1
|
Shi Y, Xu Y, Shen H, Jin J, Tong H, Xie W. Advances in biology, diagnosis and treatment of DLBCL. Ann Hematol 2024; 103:3315-3334. [PMID: 39017945 PMCID: PMC11358236 DOI: 10.1007/s00277-024-05880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL), with approximately 150,000 new cases worldwide each year, represent nearly 30% of all cases of non-Hodgkin lymphoma (NHL) and are phenotypically and genetically heterogeneous. A gene-expression profile (GEP) has identified at least three major subtypes of DLBCL, each of which has distinct clinical, biological, and genetic features: activated B-cell (ABC)-like DLBCL, germinal-center B-cell (GCB)-like DLBCL, and unclassified. Different origins are associated with different responses to chemotherapy and targeted agents. Despite DLBCL being a highly heterogeneous disease, more than 60% of patients with DLBCL can be cured after using rituximab combined with cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) to inhibit the growth of cancer cells while targeting the CD20 receptor. In recent decades, the improvement of diagnostic levels has led to a refinement classification of DLBCL and the development of new therapeutic approaches. The objective of this review was to summarize the latest studies examining genetic lesions and therapies for DLBCL.
Collapse
Affiliation(s)
- Yuanfei Shi
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yi Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Huafei Shen
- International Health Care Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Wanzhuo Xie
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
2
|
Yamazaki S. The Nuclear NF-κB Regulator IκBζ: Updates on Its Molecular Functions and Pathophysiological Roles. Cells 2024; 13:1467. [PMID: 39273036 PMCID: PMC11393961 DOI: 10.3390/cells13171467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
More than a decade after the discovery of the classical cytoplasmic IκB proteins, IκBζ was identified as an additional member of the IκB family. Unlike cytoplasmic IκB proteins, IκBζ has distinct features, including its nuclear localization, preferential binding to NF-κB subunits, unique expression properties, and specialized role in NF-κB regulation. While the activation of NF-κB is primarily controlled by cytoplasmic IκB members at the level of nuclear entry, IκBζ provides an additional layer of NF-κB regulation in the nucleus, enabling selective gene activation. Human genome-wide association studies (GWAS) and gene knockout experiments in mice have elucidated the physiological and pathological roles of IκBζ. Despite the initial focus to its role in activated macrophages, IκBζ has since been recognized as a key player in the IL-17-triggered production of immune molecules in epithelial cells, which has garnered significant clinical interest. Recent research has also unveiled a novel molecular function of IκBζ, linking NF-κB and the POU transcription factors through its N-terminal region, whose role had remained elusive for many years.
Collapse
Affiliation(s)
- Soh Yamazaki
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo 143-8540, Japan
| |
Collapse
|
3
|
Moud BN, Ober F, O’Neill TJ, Krappmann D. MALT1 substrate cleavage: what is it good for? Front Immunol 2024; 15:1412347. [PMID: 38863711 PMCID: PMC11165066 DOI: 10.3389/fimmu.2024.1412347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
CARD-BCL10-MALT1 (CBM) signalosomes connect distal signaling of innate and adaptive immune receptors to proximal signaling pathways and immune activation. Four CARD scaffold proteins (CARD9, 10, 11, 14) can form seeds that nucleate the assembly of BCL10-MALT1 filaments in a cell- and stimulus-specific manner. MALT1 (also known as PCASP1) serves a dual function within the assembled CBM complexes. By recruiting TRAF6, MALT1 acts as a molecular scaffold that initiates IκB kinase (IKK)/NF-κB and c-Jun N-terminal kinase (JNK)/AP-1 signaling. In parallel, proximity-induced dimerization of the paracaspase domain activates the MALT1 protease which exerts its function by cleaving a set of specific substrates. While complete MALT1 ablation leads to immune deficiency, selective destruction of either scaffolding or protease function provokes autoimmune inflammation. Thus, balanced MALT1-TRAF6 recruitment and MALT1 substrate cleavage are critical to maintain immune homeostasis and to promote optimal immune activation. Further, MALT1 protease activity drives the survival of aggressive lymphomas and other non-hematologic solid cancers. However, little is known about the relevance of the cleavage of individual substrates for the pathophysiological functions of MALT1. Unbiased serendipity, screening and computational predictions have identified and validated ~20 substrates, indicating that MALT1 targets a quite distinct set of proteins. Known substrates are involved in CBM auto-regulation (MALT1, BCL10 and CARD10), regulation of signaling and adhesion (A20, CYLD, HOIL-1 and Tensin-3), or transcription (RelB) and mRNA stability/translation (Regnase-1, Roquin-1/2 and N4BP1), indicating that MALT1 often targets multiple proteins involved in similar cellular processes. Here, we will summarize what is known about the fate and functions of individual MALT1 substrates and how their cleavage contributes to the biological functions of the MALT1 protease. We will outline what is needed to better connect critical pathophysiological roles of the MALT1 protease with the cleavage of distinct substrates.
Collapse
Affiliation(s)
| | | | | | - Daniel Krappmann
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
4
|
Guo D, Zhang M, Wei T, Zhang X, Shi X, Tang H, Ding M, Li J, Zhang S, Guo W. NFKBIZ regulates NFκB signaling pathway to mediate tumorigenesis and metastasis of hepatocellular carcinoma by direct interaction with TRIM16. Cell Mol Life Sci 2024; 81:167. [PMID: 38581570 PMCID: PMC10998794 DOI: 10.1007/s00018-024-05182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 04/08/2024]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with high incidence and mortality rates. NFKBIZ, a member of the nuclear factor kappa B inhibitory family, is closely related to tumor progression. However, the precise role of NFKBIZ in HCC remains unclear. To explore this, we conducted a series of experiments from clinic to cells. Western blot and qPCR revealed a significant downregulation of NFKBIZ in human HCC tissues. Clinical character analysis showed that the patients with lower NFKBIZ expression had poorer prognosis and higher clinical stage. By using CCK-8, wound healing, transwell invasion and migration assay, we discovered that NFKBIZ expression was reversely associated with the proliferation, invasion, and migration ability of HCC cells in vitro. Additionally, the results obtained from xenograft assay and lung metastasis models showed that NFKBIZ overexpression inhibited the growth and metastasis of HCC cells in vivo. Western blot and immunofluorescence assay further revealed that NFKBIZ mediated HCC cell growth and migration by regulating NFκB signaling transduction. Finally, flow cytometry, protein degradation assay and Co-immunoprecipitation indicated that TRIM16 can enhance NFKBIZ ubiquitination by direct interactions at its K48 site, which may thereby alleviate HCC cell apoptosis to induce the insensitivity to sorafenib. In conclusion, our study demonstrated that NFKBIZ regulated HCC tumorigenesis and metastasis by mediating NFκB signal transduction and TRIM16/NFKBIZ/NFκB axis may be the underlying mechanism of sorafenib insensitivity in HCC.
Collapse
Affiliation(s)
- Danfeng Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Ming Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Tingju Wei
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaodan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hongwei Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Mingjie Ding
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
5
|
Alpsoy A, Wu XS, Pal S, Klingbeil O, Kumar P, El Demerdash O, Nalbant B, Vakoc CR. IκBζ is a dual-use coactivator of NF-κB and POU transcription factors. Mol Cell 2024; 84:1149-1157.e7. [PMID: 38309274 PMCID: PMC10960667 DOI: 10.1016/j.molcel.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/01/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
OCA-B, OCA-T1, and OCA-T2 belong to a family of coactivators that bind to POU transcription factors (TFs) to regulate gene expression in immune cells. Here, we identify IκBζ (encoded by the NFKBIZ gene) as an additional coactivator of POU TFs. Although originally discovered as an inducible regulator of NF-κB, we show here that IκBζ shares a microhomology with OCA proteins and uses this segment to bind to POU TFs and octamer-motif-containing DNA. Our functional experiments suggest that IκBζ requires its interaction with POU TFs to coactivate immune-related genes. This finding is reinforced by epigenomic analysis of MYD88L265P-mutant lymphoma cells, which revealed colocalization of IκBζ with the POU TF OCT2 and NF-κB:p50 at hundreds of DNA elements harboring octamer and κB motifs. These results suggest that IκBζ is a transcriptional coactivator that can amplify and integrate the output of NF-κB and POU TFs at inducible genes in immune cells.
Collapse
Affiliation(s)
- Aktan Alpsoy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xiaoli S Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sujay Pal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Pramod Kumar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Benan Nalbant
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
6
|
Juilland M, Alouche N, Ubezzi I, Gonzalez M, Rashid HO, Scarpellino L, Erdmann T, Grau M, Lenz G, Luther SA, Thome M. Identification of Tensin-3 as a MALT1 substrate that controls B cell adhesion and lymphoma dissemination. Proc Natl Acad Sci U S A 2023; 120:e2301155120. [PMID: 38109544 PMCID: PMC10756297 DOI: 10.1073/pnas.2301155120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/24/2023] [Indexed: 12/20/2023] Open
Abstract
The protease MALT1 promotes lymphocyte activation and lymphomagenesis by cleaving a limited set of cellular substrates, most of which control gene expression. Here, we identified the integrin-binding scaffold protein Tensin-3 as a MALT1 substrate in activated human B cells. Activated B cells lacking Tensin-3 showed decreased integrin-dependent adhesion but exhibited comparable NF-κB1 and Jun N-terminal kinase transcriptional responses. Cells expressing a noncleavable form of Tensin-3, on the other hand, showed increased adhesion. To test the role of Tensin-3 cleavage in vivo, mice expressing a noncleavable version of Tensin-3 were generated, which showed a partial reduction in the T cell-dependent B cell response. Interestingly, human diffuse large B cell lymphomas and mantle cell lymphomas with constitutive MALT1 activity showed strong constitutive Tensin-3 cleavage and a decrease in uncleaved Tensin-3 levels. Moreover, silencing of Tensin-3 expression in MALT1-driven lymphoma promoted dissemination of xenografted lymphoma cells to the bone marrow and spleen. Thus, MALT1-dependent Tensin-3 cleavage reveals a unique aspect of the function of MALT1, which negatively regulates integrin-dependent B cell adhesion and facilitates metastatic spread of B cell lymphomas.
Collapse
Affiliation(s)
- Mélanie Juilland
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| | - Nagham Alouche
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| | - Ivana Ubezzi
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| | - Montserrat Gonzalez
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| | - Harun-Or Rashid
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| | - Leonardo Scarpellino
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| | - Tabea Erdmann
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Münster, MünsterD-48149, Germany
| | - Michael Grau
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Münster, MünsterD-48149, Germany
| | - Georg Lenz
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Münster, MünsterD-48149, Germany
| | - Sanjiv A. Luther
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| | - Margot Thome
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| |
Collapse
|
7
|
Rho H, Jeong IJH, Prica A. Ibrutinib Plus RCHOP versus RCHOP Only in Young Patients with Activated B-Cell-like Diffuse Large B-Cell Lymphoma (ABC-DLBCL): A Cost-Effectiveness Analysis. Curr Oncol 2023; 30:10488-10500. [PMID: 38132398 PMCID: PMC10742773 DOI: 10.3390/curroncol30120764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The standard treatment for Diffuse Large B-Cell Lymphoma (DLBCL) is rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (RCHOP). However, many patients require subsequent treatment after relapsed disease. The ABC subtype of DLBCL (ABC-DLBCL) has a worse prognosis, and the PHOENIX trial explored adding ibrutinib to RCHOP for this patient population. The trial showed favorable outcomes for younger patients, and our study aimed to inform clinical decision-making via a cost-effectiveness model to compare RCHOP with and without ibrutinib (I-RCHOP). A Markov decision analysis model was designed to compare the treatments for patients younger than 60 years with ABC-DLBCL. The model considered treatment pathways, adverse events, relapses, and death, incorporating data on salvage treatments and novel therapies. The results indicated that I-RCHOP was more cost-effective, with greater quality-adjusted life years (QALY, 15.48 years vs. 14.25 years) and an incremental cost-effectiveness ratio (ICER) of CAD 34,111.45/QALY compared to RCHOP only. Sensitivity analyses confirmed the model's robustness. Considering the high market price for ibrutinib, I-RCHOP may be more costly. However, it is suggested as the preferred cost-effective strategy for younger patients due to its benefits in adverse events, overall survival, and quality of life. The decision analytic model provided relevant and robust results to inform clinical decision-making.
Collapse
Affiliation(s)
- Hayeong Rho
- Department of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada (A.P.)
| | - Irene Joo-Hyun Jeong
- Department of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada (A.P.)
| | - Anca Prica
- Department of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada (A.P.)
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, ON M5G 1V7, Canada
| |
Collapse
|
8
|
Mortlock SA, Asada MC, Soh PXY, Hsu WT, Lee C, Bennett PF, Taylor RM, Khatkar MS, Williamson P. Genomic Analysis of Lymphoma Risk in Bullmastiff Dogs. Vet Sci 2023; 10:703. [PMID: 38133254 PMCID: PMC10747964 DOI: 10.3390/vetsci10120703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Lymphoma is the most common haematological malignancy affecting dogs and has a high incidence in the Bullmastiff breed. The aim of this study was to identify risk loci predisposing this breed to the disease. The average age of lymphoma diagnosis in 55 cases was less than 6 years, similar to the median age of 64 cases from our clinical and pathology databases. When fine-scale population structure was explored using NETVIEW, cases were distributed throughout an extended pedigree. When genotyped cases (n = 49) and dogs from the control group (n = 281) were compared in a genome-wide association analysis of lymphoma risk, the most prominent associated regions were detected on CFA13 and CFA33. The top SNPs in a 5.4 Mb region on CFA13 were significant at a chromosome-wide level, and the region was fine-mapped to ~1.2 Mb (CFA13: 25.2-26.4 Mb; CanFam3.1) with four potential functional candidates, including the MYC proto-oncogene bHLH transcription factor (MYC) and a region syntenic with the human and mouse lncRNA Pvt1 oncogene (PVT1). A 380 Kb associated region at CFA33: 7.7-8.1 Mb contained the coding sequence for SUMO specific peptidase7 (SENP7) and NFK inhibitor zeta (NFKBIZ) genes. These genes have annotations related to cancer, amongst others, and both have functional links to MYC regulation. Genomic signatures identified in lymphoma cases suggest that increased risk contributed by the regions identified by GWAS may complement a complex predisposing genetic background.
Collapse
Affiliation(s)
- Sally A. Mortlock
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
| | - Monica C. Asada
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
| | - Pamela Xing Yi Soh
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Wei-Tse Hsu
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
| | - Carol Lee
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
| | - Peter F. Bennett
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
| | - Rosanne M. Taylor
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
| | - Mehar S. Khatkar
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | - Peter Williamson
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
| |
Collapse
|
9
|
Spaargaren M. What's brewing for MALT1 in lymphoma? Blood 2023; 142:1939-1941. [PMID: 38060274 DOI: 10.1182/blood.2023022058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
|
10
|
Wimberger N, Ober F, Avar G, Grau M, Xu W, Lenz G, Menden MP, Krappmann D. Oncogene-induced MALT1 protease activity drives posttranscriptional gene expression in malignant lymphomas. Blood 2023; 142:1985-2001. [PMID: 37623434 PMCID: PMC10733837 DOI: 10.1182/blood.2023021299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Constitutive mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) activity drives survival of malignant lymphomas addicted to chronic B-cell receptor signaling, oncogenic CARD11, or the API2-MALT1 (also BIRC3::MALT1) fusion oncoprotein. Although MALT1 scaffolding induces NF-κB-dependent survival signaling, MALT1 protease function is thought to augment NF-κB activation by cleaving signaling mediators and transcriptional regulators in B-cell lymphomas. However, the pathological role of MALT1 protease function in lymphomagenesis is not well understood. Here, we show that TRAF6 controls MALT1-dependent activation of NF-κB transcriptional responses but is dispensable for MALT1 protease activation driven by oncogenic CARD11. To uncouple enzymatic and nonenzymatic functions of MALT1, we analyzed TRAF6-dependent and -independent as well as MALT1 protease-dependent gene expression profiles downstream of oncogenic CARD11 and API2-MALT1. The data suggest that by cleaving and inactivating the RNA binding proteins Regnase-1 and Roquin-1/2, MALT1 protease induces posttranscriptional upregulation of many genes including NFKBIZ/IκBζ, NFKBID/IκBNS, and ZC3H12A/Regnase-1 in activated B-cell-like diffuse large B-cell lymphoma (ABC DLBCL). We demonstrate that oncogene-driven MALT1 activity in ABC DLBCL cells regulates NFKBIZ and NFKBID induction on an mRNA level via releasing a brake imposed by Regnase-1 and Roquin-1/2. Furthermore, MALT1 protease drives posttranscriptional gene induction in the context of the API2-MALT1 fusion created by the recurrent t(11;18)(q21;q21) translocation in MALT lymphoma. Thus, MALT1 paracaspase acts as a bifurcation point for enhancing transcriptional and posttranscriptional gene expression in malignant lymphomas. Moreover, the identification of MALT1 protease-selective target genes provides specific biomarkers for the clinical evaluation of MALT1 inhibitors.
Collapse
Affiliation(s)
- Nicole Wimberger
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets Therapeutic Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Franziska Ober
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets Therapeutic Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Göksu Avar
- Department of Computational Health, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Michael Grau
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Wendan Xu
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Michael P. Menden
- Department of Computational Health, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Australia
| | - Daniel Krappmann
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets Therapeutic Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| |
Collapse
|
11
|
Feng Y, Chen Z, Xu Y, Han Y, Jia X, Wang Z, Zhang N, Lv W. The central inflammatory regulator IκBζ: induction, regulation and physiological functions. Front Immunol 2023; 14:1188253. [PMID: 37377955 PMCID: PMC10291074 DOI: 10.3389/fimmu.2023.1188253] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
IκBζ (encoded by NFKBIZ) is the most recently identified IkappaB family protein. As an atypical member of the IkappaB protein family, NFKBIZ has been the focus of recent studies because of its role in inflammation. Specifically, it is a key gene in the regulation of a variety of inflammatory factors in the NF-KB pathway, thereby affecting the progression of related diseases. In recent years, investigations into NFKBIZ have led to greater understanding of this gene. In this review, we summarize the induction of NFKBIZ and then elucidate its transcription, translation, molecular mechanism and physiological function. Finally, the roles played by NFKBIZ in psoriasis, cancer, kidney injury, autoimmune diseases and other diseases are described. NFKBIZ functions are universal and bidirectional, and therefore, this gene may exert a great influence on the regulation of inflammation and inflammation-related diseases.
Collapse
Affiliation(s)
- Yanpeng Feng
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Zhiyuan Chen
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Yi Xu
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Yuxuan Han
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Xiujuan Jia
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zixuan Wang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nannan Zhang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjing Lv
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Jayawant E, Pack A, Clark H, Kennedy E, Ghodke A, Jones J, Pepper C, Pepper A, Mitchell S. NF-κB fingerprinting reveals heterogeneous NF-κB composition in diffuse large B-cell lymphoma. Front Oncol 2023; 13:1181660. [PMID: 37333821 PMCID: PMC10272839 DOI: 10.3389/fonc.2023.1181660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Improving treatments for Diffuse Large B-Cell Lymphoma (DLBCL) is challenged by the vast heterogeneity of the disease. Nuclear factor-κB (NF-κB) is frequently aberrantly activated in DLBCL. Transcriptionally active NF-κB is a dimer containing either RelA, RelB or cRel, but the variability in the composition of NF-κB between and within DLBCL cell populations is not known. Results Here we describe a new flow cytometry-based analysis technique termed "NF-κB fingerprinting" and demonstrate its applicability to DLBCL cell lines, DLBCL core-needle biopsy samples, and healthy donor blood samples. We find each of these cell populations has a unique NF-κB fingerprint and that widely used cell-of-origin classifications are inadequate to capture NF-κB heterogeneity in DLBCL. Computational modeling predicts that RelA is a key determinant of response to microenvironmental stimuli, and we experimentally identify substantial variability in RelA between and within ABC-DLBCL cell lines. We find that when we incorporate NF-κB fingerprints and mutational information into computational models we can predict how heterogeneous DLBCL cell populations respond to microenvironmental stimuli, and we validate these predictions experimentally. Discussion Our results show that the composition of NF-κB is highly heterogeneous in DLBCL and predictive of how DLBCL cells will respond to microenvironmental stimuli. We find that commonly occurring mutations in the NF-κB signaling pathway reduce DLBCL's response to microenvironmental stimuli. NF-κB fingerprinting is a widely applicable analysis technique to quantify NF-κB heterogeneity in B cell malignancies that reveals functionally significant differences in NF-κB composition within and between cell populations.
Collapse
|
13
|
Li J, Xiang R, Li Y, Liao Q, Liu Y. Intrathyroid thymic carcinoma: clinicopathological features and whole exome sequencing analysis. Virchows Arch 2023; 482:813-822. [PMID: 37016248 DOI: 10.1007/s00428-023-03536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/06/2023]
Abstract
Intrathyroid thymic carcinoma (ITC) is a rare malignant tumour. We present nine cases of ITC that were analysed by immunohistochemical staining, of which five were analysed using whole exome sequencing (WES). These cases included six women and three men with an age range of 31-66 years. The average postoperative follow-up term was 37.8 months (range, 7-95 months), and all patients survived well except for one case with lung metastasis. Microscopically, ITC showed solid islands of tumour cells separated by fibrous connective tissue containing lymphocytes and other inflammatory cells. Tumour cells strongly expressed Ckpan (AE1/AE3), P63, and CD117. And all cases but one were positive for CD5. The median value of Ki-67 was 32% (range 10-60%). We observed partial positivity of Syn and CgA in only one case. ITC shares morphological and immunohistochemical similarities with thymic squamous cell carcinoma. In situ hybridization of EBER showed negative results. All cases were microsatellite stable, and the tumour mutational burden of the 5 cases was all < 1 mutations/Mb. WES showed higher mutation rates for N4BP1 (2/5), and many genetic alterations were related to the NF-kB signalling pathway, which is crucial for insight into the molecular mechanisms of the occurrence and development of ITC.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, Renmin South Road, Chengdu, 610041, China
| | - Run Xiang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yunzhu Li
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, Renmin South Road, Chengdu, 610041, China
| | - Qiong Liao
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, Renmin South Road, Chengdu, 610041, China.
| | - Yang Liu
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, Renmin South Road, Chengdu, 610041, China.
| |
Collapse
|
14
|
Turi M, Anilkumar Sithara A, Hofmanová L, Žihala D, Radhakrishnan D, Vdovin A, Knápková S, Ševčíková T, Chyra Z, Jelínek T, Šimíček M, Gullà A, Anderson KC, Hájek R, Hrdinka M. Transcriptome Analysis of Diffuse Large B-Cell Lymphoma Cells Inducibly Expressing MyD88 L265P Mutation Identifies Upregulated CD44, LGALS3, NFKBIZ, and BATF as Downstream Targets of Oncogenic NF-κB Signaling. Int J Mol Sci 2023; 24:ijms24065623. [PMID: 36982699 PMCID: PMC10057398 DOI: 10.3390/ijms24065623] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
During innate immune responses, myeloid differentiation primary response 88 (MyD88) functions as a critical signaling adaptor protein integrating stimuli from toll-like receptors (TLR) and the interleukin-1 receptor (IL-1R) family and translates them into specific cellular outcomes. In B cells, somatic mutations in MyD88 trigger oncogenic NF-κB signaling independent of receptor stimulation, which leads to the development of B-cell malignancies. However, the exact molecular mechanisms and downstream signaling targets remain unresolved. We established an inducible system to introduce MyD88 to lymphoma cell lines and performed transcriptomic analysis (RNA-seq) to identify genes differentially expressed by MyD88 bearing the L265P oncogenic mutation. We show that MyD88L265P activates NF-κB signaling and upregulates genes that might contribute to lymphomagenesis, including CD44, LGALS3 (coding Galectin-3), NFKBIZ (coding IkBƺ), and BATF. Moreover, we demonstrate that CD44 can serve as a marker of the activated B-cell (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) and that CD44 expression is correlated with overall survival in DLBCL patients. Our results shed new light on the downstream outcomes of MyD88L265P oncogenic signaling that might be involved in cellular transformation and provide novel therapeutical targets.
Collapse
Affiliation(s)
- Marcello Turi
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Anjana Anilkumar Sithara
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Lucie Hofmanová
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - David Žihala
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Dhwani Radhakrishnan
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Alexander Vdovin
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Sofija Knápková
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Tereza Ševčíková
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Zuzana Chyra
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Tomáš Jelínek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Michal Šimíček
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Annamaria Gullà
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Kenneth Carl Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Roman Hájek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Matouš Hrdinka
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
- Correspondence:
| |
Collapse
|
15
|
Lai J, Yao Y, Zhang Y, Liu Y, Lu C, Meng C, Xia D, Li Y, Cao K, Gao X, Yuan Q. Cell-Penetrating Peptide Conjugated Au Nanoclusters Selectively Suppress Refractory Lymphoma Cells via Targeting Both Canonical and Noncanonical NF-κB Signaling Pathways. Bioconjug Chem 2023; 34:228-237. [PMID: 36521093 DOI: 10.1021/acs.bioconjchem.2c00529] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL) is the most aggressive form of DLBCL, with a significantly inferior prognosis due to resistance to the standard R-CHOP immunochemotherapy. Survival of ABC-DLBCL cells addicted to the constitutive activations of both canonical and noncanonical NF-κB signaling makes them attractive therapeutic targets. However, a pharmaceutical approach simultaneously targeting the canonical and noncanonical NF-κB pathway in the ABC-DLBCL cell is still lacking. Peptide-conjugated gold nanoclusters (AuNCs) have emerged unique intrinsic biomedical activities and possess a great potential in cancer theranostics. Here, we demonstrated a Au25 nanocluster conjugated by cell-penetrating peptides that can selectively repress the growth of ABC-DLBCL cells by inducing efficient apoptosis, more efficiently than glutathione (GSH)-conjugated AuNCs. The mechanism study showed that the cell-penetrating peptides enhanced the cellular internalization efficiency of AuNCs, and the selective repression in ABC-DLBCL cells is due to the inhibition of inherent constitutive canonical and noncanonical NF-κB activities by AuNCs. Several NF-κB target genes involved in chemotherapy resistance in ABC-DLBCL cells, including anti-apoptotic Bcl-2 family members and DNA damage repair proteins, were effectively down-regulated by the AuNC. The emerged novel activity of AuNCs in targeting both arms of NF-κB signaling in ABC-DLBCL cells may provide a promising candidate and a new insight into the rational design of peptide-conjugated Au nanomedicine for molecular targeting treatment of refractory lymphomas.
Collapse
Affiliation(s)
- Jing Lai
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Yawen Yao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Yulu Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Yu Liu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Cao Lu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Cong Meng
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Dongfang Xia
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China
| | - Yanggege Li
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Kai Cao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Qing Yuan
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
16
|
Pasqualucci L, Klein U. NF-κB Mutations in Germinal Center B-Cell Lymphomas: Relation to NF-κB Function in Normal B Cells. Biomedicines 2022; 10:2450. [PMID: 36289712 PMCID: PMC9599362 DOI: 10.3390/biomedicines10102450] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Most B cell lymphomas arise from the oncogenic transformation of B cells that have undergone the germinal center (GC) reaction of the T cell-dependent immune response, where high-affinity memory B cells and plasma cells are generated. The high proliferation of GC B cells coupled with occasional errors in the DNA-modifying processes of somatic hypermutation and class switch recombination put the cell at a risk to obtain transforming genetic aberrations, which may activate proto-oncogenes or inactivate tumour suppressor genes. Several subtypes of GC lymphomas harbor genetic mutations leading to constitutive, aberrant activation of the nuclear factor-κB (NF-κB) signaling pathway. In normal B cells, NF-κB has crucial biological roles in development and physiology. GC lymphomas highjack these activities to promote tumour-cell growth and survival. It has become increasingly clear that the separate canonical and non-canonical routes of the NF-κB pathway and the five downstream NF-κB transcription factors have distinct functions in the successive stages of GC B-cell development. These findings may have direct implications for understanding how aberrant NF-κB activation promotes the genesis of various GC lymphomas corresponding to the developmentally distinct GC B-cell subsets. The knowledge arising from these studies may be explored for the development of precision medicine approaches aimed at more effective treatments of the corresponding tumours with specific NF-κB inhibitors, thus reducing systemic toxicity. We here provide an overview on the patterns of genetic NF-κB mutations encountered in the various GC lymphomas and discuss the consequences of aberrant NF-κB activation in those malignancies as related to the biology of NF-κB in their putative normal cellular counterparts.
Collapse
Affiliation(s)
- Laura Pasqualucci
- Institute for Cancer Genetics, Department of Pathology & Cell Biology, The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Ulf Klein
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds LS9 7TF, UK
| |
Collapse
|
17
|
Mantione ME, Sana I, Vilia MG, Riba M, Doglioni C, Larcher A, Capitanio U, Muzio M. SIGIRR Downregulation and Interleukin-1 Signaling Intrinsic to Renal Cell Carcinoma. Front Oncol 2022; 12:894413. [PMID: 35814450 PMCID: PMC9256934 DOI: 10.3389/fonc.2022.894413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
Renal cell carcinoma is highly inflamed, and tumor cells are embedded into a microenvironment enriched with IL1. While inflammatory pathways are well characterized in the immune system, less is known about these same pathways in epithelial cells; it is unclear if and how innate immune signals directly impact on cancer cells, and if we could we manipulate these for therapeutic purposes. To address these questions, we first focused on the inflammatory receptors belonging to the IL1- and Toll-like receptor family including negative regulators in a small cohort of 12 clear cell RCC (ccRCC) patients’ samples as compared to their coupled adjacent normal tissues. Our data demonstrated that renal epithelial cancer cells showed a specific and distinctive pattern of inflammatory receptor expression marked by a consistent downregulation of the inhibitory receptor SIGIRR mRNA. This repression was confirmed at the protein level in both cancer cell lines and primary tissues. When we analyzed in silico data of different kidney cancer histotypes, we identified the clear cell subtype as the one where SIGIRR was mostly downregulated; nonetheless, papillary and chromophobe tumor types also showed low levels as compared to their normal counterpart. RNA-sequencing analysis demonstrated that IL1 stimulation of the ccRCC cell line A498 triggered an intrinsic signature of inflammatory pathway activation characterized by the induction of distinct “pro-tumor” genes including several chemokines, the autocrine growth factor IL6, the atypical co-transcription factor NFKBIZ, and the checkpoint inhibitor PD-L1. When we looked for the macroareas most represented among the differentially expressed genes, additional clusters emerged including pathways involved in cell differentiation, angiogenesis, and wound healing. To note, SIGIRR overexpression in A498 cells dampened IL1 signaling as assessed by a reduced induction of NFKBIZ. Our results suggest that SIGIRR downregulation unleashes IL1 signaling intrinsic to tumor cells and that manipulating this pathway may be beneficial in ccRCC.
Collapse
Affiliation(s)
- Maria Elena Mantione
- Cell Signaling Unit, Division of Experimental Oncology, San Raffaele Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Ilenia Sana
- Cell Signaling Unit, Division of Experimental Oncology, San Raffaele Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Maria Giovanna Vilia
- Cell Signaling Unit, Division of Experimental Oncology, San Raffaele Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Michela Riba
- Center for Omics Sciences, San Raffaele Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Claudio Doglioni
- Pathology Unit, San Raffaele Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Alessandro Larcher
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy; Division of Experimental Oncology/Unit of Urology, Urological Research Institute (URI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Hospital, Milan, Italy
| | - Umberto Capitanio
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy; Division of Experimental Oncology/Unit of Urology, Urological Research Institute (URI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Hospital, Milan, Italy
| | - Marta Muzio
- Cell Signaling Unit, Division of Experimental Oncology, San Raffaele Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
- *Correspondence: Marta Muzio,
| |
Collapse
|
18
|
Molecular and functional profiling identifies therapeutically targetable vulnerabilities in plasmablastic lymphoma. Nat Commun 2021; 12:5183. [PMID: 34465776 PMCID: PMC8408158 DOI: 10.1038/s41467-021-25405-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Plasmablastic lymphoma (PBL) represents a rare and aggressive lymphoma subtype frequently associated with immunosuppression. Clinically, patients with PBL are characterized by poor outcome. The current understanding of the molecular pathogenesis is limited. A hallmark of PBL represents its plasmacytic differentiation with loss of B-cell markers and, in 60% of cases, its association with Epstein-Barr virus (EBV). Roughly 50% of PBLs harbor a MYC translocation. Here, we provide a comprehensive integrated genomic analysis using whole exome sequencing (WES) and genome-wide copy number determination in a large cohort of 96 primary PBL samples. We identify alterations activating the RAS-RAF, JAK-STAT, and NOTCH pathways as well as frequent high-level amplifications in MCL1 and IRF4. The functional impact of these alterations is assessed using an unbiased shRNA screen in a PBL model. These analyses identify the IRF4 and JAK-STAT pathways as promising molecular targets to improve outcome of PBL patients. Plasmablastic lymphoma (PBL) is an aggressive lymphoma subtype characterized by poor prognosis but the molecular knowledge of the disease is limited. Here, the authors perform whole exome sequencing and copy number determination of primary samples highlighting IRF4 and JAK-STAT pathways as therapeutic targets for PBL.
Collapse
|
19
|
Xu T, Rao T, Yu WM, Ning JZ, Yu X, Zhu SM, Yang K, Bai T, Cheng F. Upregulation of NFKBIZ affects bladder cancer progression via the PTEN/PI3K/Akt signaling pathway. Int J Mol Med 2021; 47:109. [PMID: 33907827 PMCID: PMC8057294 DOI: 10.3892/ijmm.2021.4942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
NF‑κB inhibitor ζ (NFKBIZ), a member of the IκB family that interacts with NF‑κB, has been reported to be an important regulator of inflammation, cell proliferation and survival. However, the role of NFKBIZ in bladder cancer (BC) remains unknown. The present study aimed to investigate the functions of NFKBIZ in BC. First, the expression levels of NFKBIZ and the associations between NFKBIZ expression and the clinical survival of patients were determined using BC tissue samples, BC cell lines and datasets from different databases. Two BC cell lines (T24 and 5637) were selected to overexpress NFKBIZ, and the proliferative, migratory and invasive abilities of cells were determined; additionally, tumor growth following transplantation in in vivo mouse models was analyzed using T24 cells overexpressing NFKBIZ. Subsequently, the association between NFKBIZ and PTEN was determined using data from databases and immunohistochemistry analysis of clinical and nude mice tumor tissues. Finally, the interactions between NFKBIZ, PTEN and the downstream PI3K/AKT/mTOR signaling pathway were evaluated using western blotting. In conclusion, the present results indicated that NFKBIZ expression was low in BC, and NFKBIZ inhibited the proliferation of BC cells through the PTEN/PI3K/Akt signaling pathway, suggesting that NFKBIZ may represent a novel prognostic biomarker in BC and may provide a potential therapeutic tumor‑associated antigen for BC.
Collapse
Affiliation(s)
- Tao Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei-Ming Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xi Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shao-Ming Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Kang Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Tao Bai
- Department of Urology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430060, P.R. China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
20
|
Xue X, Huang W, Qiu T, Guo L, Ying J, Lv N. DLBCL with amplification of JAK2/PD-L2 exhibits PMBCL-like CNA pattern and worse clinical outcome resembling those with MYD88 L265P mutation. BMC Cancer 2020; 20:816. [PMID: 32854650 PMCID: PMC7450805 DOI: 10.1186/s12885-020-07293-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/11/2020] [Indexed: 02/04/2023] Open
Abstract
Background Recently, copy number alteration (CNA) of 9p24.1 were demonstrated in 10% of diffuse large b-cell lymphoma (DLBCL), with gene expression and mutation profiles that were similar to those of primary mediastinal large B-cell lymphoma (PMBCL). However, their CNA-based profile and clinical impact still remain unclear. Methods Multiplex ligation-dependent probe amplification were employed to investigate the prevalence of JAK2/PD-L2 amplification in DLBCL and their CNA-based pattern of driver genes. The clinical outcome and characteristics were also analyzed. Results Using unsupervised hierarchical clustering, a small group of DLBCL (10.5%, 8/76) was clustered together with PMBCL as Cluster_2, demonstrating amplification of JAK2 (100%,8/8) and PD-L2 (75.0%,6/8). This subgroups of DLBCL demonstrated significant higher expression of PD-L1 than those with MYD88 L265P mutation(p = 0.024). And they exhibited dismal OS and PFS as compared with DLBCL_others(p = 0.003 and 0.001, respectively), which is similar to DLBCL with MYD88 L265P mutation. Conclusions DLBCL with amplification of JAK2/PD-L2 exhibits CNA pattern that is similar to PMBCL, and demonstrates unfavorable clinical outcome that resembles those with MYD88 L265P mutation. It is essential to identify this subgroup of DLBCL who may acquire more benefits from the JAK2 and PD-L1 signaling inhibition.
Collapse
Affiliation(s)
- Xuemin Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenting Huang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Tian Qiu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Ning Lv
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
21
|
Arra M, Swarnkar G, Ke K, Otero JE, Ying J, Duan X, Maruyama T, Rai MF, O'Keefe RJ, Mbalaviele G, Shen J, Abu-Amer Y. LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis. Nat Commun 2020; 11:3427. [PMID: 32647171 PMCID: PMC7347613 DOI: 10.1038/s41467-020-17242-0] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/19/2020] [Indexed: 01/20/2023] Open
Abstract
The contribution of inflammation to the chronic joint disease osteoarthritis (OA) is unclear, and this lack of clarity is detrimental to efforts to identify therapeutic targets. Here we show that chondrocytes under inflammatory conditions undergo a metabolic shift that is regulated by NF-κB activation, leading to reprogramming of cell metabolism towards glycolysis and lactate dehydrogenase A (LDHA). Inflammation and metabolism can reciprocally modulate each other to regulate cartilage degradation. LDHA binds to NADH and promotes reactive oxygen species (ROS) to induce catabolic changes through stabilization of IκB-ζ, a critical pro-inflammatory mediator in chondrocytes. IκB-ζ is regulated bi-modally at the stages of transcription and protein degradation. Overall, this work highlights the function of NF-κB activity in the OA joint as well as a ROS promoting function for LDHA and identifies LDHA as a potential therapeutic target for OA treatment.
Collapse
Affiliation(s)
- Manoj Arra
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gaurav Swarnkar
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ke Ke
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jesse E Otero
- OrthoCarolina Hip and Knee Center, Charlotte, NC, 28207, USA
| | - Jun Ying
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Takashi Maruyama
- Department of Immunology, Akita University School of Medicine, Akita, Japan
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Regis J O'Keefe
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gabriel Mbalaviele
- Bone and Mineral Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jie Shen
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Shriners Hospital for Children, St. Louis, MO, 63110, USA.
| |
Collapse
|
22
|
Wright GW, Huang DW, Phelan JD, Coulibaly ZA, Roulland S, Young RM, Wang JQ, Schmitz R, Morin RD, Tang J, Jiang A, Bagaev A, Plotnikova O, Kotlov N, Johnson CA, Wilson WH, Scott DW, Staudt LM. A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications. Cancer Cell 2020; 37:551-568.e14. [PMID: 32289277 PMCID: PMC8459709 DOI: 10.1016/j.ccell.2020.03.015] [Citation(s) in RCA: 601] [Impact Index Per Article: 150.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/03/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022]
Abstract
The development of precision medicine approaches for diffuse large B cell lymphoma (DLBCL) is confounded by its pronounced genetic, phenotypic, and clinical heterogeneity. Recent multiplatform genomic studies revealed the existence of genetic subtypes of DLBCL using clustering methodologies. Here, we describe an algorithm that determines the probability that a patient's lymphoma belongs to one of seven genetic subtypes based on its genetic features. This classification reveals genetic similarities between these DLBCL subtypes and various indolent and extranodal lymphoma types, suggesting a shared pathogenesis. These genetic subtypes also have distinct gene expression profiles, immune microenvironments, and outcomes following immunochemotherapy. Functional analysis of genetic subtype models highlights distinct vulnerabilities to targeted therapy, supporting the use of this classification in precision medicine trials.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Cell Proliferation
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genetic Heterogeneity
- Humans
- Lymphoma, Large B-Cell, Diffuse/classification
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Molecular Targeted Therapy
- Precision Medicine
- Tumor Cells, Cultured
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zana A Coulibaly
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandrine Roulland
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan M Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Q Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roland Schmitz
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jeffrey Tang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Aixiang Jiang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | | | | | - Calvin A Johnson
- Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David W Scott
- British Columbia Cancer, Vancouver, BC V5Z 4E6, Canada
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Ohto-Ozaki H, Hayakawa M, Kamoshita N, Maruyama T, Tominaga SI, Ohmori T. Induction of IκBζ Augments Cytokine and Chemokine Production by IL-33 in Mast Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:2033-2042. [PMID: 32144162 DOI: 10.4049/jimmunol.1900315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 02/07/2020] [Indexed: 11/19/2022]
Abstract
IκBζ (encoded by the Nfkbiz) is a member of the nuclear IκB family, which is involved in the expression of secondary response genes based on signals from TLR or IL-1R. ST2L, an IL-33R, is a member of the IL-1R family and abundantly expressed in tissue-resident immune cells, such as mast cells and innate lymphoid cells; however, its downstream signaling pathway remains unelucidated. In this study, we examined the role of IκBζ in ST2L-mediated cytokine and chemokine production in mast cells. Murine bone marrow cells were differentiated ex vivo into bone marrow-derived mast cells (BMMCs). The treatment of BMMCs with IL-33 transiently induced robust IκBζ expression. Of the 40 cytokines and chemokines examined using a cytokine and chemokine array, the concentrations of IL-6, IL-13, CCL2, CCL3, and TNF-α in the supernatant were augmented by IL-33. The deletion of IκBζ in BMMCs resulted in a significant reduction of the production of these mediators and the expression of their mRNA. NF-κB p50 but not p65 translocated to the nucleus by IL-33 and was not affected by the deletion of IκBζ. However, induction of IκBζ and the resultant cytokine and chemokine productions were significantly inhibited by pretreatment with an NF-κB inhibitor. The deletion of IκBζ did not affect the phosphorylation of ERK, p38 MAPK, or JNK by IL-33, and the treatment with inhibitors of these mitogen-activated kinases failed to abolish the expression of Nfkbiz Our findings suggest that IκBζ augments IL-33-dependent cytokine and chemokine production in BMMCs through the action of NF-κB.
Collapse
Affiliation(s)
- Hiromi Ohto-Ozaki
- Department of Biochemistry, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan
| | - Morisada Hayakawa
- Department of Biochemistry, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan.,Center for Gene Therapy Research, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan
| | - Nobuhiko Kamoshita
- Department of Biochemistry, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan.,Center for Gene Therapy Research, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan
| | - Takashi Maruyama
- Department of Immunology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan; and
| | - Shin-Ichi Tominaga
- Department of Biochemistry, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan.,Japan Association for Development of Community Medicine, Chiyoda Ward, Tokyo 102-0093, Japan
| | - Tsukasa Ohmori
- Department of Biochemistry, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; .,Center for Gene Therapy Research, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
24
|
Jiang L, Sun Y, Wang J, He Q, Chen X, Lan X, Chen J, Dou QP, Shi X, Liu J. Proteasomal cysteine deubiquitinase inhibitor b-AP15 suppresses migration and induces apoptosis in diffuse large B cell lymphoma. J Exp Clin Cancer Res 2019; 38:453. [PMID: 31694672 PMCID: PMC6836452 DOI: 10.1186/s13046-019-1446-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/13/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The first line therapy for patients with diffuse large B cell (DLBCL) is R-CHOP. About half of DLBCL patients are either refractory to, or will relapse, after the treatment. Therefore, identifying novel drug targets and effective therapeutic agents is urgently needed for improving DLBCL patient survival. b-AP15, a selective small molecule inhibitor of proteasomal USP14 and UCHL5 deubiquitinases (DUBs), has shown selectivity and efficacy in several other types of cancer cells. This is the first study to report the effect of b-AP15 in DLBCL. METHODS Cell lines of two DLBCL subtypes, Germinal Center B Cell/ GCB (SU-DHL-4, OCI-LY-1, OCI-LY-19) and Activated B Cell/ABC (SU-DHL-2), were used in the current study. Cell viability was measured by MTS assay, proliferation by trypan blue exclusion staining assay, cellular apoptosis by Annexin V-FITC/PI staining and mitochondrial outer membrane permeability assays, the activities of 20S proteasome peptidases by cleavage of specific fluorogenic substrates, and cell migration was detected by transwell assay in these GCB- and ABC-DLBCL cell lines. Mouse xenograft models of SU-DHL-4 and SU-DHL-2 cells were used to determine in vivo effects of b-AP15 in DLBCL tumors. RESULTS b-AP15 inhibited proteasome DUB activities and activated cell death pathway, as evident by caspase activation and mitochondria apoptosis in GCB- and ABC- DLBCL cell lines. b-AP15 treatment suppressed migration of GCB- and ABC-DLBCL cells via inhibiting Wnt/β-catenin and TGFβ/Smad pathways. Additionally, b-AP15 significantly inhibited the growth of GCB- and ABC DLBCL in xenograft models. CONCLUSIONS These results indicate that b-AP15 inhibits cell migration and induces apoptosis in GCB- and ABC-DLBCL cells, and suggest that inhibition of 19S proteasomal DUB should be a novel strategy for DLBCL treatment.
Collapse
Affiliation(s)
- Liling Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation State Key Laboratory of RespiratoryDisease, School of Basic Medical Science, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
| | - Yuening Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation State Key Laboratory of RespiratoryDisease, School of Basic Medical Science, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
| | - Jinxiang Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation State Key Laboratory of RespiratoryDisease, School of Basic Medical Science, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
| | - Qingyan He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation State Key Laboratory of RespiratoryDisease, School of Basic Medical Science, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
| | - Xinmei Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation State Key Laboratory of RespiratoryDisease, School of Basic Medical Science, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
| | - Xiaoying Lan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation State Key Laboratory of RespiratoryDisease, School of Basic Medical Science, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
| | - Jinghong Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation State Key Laboratory of RespiratoryDisease, School of Basic Medical Science, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
| | - Q. Ping Dou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation State Key Laboratory of RespiratoryDisease, School of Basic Medical Science, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
- The Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, MI USA
| | - Xianping Shi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation State Key Laboratory of RespiratoryDisease, School of Basic Medical Science, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
- Sino-French Hoffmann institute, Guangzhou Medical University, Guangzhou, China
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation State Key Laboratory of RespiratoryDisease, School of Basic Medical Science, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
| |
Collapse
|
25
|
Choi MC, Jo J, Park J, Kang HK, Park Y. NF-κB Signaling Pathways in Osteoarthritic Cartilage Destruction. Cells 2019; 8:cells8070734. [PMID: 31319599 PMCID: PMC6678954 DOI: 10.3390/cells8070734] [Citation(s) in RCA: 313] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a type of joint disease associated with wear and tear, inflammation, and aging. Mechanical stress along with synovial inflammation promotes the degradation of the extracellular matrix in the cartilage, leading to the breakdown of joint cartilage. The nuclear factor-kappaB (NF-κB) transcription factor has long been recognized as a disease-contributing factor and, thus, has become a therapeutic target for OA. Because NF-κB is a versatile and multi-functional transcription factor involved in various biological processes, a comprehensive understanding of the functions or regulation of NF-κB in the OA pathology will aid in the development of targeted therapeutic strategies to protect the cartilage from OA damage and reduce the risk of potential side-effects. In this review, we discuss the roles of NF-κB in OA chondrocytes and related signaling pathways, including recent findings, to better understand pathological cartilage remodeling and provide potential therapeutic targets that can interfere with NF-κB signaling for OA treatment.
Collapse
Affiliation(s)
- Moon-Chang Choi
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea.
| | - Jiwon Jo
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju 38065, Korea
| | - Hee Kyoung Kang
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea.
| |
Collapse
|
26
|
Riva F, Ponzoni M, Supino D, Bertilaccio MTS, Polentarutti N, Massara M, Pasqualini F, Carriero R, Innocenzi A, Anselmo A, Veliz-Rodriguez T, Simonetti G, Anders HJ, Caligaris-Cappio F, Mantovani A, Muzio M, Garlanda C. IL1R8 Deficiency Drives Autoimmunity-Associated Lymphoma Development. Cancer Immunol Res 2019; 7:874-885. [PMID: 31018956 DOI: 10.1158/2326-6066.cir-18-0698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/28/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022]
Abstract
Chronic inflammation, including that driven by autoimmunity, is associated with the development of B-cell lymphomas. IL1R8 is a regulatory receptor belonging to the IL1R family, which negatively regulates NF-κB activation following stimulation of IL1R or Toll-like receptor family members. IL1R8 deficiency is associated with the development of severe autoimmune lupus-like disease in lpr mice. We herein investigated whether concomitant exacerbated inflammation and autoimmunity caused by the deficiency of IL1R8 could recapitulate autoimmunity-associated lymphomagenesis. We thus monitored B-cell lymphoma development during the aging of IL1R8-deficient lpr mice, observing an increased lymphoid cell expansion that evolved to diffuse large B-cell lymphoma (DLBCL). Molecular and gene-expression analyses showed that the NF-κB pathway was constitutively activated in Il1r8 -/-/lpr B splenocytes. In human DLBCL, IL1R8 had reduced expression compared with normal B cells, and higher IL1R8 expression was associated with a better outcome. Thus, IL1R8 silencing is associated with increased lymphoproliferation and transformation in the pathogenesis of B-cell lymphomas associated with autoimmunity.
Collapse
Affiliation(s)
- Federica Riva
- Department of Veterinary Medicine, University of Milan, Milan, Italy.,Humanitas Research Hospital, Rozzano, Italy
| | - Maurilio Ponzoni
- Ateneo Vita-Salute and Unit of Lymphoid Malignancies, IRCCS San Raffaele Scientific Institute; Pathology Unit, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | | | | | | - Anna Innocenzi
- Ateneo Vita-Salute and Unit of Lymphoid Malignancies, IRCCS San Raffaele Scientific Institute; Pathology Unit, San Raffaele Scientific Institute, Milano, Italy
| | | | - Tania Veliz-Rodriguez
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Giorgia Simonetti
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Hans-Joachim Anders
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, LMU München, Germany
| | | | - Alberto Mantovani
- Humanitas Research Hospital, Rozzano, Italy.,Humanitas University, Pieve Emanuele, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Marta Muzio
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| | - Cecilia Garlanda
- Humanitas Research Hospital, Rozzano, Italy. .,Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
27
|
Majumder S, Amatya N, Revu S, Jawale CV, Wu D, Rittenhouse N, Menk A, Kupul S, Du F, Raphael I, Bhattacharjee A, Siebenlist U, Hand TW, Delgoffe GM, Poholek AC, Gaffen SL, Biswas PS, McGeachy MJ. IL-17 metabolically reprograms activated fibroblastic reticular cells for proliferation and survival. Nat Immunol 2019; 20:534-545. [PMID: 30962593 DOI: 10.1038/s41590-019-0367-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/26/2019] [Indexed: 01/08/2023]
Abstract
Lymph-node (LN) stromal cell populations expand during the inflammation that accompanies T cell activation. Interleukin-17 (IL-17)-producing helper T cells (TH17 cells) promote inflammation through the induction of cytokines and chemokines in peripheral tissues. We demonstrate a critical requirement for IL-17 in the proliferation of LN and splenic stromal cells, particularly fibroblastic reticular cells (FRCs), during experimental autoimmune encephalomyelitis and colitis. Without signaling via the IL-17 receptor, activated FRCs underwent cell cycle arrest and apoptosis, accompanied by signs of nutrient stress in vivo. IL-17 signaling in FRCs was not required for the development of TH17 cells, but failed FRC proliferation impaired germinal center formation and antigen-specific antibody production. Induction of the transcriptional co-activator IκBζ via IL-17 signaling mediated increased glucose uptake and expression of the gene Cpt1a, encoding CPT1A, a rate-limiting enzyme of mitochondrial fatty acid oxidation. Hence, IL-17 produced by locally differentiating TH17 cells is an important driver of the activation of inflamed LN stromal cells, through metabolic reprogramming required to support proliferation and survival.
Collapse
Affiliation(s)
- Saikat Majumder
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nilesh Amatya
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shankar Revu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chetan V Jawale
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongwen Wu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Ashley Menk
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Saran Kupul
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fang Du
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Itay Raphael
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Ulrich Siebenlist
- Immune Activation Section, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Timothy W Hand
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah L Gaffen
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Partha S Biswas
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mandy J McGeachy
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Weber ANR, Cardona Gloria Y, Çınar Ö, Reinhardt HC, Pezzutto A, Wolz OO. Oncogenic MYD88 mutations in lymphoma: novel insights and therapeutic possibilities. Cancer Immunol Immunother 2018; 67:1797-1807. [PMID: 30203262 PMCID: PMC11028221 DOI: 10.1007/s00262-018-2242-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/05/2018] [Indexed: 02/08/2023]
Abstract
Oncogenic MYD88 mutations, most notably the Leu 265 Pro (L265P) mutation, were recently identified as potential driver mutations in various B-cell non-Hodgkin Lymphomas (NHLs). The L265P mutation is now thought to be common to virtually all NHLs and occurs in between 4 and 90% of cases, depending on the entity. Since it is tumor-specific, the mutation, and the pathways it regulates, might serve as advantageous therapeutic targets for both conventional chemotherapeutic intervention, as well as immunotherapeutic strategies. Here, we review recent progress on elucidating the molecular and cellular processes affected by the L265P mutation of MYD88, describe a new in vivo model for MyD88 L265P-mediated oncogenesis, and summarize how these findings could be exploited therapeutically by specific targeting of signaling pathways. In addition, we summarize current and explore future possibilities for conceivable immunotherapeutic approaches, such as L265P-derived peptide vaccination, adoptive transfer of L265P-restricted T cells, and use of T-cell receptor-engineered T cells. With clinical trials regarding their efficacy rapidly expanding to NHLs, we also discuss potential combinations of immune checkpoint inhibitors with the described targeted chemotherapies of L265P signaling networks, and/or with the above immunological approaches as potential ways of targeting MYD88-mutated lymphomas in the future.
Collapse
Affiliation(s)
- Alexander N R Weber
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
| | - Yamel Cardona Gloria
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Özcan Çınar
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - H Christian Reinhardt
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Antonio Pezzutto
- Berlin Institute for Health Charité and Max-Delbrück Center, Campus Buch, Building 42-53, Lindenberger Weg 80, 13125, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité Medical School, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Olaf-Oliver Wolz
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
| |
Collapse
|
29
|
Aberrant Activation of NF-κB Signalling in Aggressive Lymphoid Malignancies. Cells 2018; 7:cells7110189. [PMID: 30380749 PMCID: PMC6262606 DOI: 10.3390/cells7110189] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/28/2022] Open
Abstract
Lymphoid malignancies frequently harbor genetic mutations leading to aberrant activation of nuclear factor-κB (NF-κB) signaling; in normal cells, this pathway has important roles in the control of cell growth, survival, stress responses, and inflammation. Malignancies with mutations in NF-κB pathway components can derive from all cell stages of mature B-cell development; however, aberrant NF-κB activity is particularly prevalent in aggressive subtypes of non-Hodgkin lymphoma and myeloma. NF-κB activation is mediated by two separate pathways, the canonical and alternative pathway, and five downstream transcription factor subunits. Recent findings implicate a predominant role for distinct NF-κB pathways and subunits in certain lymphoma subtypes and myeloma; findings which are complemented by the realization that individual NF-κB subunits can have unique, non-redundant biological roles in the putative tumor precursor cells, including activated B cells, germinal center B cells and plasma cells. The knowledge gained from these studies may be exploited for the development of therapeutic strategies to inhibit aberrant NF-κB activity at the level of the transcription-factor subunits and their target genes, as global inhibition of the pathway is toxic. Here, we provide an overview on the role of aberrant NF-κB activation in aggressive lymphoid malignancies and discuss the potential importance of individual NF-κB subunits in the pathogenesis of tumor subtypes.
Collapse
|
30
|
Genome-wide discovery of somatic regulatory variants in diffuse large B-cell lymphoma. Nat Commun 2018; 9:4001. [PMID: 30275490 PMCID: PMC6167379 DOI: 10.1038/s41467-018-06354-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/31/2018] [Indexed: 11/26/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer originating from mature B-cells. Prognosis is strongly associated with molecular subgroup, although the driver mutations that distinguish the two main subgroups remain poorly defined. Through an integrative analysis of whole genomes, exomes, and transcriptomes, we have uncovered genes and non-coding loci that are commonly mutated in DLBCL. Our analysis has identified novel cis-regulatory sites, and implicates recurrent mutations in the 3′ UTR of NFKBIZ as a novel mechanism of oncogene deregulation and NF-κB pathway activation in the activated B-cell (ABC) subgroup. Small amplifications associated with over-expression of FCGR2B (the Fcγ receptor protein IIB), primarily in the germinal centre B-cell (GCB) subgroup, correlate with poor patient outcomes suggestive of a novel oncogene. These results expand the list of subgroup driver mutations that may facilitate implementation of improved diagnostic assays and could offer new avenues for the development of targeted therapeutics. The driver mutations for the two main molecular subgroups of diffuse large B-cell lymphoma (DLBCL) are poorly defined. Here, an integrative genomics analysis identifies 3′ UTR NFKBIZ mutations within the activated B-cell DLBCL subgroup and small FCGR2B amplifications in the germinal centre B-cell DLBCL subgroup.
Collapse
|
31
|
Choi MC, MaruYama T, Chun CH, Park Y. Alleviation of Murine Osteoarthritis by Cartilage-Specific Deletion of IκBζ. Arthritis Rheumatol 2018; 70:1440-1449. [PMID: 29604191 DOI: 10.1002/art.40514] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/22/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVE IκBζ, an atypical IκB family member, regulates gene expression in the nucleus as a transcriptional cofactor. Although IκBζ has been extensively studied in the immune system, its specific roles in osteoarthritis (OA) are currently unknown. The objective of this study was to investigate the potential role of IκBζ in chondrocyte catabolism and OA pathogenesis. We also determined the molecular mechanism underlying its relationship to the transcription factor NF-κB. METHODS We determined expression levels of IκBζ in mouse chondrocytes treated with interleukin-1β (IL-1β), in human OA cartilage, and in mouse experimental OA cartilage. Adenovirus-mediated overexpression and small interfering RNA knockdown of IκBζ were performed to determine the impact of IκBζ on catabolic gene expression in vitro. Cartilage-specific IκBζ-transgenic and -knockout mice were generated and used for in vivo studies. Experimental and spontaneous OA were induced by surgical destabilization of the medial meniscus and by aging, respectively. Coimmunoprecipitation assay was used to examine the association between IκBζ and NF-κB subunits. RESULTS IκBζ was highly up-regulated in chondrocytes in response to IL-1β and in OA cartilage of human and mouse knee joints. Overexpression of IκBζ in chondrocytes promoted spontaneous OA development by activating chondrocyte catabolism. Genetic ablation of IκBζ in chondrocytes abolished catabolic gene induction by IL-1β and protected against the development of experimental OA. IκBζ formed complexes with NF-κB members to regulate catabolic factor expression. CONCLUSION These findings demonstrate a critical role for IκBζ in OA pathogenesis. Inhibition of IκBζ function might be an effective therapeutic approach for OA treatment.
Collapse
Affiliation(s)
- Moon-Chang Choi
- Gwangju Institute of Science and Technology and Chosun University, Gwangju, Republic of Korea
| | | | - Churl-Hong Chun
- Wonkwang University School of Medicine, Iksan, Republic of Korea
| | | |
Collapse
|
32
|
Mareschal S, Ruminy P, Alcantara M, Villenet C, Figeac M, Dubois S, Bertrand P, Bouzelfen A, Viailly PJ, Penther D, Tilly H, Bastard C, Jardin F. Application of the cghRA framework to the genomic characterization of Diffuse Large B-Cell Lymphoma. Bioinformatics 2018; 33:2977-2985. [PMID: 28481978 DOI: 10.1093/bioinformatics/btx309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/06/2017] [Indexed: 12/15/2022] Open
Abstract
Motivation Although sequencing-based technologies are becoming the new reference in genome analysis, comparative genomic hybridization arrays (aCGH) still constitute a simple and reliable approach for copy number analysis. The most powerful algorithms to analyze such data have been freely provided by the scientific community for many years, but combining them is a complex scripting task. Results The cghRA framework combines a user-friendly graphical interface and a powerful object-oriented command-line interface to handle a full aCGH analysis, as is illustrated in an original series of 107 Diffuse Large B-Cell Lymphomas. New algorithms for copy-number calling, polymorphism detection and minimal common region prioritization were also developed and validated. While their performances will only be demonstrated with aCGH, these algorithms could actually prove useful to any copy-number analysis, whatever the technique used. Availability and implementation R package and source for Linux, MS Windows and MacOS are freely available at http://bioinformatics.ovsa.fr/cghRA. Contact mareschal@ovsa.fr or fabrice.jardin@chb.unicancer.fr. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sylvain Mareschal
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Philippe Ruminy
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Marion Alcantara
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Céline Villenet
- Plate-Forme de Génomique Fonctionnelle et Structurale, Université de Lille II, 59000 Lille, France
| | - Martin Figeac
- Plate-Forme de Génomique Fonctionnelle et Structurale, Université de Lille II, 59000 Lille, France.,Cellule de Bioinformatique du Plateau Commun de Séquençage, CHRU de Lille, 59000 Lille, France
| | - Sydney Dubois
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Philippe Bertrand
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Abdelilah Bouzelfen
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Pierre-Julien Viailly
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Dominique Penther
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Hervé Tilly
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France
| | - Christian Bastard
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Fabrice Jardin
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| |
Collapse
|
33
|
Noncanonical NF-κB in Cancer. Biomedicines 2018; 6:biomedicines6020066. [PMID: 29874793 PMCID: PMC6027307 DOI: 10.3390/biomedicines6020066] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
The NF-κB pathway is a critical regulator of immune responses and is often dysregulated in cancer. Two NF-κB pathways have been described to mediate these responses, the canonical and the noncanonical. While understudied compared to the canonical NF-κB pathway, noncanonical NF-κB and its components have been shown to have effects, usually protumorigenic, in many different cancer types. Here, we review noncanonical NF-κB pathways and discuss its important roles in promoting cancer. We also discuss alternative NF-κB-independent functions of some the components of noncanonical NF-κB signaling. Finally, we discuss important crosstalk between canonical and noncanonical signaling, which blurs the two pathways, indicating that understanding the full picture of NF-κB regulation is critical to deciphering how this broad pathway promotes oncogenesis.
Collapse
|
34
|
Does NEMO/IKKγ protein have a role in determining prognostic significance in uveal melanoma? Clin Transl Oncol 2018; 20:1592-1603. [PMID: 29796997 DOI: 10.1007/s12094-018-1895-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/11/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE Uveal melanoma, although a rare form of cancer, is the most common primary malignancy of the eye in adults. Nuclear factor-κB (NF-κB) is a transcription factor that transactivates genes involved in the regulation of cell growth, apoptosis, angiogenesis, and metastasis, but the molecular mechanisms that negatively regulate NF-κB activation are not fully understood. NF-κB can also be activated by DNA damage pathway through NEMO protein. Therefore, the objective of this study is to elucidate the role of NEMO/IKKγ protein in uveal melanoma patients. METHODS Seventy-five formalin-fixed paraffin-embedded prospective tissues of uveal melanoma were included in the present study. These cases were reviewed and investigated for the expression of NEMO/IKKγ protein by immunohistochemistry and validated by western blotting along with the qRT-PCR for mRNA expression. Expression levels were correlated with the clinicopathological parameters and patients' outcome. RESULTS Immunohistochemistry showed cytoplasmic expression of NEMO/IKKγ expression in only 22 out of 75 (29.33%) cases. This result was confirmed by western blotting, and correlated well with the immunohistochemical expression of NEMO/IKKγ protein (48 kDa). In addition, downregulation of this gene was found in 87.93% of the cases when compared with the normal tissues. On statistical analysis, loss of NEMO/IKKγ protein was correlated with neovascularization, high mitotic count, and presence of vascular loop (p < 0.05). There was less overall survival rate with low expression of NEMO/IKKγ protein in patients with uveal melanoma. CONCLUSION This was the first study suggesting the relevant role of NEMO/IKKγ protein, and highlights the prognostic significance with outcome in uveal melanoma patients. This protein might be used as a screening biomarker in these patients after large-scale validation and translational studies.
Collapse
|
35
|
Schöneberg T, Meister J, Knierim AB, Schulz A. The G protein-coupled receptor GPR34 - The past 20 years of a grownup. Pharmacol Ther 2018; 189:71-88. [PMID: 29684466 DOI: 10.1016/j.pharmthera.2018.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Research on GPR34, which was discovered in 1999 as an orphan G protein-coupled receptor of the rhodopsin-like class, disclosed its physiologic relevance only piece by piece. Being present in all recent vertebrate genomes analyzed so far it seems to improve the fitness of species although it is not essential for life and reproduction as GPR34-deficient mice demonstrate. However, closer inspection of macrophages and microglia, where it is mainly expressed, revealed its relevance in immune cell function. Recent data clearly demonstrate that GPR34 function is required to arrest microglia in the M0 homeostatic non-phagocytic phenotype. Herein, we summarize the current knowledge on its evolution, genomic and structural organization, physiology, pharmacology and relevance in human diseases including neurodegenerative diseases and cancer, which accumulated over the last 20 years.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany.
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Alexander Bernd Knierim
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; Leipzig University Medical Center, IFB AdiposityDiseases, 04103 Leipzig, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
36
|
Grondona P, Bucher P, Schulze-Osthoff K, Hailfinger S, Schmitt A. NF-κB Activation in Lymphoid Malignancies: Genetics, Signaling, and Targeted Therapy. Biomedicines 2018; 6:biomedicines6020038. [PMID: 29587428 PMCID: PMC6027339 DOI: 10.3390/biomedicines6020038] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
The NF-κB transcription factor family plays a crucial role in lymphocyte proliferation and survival. Consequently, aberrant NF-κB activation has been described in a variety of lymphoid malignancies, including diffuse large B-cell lymphoma, Hodgkin lymphoma, and adult T-cell leukemia. Several factors, such as persistent infections (e.g., with Helicobacter pylori), the pro-inflammatory microenvironment of the cancer, self-reactive immune receptors as well as genetic lesions altering the function of key signaling effectors, contribute to constitutive NF-κB activity in these malignancies. In this review, we will discuss the molecular consequences of recurrent genetic lesions affecting key regulators of NF-κB signaling. We will particularly focus on the oncogenic mechanisms by which these alterations drive deregulated NF-κB activity and thus promote the growth and survival of the malignant cells. As the concept of a targeted therapy based on the mutational status of the malignancy has been supported by several recent preclinical and clinical studies, further insight in the function of NF-κB modulators and in the molecular mechanisms governing aberrant NF-κB activation observed in lymphoid malignancies might lead to the development of additional treatment strategies and thus improve lymphoma therapy.
Collapse
Affiliation(s)
- Paula Grondona
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Philip Bucher
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Klaus Schulze-Osthoff
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Stephan Hailfinger
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Anja Schmitt
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| |
Collapse
|
37
|
Involvement of NF-κBIZ and related cytokines in age-associated renal fibrosis. Oncotarget 2018; 8:7315-7327. [PMID: 28099916 PMCID: PMC5352323 DOI: 10.18632/oncotarget.14614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation is a major contributor to age-related nephropathic changes, including renal fibrosis. In this study, various experimental paradigms were designed to delineate the role played by NF-κBIZ (also known as IκBζ) in age-associated renal fibrosis. Analyses based on RNA-sequencing findings obtained by next generation sequencing (NGS) revealed the upregulations of NF-κBIZ and of IL-6 and MCP-1 (both known to be regulated by NF-κBIZ) during aging. The up-regulation of NF-κBIZ in aged rat kidneys coincided with increased macrophage infiltration. In LPS-treated macrophages, oxidative stress was found to play a pivotal role in NF-κBIZ expression, suggesting age-related oxidative stress is associated with NF-κBIZ activation. Furthermore, these in vitro findings were confirmed in LPS-treated old rats, which showed higher levels of oxidative stress and NF-κBIZ in kidneys than LPS-treated young rats. Additional in vitro experiments using macrophages and kidney fibroblasts demonstrated NF-κBIZ and related cytokines participate in fibrosis. In particular, increased levels of NF-κBIZ-associated cytokines in macrophages significantly up-regulated TGF-β induced kidney fibroblast activation. Moreover, experiments with NF-κBIZ knocked down macrophages showed reduced TGF-β-induced kidney fibroblast activation. The findings of the present study provide evidence regarding an involvement of NF-κBIZ in age-associated progressive renal fibrosis and provides potential targets for its prevention.
Collapse
|
38
|
Willems M, Dubois N, Musumeci L, Bours V, Robe PA. IκBζ: an emerging player in cancer. Oncotarget 2018; 7:66310-66322. [PMID: 27579619 PMCID: PMC5323236 DOI: 10.18632/oncotarget.11624] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/23/2016] [Indexed: 01/12/2023] Open
Abstract
IκBζ, an atypical member of the nuclear IκB family of proteins, is expressed at low levels in most resting cells, but is induced upon stimulation of Toll-like/IL-1 receptors through an IRAK1/IRAK4/NFκB-dependent pathway. Like its homolog Bcl3, IκBζ can regulate the transcription of a set of inflamatory genes through its association with the p50 or p52 subunits of NF-κB. Long studied as a key component of the immune response, IκBζ emerges as an important regulator of inflammation, cell proliferation and survival. As a result, growing evidence support the role of this transcription factor in the pathogenesis number of human hematological and solid malignancies.
Collapse
Affiliation(s)
- Marie Willems
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Nadège Dubois
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Lucia Musumeci
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Vincent Bours
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Pierre A Robe
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium.,Department of Neurology and Neurosurgery, T&P Bohnenn Laboratory for Neuro-Oncology, Brain Center Rudolf Magnus, University Medical Center of Utrecht, Heidelberglaan, Utrecht, The Netherlands
| |
Collapse
|
39
|
Fonte E, Vilia MG, Reverberi D, Sana I, Scarfò L, Ranghetti P, Orfanelli U, Cenci S, Cutrona G, Ghia P, Muzio M. Toll-like receptor 9 stimulation can induce IκBζ expression and IgM secretion in chronic lymphocytic leukemia cells. Haematologica 2017; 102:1901-1912. [PMID: 28775123 PMCID: PMC5664394 DOI: 10.3324/haematol.2017.165878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic lymphocytic leukemia cells strongly depend on external stimuli for their survival. Both antigen receptor and co-stimulatory receptors, including Toll-like receptors, can modulate viability and proliferation of leukemic cells. Toll-like receptor ligands, and particularly the TLR9 ligand CpG, mediate heterogeneous responses in patients' samples reflecting the clinical course of the subjects. However, the molecular framework of the key signaling events underlying such heterogeneity is undefined. We focused our studies on a subset of chronic lymphocytic leukemia cases characterized by expression of CD38 and unmutated immunoglobulin genes, who respond to CpG with enhanced metabolic cell activity. We report that, while CpG induces NFKBIZ mRNA in all the samples analyzed, it induces the IκBζ protein in a selected group of cases, through an unanticipated post-transcriptional mechanism. Interestingly, IκBζ plays a causal role in sustaining CpG-induced cell viability and chemoresistance, and CpG stimulation can unleash immunoglobulin secretion by IκBζ-positive malignant cells. These results identify and characterize IκBζ as a marker and effector molecule of distinct key pathways in chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Eleonora Fonte
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milano, Italy
| | - Maria Giovanna Vilia
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milano, Italy
| | | | - Ilenia Sana
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milano, Italy
| | - Lydia Scarfò
- B-Cell Neoplasia Unit and Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milano, Italy.,Università Vita-Salute San Raffaele, Milano, Italy
| | - Pamela Ranghetti
- B-Cell Neoplasia Unit and Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milano, Italy
| | - Ugo Orfanelli
- Age Related Diseases Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Hospital, Milano, Italy
| | - Simone Cenci
- Age Related Diseases Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Hospital, Milano, Italy
| | - Giovanna Cutrona
- UOC Patologia Molecolare, IRCCS AOU S. Martino-IST, Genova, Italy
| | - Paolo Ghia
- B-Cell Neoplasia Unit and Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milano, Italy.,Università Vita-Salute San Raffaele, Milano, Italy
| | - Marta Muzio
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milano, Italy
| |
Collapse
|
40
|
Sensitivity to PI3K and AKT inhibitors is mediated by divergent molecular mechanisms in subtypes of DLBCL. Blood 2017; 130:310-322. [DOI: 10.1182/blood-2016-12-758599] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/10/2017] [Indexed: 01/14/2023] Open
Abstract
Key Points
PI3Kα/δ inhibition induces cytotoxicity in ABC DLBCLs through downregulation of NF-κB signaling. Inhibition of AKT induces cytotoxicity by downregulation of MYC in PTEN-deficient DLBCL models in vivo and in vitro.
Collapse
|
41
|
NF-κB in Hematological Malignancies. Biomedicines 2017; 5:biomedicines5020027. [PMID: 28561798 PMCID: PMC5489813 DOI: 10.3390/biomedicines5020027] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/30/2022] Open
Abstract
NF-κB (Nuclear Factor Κ-light-chain-enhancer of activated B cells) transcription factors are critical regulators of immunity, stress response, apoptosis, and differentiation. Molecular defects promoting the constitutive activation of canonical and non-canonical NF-κB signaling pathways contribute to many diseases, including cancer, diabetes, chronic inflammation, and autoimmunity. In the present review, we focus our attention on the mechanisms of NF-κB deregulation in hematological malignancies. Key positive regulators of NF-κB signaling can act as oncogenes that are often prone to chromosomal translocation, amplifications, or activating mutations. Negative regulators of NF-κB have tumor suppressor functions, and are frequently inactivated either by genomic deletions or point mutations. NF-κB activation in tumoral cells is also driven by the microenvironment or chronic signaling that does not rely on genetic alterations.
Collapse
|
42
|
Juskevicius D, Dirnhofer S, Tzankov A. Genetic background and evolution of relapses in aggressive B-cell lymphomas. Haematologica 2017; 102:1139-1149. [PMID: 28554945 PMCID: PMC5566014 DOI: 10.3324/haematol.2016.151647] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022] Open
Abstract
Relapses of aggressive B-cell lymphomas pose a higher risk to affected patients because of potential treatment resistance and usually rapid tumor growth. Recent advances, such as targeting Bruton tyrosine kinase, have provided promising results in small numbers of cases, but treatment for the majority of patients remains challenging and outcomes are generally poor. A number of recent studies have utilized state-of-the-art genomic technologies in an attempt to better understand tumor genome evolution during relapse and to identify relapse-specific genetic alterations. It has been found that in some settings (e.g. diffuse large B-cell lymphomas in immunocompromised patients, secondary diffuse large B-cell lymphomas as Richter transformations) a significant part of the recurrences are clonally-unrelated de novo neoplasms, which might have distinct genomic and drug sensitivity profiles as well as different prognoses. Similar to earlier findings in indolent lymphomas, genetic tumor evolution of clonally-related relapsing aggressive B-cell lymphomas is predominantly characterized by two patterns: early divergence from a common progenitor and late divergence/linear evolution from a primary tumor. The clinical implications of these distinct patterns are not yet clear and will require additional investigation; however, it is plausible that these two patterns of recurrence are linked to different treatment-resistance mechanisms. Attempts to identify drivers of relapses result in a very heterogeneous list of affected genes and pathways as well as epigenetic mechanisms and suggest many ways of how recurrent tumors can adapt to treatment and expand their malignant properties.
Collapse
Affiliation(s)
- Darius Juskevicius
- Institute of Pathology & Medical Genetics, University of Basel and University Hospital Basel, Switzerland
| | - Stephan Dirnhofer
- Institute of Pathology & Medical Genetics, University of Basel and University Hospital Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology & Medical Genetics, University of Basel and University Hospital Basel, Switzerland
| |
Collapse
|
43
|
B-cell receptor-driven MALT1 activity regulates MYC signaling in mantle cell lymphoma. Blood 2016; 129:333-346. [PMID: 27864294 DOI: 10.1182/blood-2016-05-718775] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a mature B-cell lymphoma characterized by poor clinical outcome. Recent studies revealed the importance of B-cell receptor (BCR) signaling in maintaining MCL survival. However, it remains unclear which role MALT1, an essential component of the CARD11-BCL10-MALT1 complex that links BCR signaling to the NF-κB pathway, plays in the biology of MCL. Here we show that a subset of MCLs is addicted to MALT1, as its inhibition by either RNA or pharmacologic interference induced cytotoxicity both in vitro and in vivo. Gene expression profiling following MALT1 inhibition demonstrated that MALT1 controls an MYC-driven gene expression network predominantly through increasing MYC protein stability. Thus, our analyses identify a previously unappreciated regulatory mechanism of MYC expression. Investigating primary mouse splenocytes, we could demonstrate that MALT1-induced MYC regulation is not restricted to MCL, but represents a common mechanism. MYC itself is pivotal for MCL survival because its downregulation and pharmacologic inhibition induced cytotoxicity in all MCL models. Collectively, these results provide a strong mechanistic rationale to investigate the therapeutic efficacy of targeting the MALT1-MYC axis in MCL patients.
Collapse
|
44
|
NF-κB signaling pathway and its potential as a target for therapy in lymphoid neoplasms. Blood Rev 2016; 31:77-92. [PMID: 27773462 DOI: 10.1016/j.blre.2016.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 01/01/2023]
Abstract
The NF-κB pathway, a critical regulator of apoptosis, plays a key role in many normal cellular functions. Genetic alterations and other mechanisms leading to constitutive activation of the NF-κB pathway contribute to cancer development, progression and therapy resistance by activation of downstream anti-apoptotic pathways, unfavorable microenvironment interactions, and gene dysregulation. Not surprisingly, given its importance to normal and cancer cell function, the NF-κB pathway has emerged as a target for therapy. In the review, we present the physiologic role of the NF-κB pathway and recent advances in better understanding of the pathologic roles of the NF-κB pathway in major types of lymphoid neoplasms. We also provide an update of clinical trials that use NF-κB pathway inhibitors. These trials are exploring the clinical efficiency of combining NF-κB pathway inhibitors with various agents that target diverse mechanisms of action with the goal being to optimize novel therapeutic opportunities for targeting oncogenic pathways to eradicate cancer cells.
Collapse
|
45
|
Kohda A, Yamazaki S, Sumimoto H. The Nuclear Protein IκBζ Forms a Transcriptionally Active Complex with Nuclear Factor-κB (NF-κB) p50 and the Lcn2 Promoter via the N- and C-terminal Ankyrin Repeat Motifs. J Biol Chem 2016; 291:20739-52. [PMID: 27489104 DOI: 10.1074/jbc.m116.719302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Indexed: 12/18/2022] Open
Abstract
The nuclear protein IκBζ, comprising the N-terminal trans-activation domain and the C-terminal ankyrin repeat (ANK) domain composed of seven ANK motifs, activates transcription of a subset of nuclear factor-κB (NF-κB)-dependent innate immune genes such as Lcn2 encoding the antibacterial protein lipocalin-2. Lcn2 activation requires formation of a complex containing IκBζ and NF-κB p50, a transcription factor that harbors the DNA-binding Rel homology region but lacks a trans-activation domain, on the promoter with the canonical NF-κB-binding site (κB site) and its downstream cytosine-rich element. Here we show that IκBζ productively interacts with p50 via Asp-451 in the N terminus of ANK1, a residue that is evolutionarily conserved among IκBζ and the related nuclear IκB proteins Bcl-3 and IκBNS Threonine substitution for Asp-451 abrogates direct association with the κB-site-binding protein p50, complex formation with the Lcn2 promoter DNA, and activation of Lcn2 transcription. The basic residues Lys-717 and Lys-719 in the C-terminal region of ANK7 contribute to IκBζ binding to the Lcn2 promoter, probably via interaction with the cytosine-rich element required for Lcn2 activation; glutamate substitution for both lysines results in a loss of transcriptionally active complex formation without affecting direct contact of IκBζ with p50. Both termini of the ANK domain in Bcl-3 and IκBNS function in a manner similar to that of IκBζ to interact with promoter DNA, indicating a common mechanism in which the nuclear IκBs form a regulatory complex with NF-κB and promoter DNA via the invariant aspartate in ANK1 and the conserved basic residues in ANK7.
Collapse
Affiliation(s)
- Akira Kohda
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Soh Yamazaki
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideki Sumimoto
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
46
|
Krappmann D, Vincendeau M. Mechanisms of NF-κB deregulation in lymphoid malignancies. Semin Cancer Biol 2016; 39:3-14. [DOI: 10.1016/j.semcancer.2016.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022]
|
47
|
Morin RD, Assouline S, Alcaide M, Mohajeri A, Johnston RL, Chong L, Grewal J, Yu S, Fornika D, Bushell K, Nielsen TH, Petrogiannis-Haliotis T, Crump M, Tosikyan A, Grande BM, MacDonald D, Rousseau C, Bayat M, Sesques P, Froment R, Albuquerque M, Monczak Y, Oros KK, Greenwood C, Riazalhosseini Y, Arseneault M, Camlioglu E, Constantin A, Pan-Hammarstrom Q, Peng R, Mann KK, Johnson NA. Genetic Landscapes of Relapsed and Refractory Diffuse Large B-Cell Lymphomas. Clin Cancer Res 2016; 22:2290-300. [PMID: 26647218 DOI: 10.1158/1078-0432.ccr-15-2123] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/17/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Relapsed or refractory diffuse large B-cell lymphoma (rrDLBCL) is fatal in 90% of patients, and yet little is known about its biology. EXPERIMENTAL DESIGN Using exome sequencing, we characterized the mutation profiles of 38 rrDLBCL biopsies obtained at the time of progression after immunochemotherapy. To identify genes that may be associated with relapse, we compared the mutation frequency in samples obtained at relapse to an unrelated cohort of 138 diagnostic DLBCLs and separately amplified specific mutations in their matched diagnostic samples to identify clonal expansions. RESULTS On the basis of a higher frequency at relapse and evidence for clonal selection, TP53, FOXO1, MLL3 (KMT2C), CCND3, NFKBIZ, and STAT6 emerged as top candidate genes implicated in therapeutic resistance. We observed individual examples of clonal expansions affecting genes whose mutations had not been previously associated with DLBCL including two regulators of NF-κB: NFKBIE and NFKBIZ We detected mutations that may be affect sensitivity to novel therapeutics, such as MYD88 and CD79B mutations, in 31% and 23% of patients with activated B-cell-type of rrDLBCL, respectively. We also identified recurrent STAT6 mutations affecting D419 in 36% of patients with the germinal center B (GCB) cell rrDLBCL. These were associated with activated JAK/STAT signaling, increased phospho-STAT6 protein expression and increased expression of STAT6 target genes. CONCLUSIONS This work improves our understanding of therapeutic resistance in rrDLBCL and has identified novel therapeutic opportunities especially for the high-risk patients with GCB-type rrDLBCL. Clin Cancer Res; 22(9); 2290-300. ©2015 AACR.
Collapse
Affiliation(s)
- Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada. Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Sarit Assouline
- Department of Medicine, Jewish General Hospital, Montreal, Quebec, Canada. McGill University, Montreal, Quebec, Canada
| | - Miguel Alcaide
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Arezoo Mohajeri
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Lauren Chong
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Jasleen Grewal
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Stephen Yu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Daniel Fornika
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kevin Bushell
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Torsten Holm Nielsen
- Department of Internal Medicine, Copenhagen University Hospital, Roskilde, Denmark
| | | | - Michael Crump
- Princess Margaret Hospital, Toronto, Ontario, Canada
| | | | - Bruno M Grande
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - David MacDonald
- Department of Medicine, University of Dalhousie, Halifax, Nova Scotia, Canada
| | - Caroline Rousseau
- Quebec Clinical Research Organization in Cancer, Montreal, Quebec, Canada
| | | | - Pierre Sesques
- Department of Medicine, Jewish General Hospital, Montreal, Quebec, Canada
| | - Remi Froment
- Department of Medicine, Jewish General Hospital, Montreal, Quebec, Canada
| | - Marco Albuquerque
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yury Monczak
- Department of Pathology, Jewish General Hospital, Montreal, Quebec, Canada
| | | | - Celia Greenwood
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada. Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada. Department of Oncology, McGill University, Montreal, Quebec, Canada
| | | | | | - Errol Camlioglu
- Department of Radiology, Jewish General Hospital, Montreal, McGill University, Quebec, Canada
| | - André Constantin
- Department of Radiology, Jewish General Hospital, Montreal, McGill University, Quebec, Canada
| | - Qiang Pan-Hammarstrom
- Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital, Huddinge, Sweden. Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China
| | - Roujun Peng
- Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital, Huddinge, Sweden. Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China
| | - Koren K Mann
- Department of Medicine, Jewish General Hospital, Montreal, Quebec, Canada. McGill University, Montreal, Quebec, Canada
| | - Nathalie A Johnson
- Department of Medicine, Jewish General Hospital, Montreal, Quebec, Canada. McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
48
|
Muromoto R, Hirao T, Tawa K, Hirashima K, Kon S, Kitai Y, Matsuda T. IL-17A plays a central role in the expression of psoriasis signature genes through the induction of IκB-ζ in keratinocytes. Int Immunol 2016; 28:443-52. [PMID: 26944069 DOI: 10.1093/intimm/dxw011] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/29/2016] [Indexed: 12/11/2022] Open
Abstract
In psoriasis lesions, a diverse mixture of cytokines is up-regulated that influence each other generating a complex inflammatory situation. Although this is the case, the inhibition of IL-17A alone showed unprecedented clinical results in patients, indicating that IL-17A is a critical inducer of psoriasis pathogenesis. To elucidate IL-17A-driven keratinocyte-intrinsic signaling pathways, we treated monolayers of normal human epidermal keratinocytes in vitro with a mixture of six cytokines (IL-17A, TNF-α, IL-17C, IL-22, IL-36γ and IFN-γ) involved in psoriasis to mimic the inflammatory milieu in psoriasis lesions. Microarray and gene set enrichment analysis revealed that this cytokine mixture induced similar gene expression changes with the previous transcriptome studies using psoriasis lesions. Importantly, we identified a set of IL-17A-regulated genes in keratinocytes, which recapitulate typical psoriasis genes exemplified by DEFB4A, S100A7, IL19 and CSF3, based on the differences in the expression profiles of cells stimulated with six cytokines versus cells stimulated with only five cytokines lacking IL-17A. Furthermore, a specific IL-17A-induced gene, NFKBIZ, which encodes IκB-ζ, a transcriptional regulator for NF-κB, was demonstrated to have a significant role for IL-17A-induced gene expression. Thus, we present novel in vitro data from normal human keratinocytes that would help elucidating the IL-17A-driven keratinocyte activation in psoriasis.
Collapse
Affiliation(s)
- Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo 060-0812, Japan
| | - Toru Hirao
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo 060-0812, Japan
| | - Keisuke Tawa
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo 060-0812, Japan
| | - Koki Hirashima
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo 060-0812, Japan
| | - Shigeyuki Kon
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo 060-0812, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo 060-0812, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-Ku, Sapporo 060-0812, Japan
| |
Collapse
|
49
|
Unexpected functions of nuclear factor-κB during germinal center B-cell development: implications for lymphomagenesis. Curr Opin Hematol 2016; 22:379-87. [PMID: 26049760 DOI: 10.1097/moh.0000000000000160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW B-cell tumors originating from the transformation of germinal center B cells frequently harbor genetic mutations, leading to constitutive activation of the nuclear factor-κB (NF-κB) signaling pathway. The present review highlights recent insights into the roles of separate NF-κB transcription factors in germinal center B-cell development and discusses implications of the results for germinal center lymphomagenesis. RECENT FINDINGS Understanding how aberrant NF-κB activation promotes tumorigenesis requires the understanding of the role of NF-κB in the tumor-precursor cells. Despite extensive knowledge on NF-κB biology, the function of this complex signaling pathway in the differentiation of germinal center B cells is largely unknown. The present review will discuss recent findings that revealed distinct roles of separate NF-κB transcription factors during the germinal center reaction in the context of germinal center lymphomagenesis. Most notably, a single NF-κB subunit, c-REL, was found to be required for the maintenance of the germinal center reaction and was associated with the activation of a metabolic program that promotes cell growth. SUMMARY Identifying the biological roles of the separate NF-κB transcription factor subunits in germinal center biology will help to better understand the pathogenic consequences of their constitutive activation in B-cell tumors. This knowledge may be exploited for the development of targeted antitumor therapies aimed at inhibiting selectively those components of aberrant NF-κB activity which contribute to pathogenesis.
Collapse
|
50
|
Zhao S, Dong X, Shen W, Ye Z, Xiang R. Machine learning-based classification of diffuse large B-cell lymphoma patients by eight gene expression profiles. Cancer Med 2016; 5:837-52. [PMID: 26869285 PMCID: PMC4864813 DOI: 10.1002/cam4.650] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/22/2015] [Accepted: 01/03/2016] [Indexed: 12/12/2022] Open
Abstract
Gene expression profiling (GEP) had divided the diffuse large B‐cell lymphoma (DLBCL) into molecular subgroups: germinal center B‐cell like (GCB), activated B‐cell like (ABC), and unclassified (UC) subtype. However, this classification with prognostic significance was not applied into clinical practice since there were more than 1000 genes to detect and interpreting was difficult. To classify cancer samples validly, eight significant genes (MYBL1, LMO2, BCL6, MME, IRF4, NFKBIZ, PDE4B, and SLA) were selected in 414 patients treated with CHOP/R‐CHOP chemotherapy from Gene Expression Omnibus (GEO) data sets. Cutoffs for each gene were obtained using receiver–operating characteristic curves (ROC) new model based on the support vector machine (SVM) estimated the probability of membership into one of two subgroups: GCB and Non‐GCB (ABC and UC). Furtherly, multivariate analysis validated the model in another two cohorts including 855 cases in all. As a result, patients in the training and validated cohorts were stratified into two subgroups with 94.0%, 91.0%, and 94.4% concordance with GEP, respectively. Patients with Non‐GCB subtype had significantly poorer outcomes than that with GCB subtype, which agreed with the prognostic power of GEP classification. Moreover, the similar prognosis received in the low (0–2) and high (3–5) IPI scores group demonstrated that the new model was independent of IPI as well as GEP method. In conclusion, our new model could stratify DLBCL patients with CHOP/R‐CHOP regimen matching GEP subtypes effectively.
Collapse
Affiliation(s)
- Shuangtao Zhao
- School of Medicine, Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China.,Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China.,Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, 300071, China
| | - Xiaoli Dong
- School of Medicine, Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China.,Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Wenzhi Shen
- School of Medicine, Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China.,Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhen Ye
- School of Medicine, Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China.,Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Rong Xiang
- School of Medicine, Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China.,Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China.,Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, 300071, China
| |
Collapse
|