Smiers
- Department of Pediatric Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - P Martin van Hagen
- Laboratory Medical Immunological, Department of Immunology, Erasmus Medical Center, University Medical Centre Rotterdam, Rotterdam, the Netherlands.,Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - C Michel Zwaan
- Department of Pediatric Oncology, Erasmus Medical Center Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, the Netherlands.,Department of Pediatric Oncology, Princess Máxima Center, Utrecht, the Netherlands
| | - Masja de Haas
- Laboratory of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, the Netherlands.,Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Clinical Transfusion Research, Sanquin Research, Amsterdam, the Netherlands
| | - Marjon H Cnossen
- Department of Pediatric Hematology, Erasmus Medical Center Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Virgil A S H Dalm
- Laboratory Medical Immunological, Department of Immunology, Erasmus Medical Center, University Medical Centre Rotterdam, Rotterdam, the Netherlands. .,Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
39
|
Horn H, Ott G. Burkitt-like Lymphoma With 11q Aberration: A Characteristic Chromosomal Alteration and a Particular Morphologic Feature. Am J Surg Pathol 2022; 46:577-578. [PMID: 35067517 DOI: 10.1097/pas.0000000000001869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Heike Horn
- Department of Clinical Pathology Robert Bosch Hospital
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart Germany
| | - German Ott
- Department of Clinical Pathology Robert Bosch Hospital
| |
Collapse
|
40
|
Cryptic MYC insertions in Burkitt lymphoma: New data and a review of the literature. PLoS One 2022; 17:e0263980. [PMID: 35167621 PMCID: PMC8846522 DOI: 10.1371/journal.pone.0263980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/01/2022] [Indexed: 12/24/2022] Open
Abstract
The occurrence of MYC-negative Burkitt lymphoma (BL) has been discussed for many years. The real frequency of the MYC insertion in MYC-negative BL is still unknown. Fine-needle aspiration biopsies of 108 consecutive patients with clinicopathologically suspected BL (suspBL) were evaluated by flow cytometry, classical cytogenetics, and fluorescence in situ hybridization (FISH). We found 12 cases (11%) without the MYC rearrangement by FISH with a MYC breakapart probe: two patients (1.9%) with cryptic MYC/IGH fusion (finally diagnosed as BL) and 10 patients (9.3%) with 11q gain/loss (finally diagnosed as Burkitt-like lymphoma with 11q aberration). The exact breakpoints of the cryptic MYC/IGH were investigated by next-generation sequencing. The MYC insertions’ breakpoints were identified in PVT1 in the first case, and 42 kb upstream of 5′MYC in the second case. To date, a molecular characterization of the MYC insertion in BL has only been reported in one case. Detailed descriptions of our MYC insertions in a routinely and consecutively diagnosed suspBL cohort will contribute to resolving the issue of MYC negativity in BL. In our opinion, the presence of the MYC insertions in BL and other lymphomas might be underestimated, because routine genetic diagnostics are usually based on FISH only, without karyotyping.
Collapse
|
41
|
Genomic abnormalities of TP53 define distinct risk groups of paediatric B-cell non-Hodgkin lymphoma. Leukemia 2022; 36:781-789. [PMID: 34675373 PMCID: PMC8885412 DOI: 10.1038/s41375-021-01444-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022]
Abstract
Children with B-cell non-Hodgkin lymphoma (B-NHL) have an excellent chance of survival, however, current clinical risk stratification places as many as half of patients in a high-risk group receiving very intensive chemo-immunotherapy. TP53 alterations are associated with adverse outcome in many malignancies; however, whilst common in paediatric B-NHL, their utility as a risk classifier is unknown. We evaluated the clinical significance of TP53 abnormalities (mutations, deletion and/or copy number neutral loss of heterozygosity) in a large UK paediatric B-NHL cohort and determined their impact on survival. TP53 abnormalities were present in 54.7% of cases and were independently associated with a significantly inferior survival compared to those without a TP53 abnormality (PFS 70.0% vs 100%, p < 0.001, OS 78.0% vs 100%, p = 0.002). Moreover, amongst patients clinically defined as high-risk (stage III with high LDH or stage IV), those without a TP53 abnormality have superior survival compared to those with TP53 abnormalities (PFS 100% vs 55.6%, p = 0.005, OS 100% vs 66.7%, p = 0.019). Biallelic TP53 abnormalities were either maintained from the presentation or acquired at progression in all paired diagnosis/progression Burkitt lymphoma cases. TP53 abnormalities thus define clinical risk groups within paediatric B-NHL and offer a novel molecular risk stratifier, allowing more personalised treatment protocols.
Collapse
|
42
|
Gebauer N, Witte HM, Merz H, Oschlies I, Klapper W, Caliebe A, Tharun L, Spielmann M, von Bubnoff N, Feller AC, Murga Penas EM. Aggressive B-cell lymphoma cases with 11q aberration patterns indicate a spectrum beyond Burkitt-like lymphoma. Blood Adv 2021; 5:5220-5225. [PMID: 34500469 PMCID: PMC9153036 DOI: 10.1182/bloodadvances.2021004635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
The recent characterization of a group of non-MYC rearranged aggressive B-cell lymphomas, resembling Burkitt lymphoma (BL), characteristically harboring a telomeric 11q loss or combined 11q proximal gains/loss pattern has led to the introduction of the provisional entity of Burkitt-like lymphoma with 11q aberration (BLL-11q). Prompted by the discovery of a telomeric 11q loss in an HIV+ high-grade B-cell lymphoma patient, we investigated an extended cohort of aggressive B-cell lymphomas, enriched for cases with histopathological features intermediate between DLBCL and BL, including double- and triple-hit lymphomas (n = 47), for 11q loss/combined 11q proximal gains/loss pattern by fluorescence in situ hybridization. We provide first evidence that 11q aberrations can be found in both BLL in the context of an underlying HIV infection as well as in high-grade B-cell lymphomas with MYC, BCL2, and/or BCL6 rearrangements. We therefore propose that the clinicopathological spectrum of malignancies carrying this aberration may be broader than previously assumed.
Collapse
Affiliation(s)
- Niklas Gebauer
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Hanno M. Witte
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany
- Department of Hematology and Oncology, Federal Armed Forces Hospital Ulm, Ulm, Germany
| | - Hartmut Merz
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Ilske Oschlies
- Department of Pathology, Hematopathology Section, Reference Centre for Lymph Node Pathology and Hematopathology
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section, Reference Centre for Lymph Node Pathology and Hematopathology
| | - Almuth Caliebe
- Institute of Human Genetics, University Hospital of Schleswig-Holstein, Kiel, Germany; and
| | - Lars Tharun
- Department of Pathology, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Malte Spielmann
- Institute of Human Genetics, University Hospital of Schleswig-Holstein, Kiel, Germany; and
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Alfred C. Feller
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Eva M. Murga Penas
- Institute of Human Genetics, University Hospital of Schleswig-Holstein, Kiel, Germany; and
| |
Collapse
|
43
|
Perincheri S. Tumor Microenvironment of Lymphomas and Plasma Cell Neoplasms: Broad Overview and Impact on Evaluation for Immune Based Therapies. Front Oncol 2021; 11:719140. [PMID: 34956859 PMCID: PMC8692247 DOI: 10.3389/fonc.2021.719140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
Lymphomas and plasma cell neoplasms are a heterogenous group of malignancies derived from lymphocytes. They are a significant cause of patient morbidity and mortality. Advances in morphologic, immunophenotypic and molecular techniques have led to better understanding of the pathogenesis and diagnosis of these neoplasms. Advances in treatment, particularly immune-based therapies, increasingly allow for targeted therapies of these diseases. Mechanistic studies using animal models and clinical trials have revealed the importance of the tumor microenvironment on disease pathogenesis, progression, and response to therapy in these malignancies. Simultaneous progress in diagnostic techniques has made it feasible to generate high-resolution, high-throughput data from the tumor microenvironment with spatial context. As the armamentarium of targeted therapies and diagnostic techniques grows, there is potential to harness these advances to better stratify patients for targeted therapies, including immune-based therapies, in hematologic malignancies.
Collapse
Affiliation(s)
- Sudhir Perincheri
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
44
|
[Burkitt-like lymphoma with 11q aberration: two cases report and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:1035-1038. [PMID: 35045677 PMCID: PMC8770881 DOI: 10.3760/cma.j.issn.0253-2727.2021.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Diffuse large B-cell lymphomas in adults with aberrant coexpression of CD10, BCL6, and MUM1 are enriched in IRF4 rearrangements. Blood Adv 2021; 6:2361-2372. [PMID: 34654055 PMCID: PMC9006278 DOI: 10.1182/bloodadvances.2021006034] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022] Open
Abstract
DLBCL in adults aberrantly coexpressing CD10, BCL6, and MUM1 is genetically heterogeneous and enriched in IRF4-rearranged cases. IRF4-rearranged DLBCL in adults share genetic features with LBCL-IRF4 in children but with higher genomic complexity and often ABC GEP.
Diffuse large B-cell lymphoma (DLBCL) with aberrant coexpression of CD10+BCL6+MUM1+ (DLBCL-AE), classified as germinal center B cell (GCB) type by the Hans algorithm (HA), was genetically characterized. To capture the complexity of DLBCL-AE, we used an integrated approach that included gene expression profiling (GEP), fluorescence in situ hybridization, targeted gene sequencing, and copy number (CN) arrays. According to GEP, 32/54 (59%) cases were classified as GCB-DLBCL, 16/54 (30%) as activated B-cell (ABC) DLBCL, and 6/54 (11%) as unclassifiable. The discrepancy between HA and GEP was 41%. Three genetic subgroups were identified. Group 1 included 13/50 (26%) cases without translocations and mainly showing and ABC/MCD molecular profile. Group 2 comprised 11/50 (22%) cases with IRF4 alterations (DLBCL-IRF4), frequent mutations in IRF4 (82%) and NF-κB pathway genes (MYD88, CARD11, and CD79B), and losses of 17p13.2. Five cases each were classified as GCB- or ABC-type. Group 3 included 26/50 (52%) cases with 1 or several translocations in BCL2/BCL6/MYC/IGH, and GCB/EZB molecular profile predominated. Two cases in this latter group showed complex BCL2/BCL6/IRF4 translocations. DLBCL-IRF4 in adults showed a similar copy number profile and shared recurrent CARD11 and CD79B mutations when compared with LBCL-IRF4 in the pediatric population. However, adult cases showed higher genetic complexity, higher mutational load with frequent MYD88 and KMT2D mutations, and more ABC GEP. IRF4 mutations were identified only in IRF4-rearranged cases, indicating its potential use in the diagnostic setting. In conclusion, DLBCL-AE is genetically heterogeneous and enriched in cases with IRF4 alterations. DLBCL-IRF4 in adults has many similarities to the pediatric counterpart.
Collapse
|
46
|
Richter J, John K, Staiger AM, Rosenwald A, Kurz K, Michgehl U, Ott G, Franzenburg S, Kohler C, Finger J, Oschlies I, Paul U, Siebert R, Spang R, Burkhardt B, Klapper W. Epstein-Barr virus status of sporadic Burkitt lymphoma is associated with patient age and mutational features. Br J Haematol 2021; 196:681-689. [PMID: 34617271 DOI: 10.1111/bjh.17874] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
Sporadic Burkitt lymphoma (BL) is the most frequent tumour of children and adolescents but a rare subtype of lymphomas in adults. To date most molecular data have been obtained from lymphomas arising in the young. Recently, Epstein-Barr virus (EBV) positive and negative BL in young patients was shown to differ in molecular features. In the present study, we present a large age-overarching cohort of sporadic BL (n = 162) analysed by immunohistochemistry, translocations of MYC proto-oncogene, basic helix-loop-helix transcription factor (MYC), B-cell leukaemia/lymphoma 2 (BCL2) and B-cell leukaemia/lymphoma 6 (BCL6) and by targeted sequencing. We illustrate an age-associated inter-tumoral molecular heterogeneity in this disease. Mutations affecting inhibitor of DNA binding 3, HLH protein (ID3), transcription factor 3 (TCF3) and cyclin D3 (CCND3), which are highly recurrent in paediatric BL, and expression of sex determining region Y-box transcription factor 11 (SOX11) declined with patient age at diagnosis (P = 0·0204 and P = 0·0197 respectively). In contrast, EBV was more frequently detected in adult patients (P = 0·0262). Irrespective of age, EBV-positive sporadic BL showed significantly less frequent mutations in ID3/TCF3/CCND3 (P = 0·0088) but more often mutations of G protein subunit alpha 13 (GNA13; P = 0·0368) and forkhead box O1 (FOXO1; P = 0·0044) compared to EBV-negative tumours. Our findings suggest that among sporadic BL an EBV-positive subgroup of lymphomas increases with patient age that shows distinct pathogenic features reminiscent of EBV-positive endemic BL.
Collapse
Affiliation(s)
- Julia Richter
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Katharina John
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Annette M Staiger
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany.,Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tuebingen, Tuebingen, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University Würzburg and Comprehensive Cancer Mainfranken, Würzburg, Germany
| | - Katrin Kurz
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Ulf Michgehl
- Pediatric Hematology and Oncology, University Hospital Muenster, Muenster, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Sören Franzenburg
- Institute for Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Christian Kohler
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Jasmin Finger
- Pediatric Hematology and Oncology, University Hospital Muenster, Muenster, Germany
| | - Ilske Oschlies
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Ulrike Paul
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Rainer Spang
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Birgit Burkhardt
- Pediatric Hematology and Oncology, University Hospital Muenster, Muenster, Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
47
|
Defining and Treating High-grade B-cell lymphoma, NOS. Blood 2021; 140:943-954. [PMID: 34525177 DOI: 10.1182/blood.2020008374] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022] Open
Abstract
High-grade B-cell lymphoma, not otherwise specified (HGBL, NOS) is a recently introduced diagnostic category for aggressive B-cell lymphomas. It includes tumors with Burkitt-like or blastoid morphology that do not have double-hit cytogenetics and that cannot be classified as other well-defined lymphoma subtypes. HBCL, NOS are rare and heterogeneous; most have germinal center B-cell phenotype, and up to 45% carry a single-hit MYC rearrangement, but otherwise they have no unifying immunophenotypic or cytogenetic characteristics. Recent analyses utilizing gene expression profiling (GEP) revealed that up to 15% of tumors currently classified as diffuse large B-cell lymphoma display a HGBL-like GEP signature, indicating a potential to significantly expand the HGBL category using more objective molecular criteria. Optimal treatment of HGBL, NOS is poorly defined due to its rarity and inconsistent diagnostic patterns. A minority of patients have early-stage disease which can be managed with standard RCHOP-based approaches with or without radiation. For advanced-stage HGBL, NOS, which often presents with aggressive, disseminated disease, high lactate dehydrogenase, and involvement of extranodal organs (including the central nervous system [CNS]), intensified Burkitt lymphoma-like regimens with CNS prophylaxis may be appropriate. However, many patients diagnosed at age > 60 years are not eligible for intensive immunochemotherapy. An improved, GEP and/or genomic-based pathologic classification that could facilitate HGBL-specific trials is needed to improve outcomes for all patients. In this review, we discuss the current clinicopathologic concept of HGBL, NOS, existing data on its prognosis and treatment, and delineate potential future taxonomy enrichments based on emerging molecular diagnostics.
Collapse
|
48
|
Onaindia A, Santiago-Quispe N, Iglesias-Martinez E, Romero-Abrio C. Molecular Update and Evolving Classification of Large B-Cell Lymphoma. Cancers (Basel) 2021; 13:3352. [PMID: 34283060 PMCID: PMC8269067 DOI: 10.3390/cancers13133352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Diffuse large B-cell lymphomas (DLBCLs) are aggressive B-cell neoplasms with considerable clinical, biologic, and pathologic diversity. The application of high throughput technologies to the study of lymphomas has yielded abundant molecular data leading to the identification of distinct molecular identities and novel pathogenetic pathways. In light of this new information, newly refined diagnostic criteria have been established in the fourth edition of the World Health Organization (WHO) consensus classification of lymphomas, which was revised in 2016. This article reviews the histopathological and molecular features of the various aggressive B-cell lymphoma subtypes included in the updated classification.
Collapse
Affiliation(s)
- Arantza Onaindia
- Bioaraba Health Research Institute, Oncohaematology Research Group, 01070 Vitoria-Gasteiz, Spain
- Osakidetza Basque Health Service, Araba University Hospital, Pathology Department, 01070 Vitoria-Gasteiz, Spain; (N.S.-Q.); (E.I.-M.); (C.R.-A.)
| | - Nancy Santiago-Quispe
- Osakidetza Basque Health Service, Araba University Hospital, Pathology Department, 01070 Vitoria-Gasteiz, Spain; (N.S.-Q.); (E.I.-M.); (C.R.-A.)
| | - Erika Iglesias-Martinez
- Osakidetza Basque Health Service, Araba University Hospital, Pathology Department, 01070 Vitoria-Gasteiz, Spain; (N.S.-Q.); (E.I.-M.); (C.R.-A.)
| | - Cristina Romero-Abrio
- Osakidetza Basque Health Service, Araba University Hospital, Pathology Department, 01070 Vitoria-Gasteiz, Spain; (N.S.-Q.); (E.I.-M.); (C.R.-A.)
| |
Collapse
|
49
|
Mason EF, Kovach AE. Update on Pediatric and Young Adult Mature Lymphomas. Clin Lab Med 2021; 41:359-387. [PMID: 34304770 DOI: 10.1016/j.cll.2021.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
After acute leukemia and brain and central nervous system tumors, mature lymphomas represent the third most common cancer in pediatric patients. Non-Hodgkin lymphoma accounts for approximately 60% of lymphoma diagnoses in children, with the remainder representing Hodgkin lymphoma. Among non-Hodgkin lymphomas in pediatric patients, aggressive lymphomas, such as Burkitt lymphoma, diffuse large B-cell lymphoma, and anaplastic large cell lymphoma, predominate. This article summarizes the epidemiologic, histopathologic, and molecular features of selected mature systemic B-cell and T-cell lymphomas encountered in this age group.
Collapse
Affiliation(s)
- Emily F Mason
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, 4603A TVC, Nashville, TN 37232-5310, USA.
| | - Alexandra E Kovach
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, 4650 Sunset Boulevard, Mailstop #32, Los Angeles, CA 90027, USA
| |
Collapse
|
50
|
Lap CJ, Nassereddine S, Dunleavy K. Novel Biological Insights and New Developments in Management of Burkitt Lymphoma and High-Grade B-Cell Lymphoma. Curr Treat Options Oncol 2021; 22:60. [PMID: 34097157 DOI: 10.1007/s11864-021-00857-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 12/16/2022]
Abstract
OPINION STATEMENT Burkitt lymphoma (BL) is highly curable, and prompt institution of therapy is critical to achieving optimal outcomes. Although current "standard" approaches are very effective in disease eradication, treatment-related toxicity makes optimal delivery of curative therapy a challenge, especially in older and immunocompromised individuals. Reduced intensity approaches with fewer toxic complications have been the focus of some recent studies. A critical question is if they can replace "standard" approaches by maintaining high curability with improved tolerability. Additionally, new molecular insights in BL biology suggest that in the future, "targeted therapy" approaches may be feasible using small molecule inhibitors and novel strategies. Recently, a new category of aggressive lymphoma named "high-grade B-cell lymphoma (HGBL) with MYC and BCL2 and/or BCL6 translocations" has been recognized. This category overlaps clinically and biologically with BL and has an inferior prognosis compared to most B-cell lymphomas, and the optimal approach to its management remains, as yet, undefined. In this review, we discuss the current landscape of BL treatment including recent results with low-intensity regimens and also consider current approaches to HGBL. We also explore how recently elucidated novel biological insights in BL biology may shape future therapeutic directions including the use of novel cellular therapy approaches.
Collapse
Affiliation(s)
- Coen J Lap
- Department of Hematology and Oncology, Medical Faculty Associates, George Washington University, Washington, DC, USA
- The George Washington University School of Medicine, Washington, DC, USA
| | - Samah Nassereddine
- Department of Hematology and Oncology, Medical Faculty Associates, George Washington University, Washington, DC, USA
- The George Washington University School of Medicine, Washington, DC, USA
| | - Kieron Dunleavy
- Division of Hematology-Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Hospital, Washington, DC, USA.
| |
Collapse
|