1
|
Tiukacheva EA, Ulianov SV, Karpukhina A, Razin SV, Vassetzky Y. 3D genome alterations and editing in pathology. Mol Ther 2023; 31:924-933. [PMID: 36755493 PMCID: PMC10124079 DOI: 10.1016/j.ymthe.2023.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/07/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
The human genome is folded into a multi-level 3D structure that controls many nuclear functions including gene expression. Recently, alterations in 3D genome organization were associated with several genetic diseases and cancer. As a consequence, experimental approaches are now being developed to modify the global 3D genome organization and that of specific loci. Here, we discuss emerging experimental approaches of 3D genome editing that may prove useful in biomedicine.
Collapse
Affiliation(s)
- Eugenia A Tiukacheva
- CNRS UMR9018, Institut Gustave Roussy, 94805 Villejuif, France; Institute of Gene Biology, Moscow 119334, Russia; Moscow Institute of Physics and Technology, Moscow 141700, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; Koltzov Institute of Developmental Biology, Moscow 119334, Russia
| | - Sergey V Ulianov
- Institute of Gene Biology, Moscow 119334, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Anna Karpukhina
- CNRS UMR9018, Institut Gustave Roussy, 94805 Villejuif, France; Koltzov Institute of Developmental Biology, Moscow 119334, Russia
| | - Sergey V Razin
- Institute of Gene Biology, Moscow 119334, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yegor Vassetzky
- CNRS UMR9018, Institut Gustave Roussy, 94805 Villejuif, France; Koltzov Institute of Developmental Biology, Moscow 119334, Russia.
| |
Collapse
|
2
|
Panda D, Das N, Thakral D, Gupta R. Genomic landscape of mature B-cell non-Hodgkin lymphomas - an appraisal from lymphomagenesis to drug resistance. J Egypt Natl Canc Inst 2022; 34:52. [PMID: 36504392 DOI: 10.1186/s43046-022-00154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mature B-cell non-Hodgkin lymphomas are one of the most common hematological malignancies with a divergent clinical presentation, phenotype, and course of disease regulated by underlying genetic mechanism. MAIN BODY Genetic and molecular alterations are not only critical for lymphomagenesis but also largely responsible for differing therapeutic response in these neoplasms. In recent years, advanced molecular tools have provided a deeper understanding regarding these oncogenic drives for predicting progression as well as refractory behavior in these diseases. The prognostic models based on gene expression profiling have also been proved effective in various clinical scenarios. However, considerable overlap does exist between the genotypes of individual lymphomas and at the same time where additional molecular lesions may be associated with each entity apart from the key genetic event. Therefore, genomics is one of the cornerstones in the multimodality approach essential for classification and risk stratification of B-cell non-Hodgkin lymphomas. CONCLUSION We hereby in this review discuss the wide range of genetic aberrancies associated with tumorigenesis, immune escape, and chemoresistance in major B-cell non-Hodgkin lymphomas.
Collapse
Affiliation(s)
- Devasis Panda
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, 110029, India
| | - Nupur Das
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, 110029, India
| | - Deepshi Thakral
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, 110029, India
| | - Ritu Gupta
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, 110029, India.
| |
Collapse
|
3
|
Scourzic L, Salataj E, Apostolou E. Deciphering the Complexity of 3D Chromatin Organization Driving Lymphopoiesis and Lymphoid Malignancies. Front Immunol 2021; 12:669881. [PMID: 34054841 PMCID: PMC8160312 DOI: 10.3389/fimmu.2021.669881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Proper lymphopoiesis and immune responses depend on the spatiotemporal control of multiple processes, including gene expression, DNA recombination and cell fate decisions. High-order 3D chromatin organization is increasingly appreciated as an important regulator of these processes and dysregulation of genomic architecture has been linked to various immune disorders, including lymphoid malignancies. In this review, we present the general principles of the 3D chromatin topology and its dynamic reorganization during various steps of B and T lymphocyte development and activation. We also discuss functional interconnections between architectural, epigenetic and transcriptional changes and introduce major key players of genomic organization in B/T lymphocytes. Finally, we present how alterations in architectural factors and/or 3D genome organization are linked to dysregulation of the lymphopoietic transcriptional program and ultimately to hematological malignancies.
Collapse
Affiliation(s)
| | | | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
4
|
Zhu MX, Wan WL, Hong Y, Wang YF, Dong F, Jing HM. Expression and role of MIG/CXCR3 axis in mantle cell lymphoma. Exp Cell Res 2020; 397:112365. [PMID: 33197439 DOI: 10.1016/j.yexcr.2020.112365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/31/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022]
Abstract
Mantle cell lymphoma (MCL) is a unique subtype of B-cell non-Hodgkin lymphoma with a generally aggressive and heterogeneous clinical course. Chemokines are one of the complex components in the tumor microenvironment (TME), and they play a vital role in tumor progression and metastasis. There is no information about the monokine induced by gamma interferon (MIG)/CXC chemokine receptor 3 (CXCR3) axis in patients with MCL. In the present study, we discovered that CXCR3 was highly expressed in MCL tissues and some cell lines including Maver, Z138, and Jeko-1, and significantly associated with clinical factors reflecting high tumor burden in MCL patients. Moreover, elevated serum MIG at diagnosis showed a close relationship with advanced disease and poor prognosis in MCL patients. Additionally, the role of CXCR3 in promoting the proliferation and inhibiting the apoptosis of primary MCL cells and Jeko-1 cells was validated by in vitro experiments. Further research indicated that the MIG/CXCR3 axis mediated MCL cell migration to the TME through the PI3K/AKT signaling pathway. Therefore, the MIG/CXCR3 axis might be a potential target with fewer off-target side effects than other targets in MCL.
Collapse
Affiliation(s)
- Ming-Xia Zhu
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, PR China
| | - Wen-Li Wan
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, PR China
| | - Yun Hong
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, PR China
| | - Yan-Fang Wang
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, PR China
| | - Fei Dong
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, PR China
| | - Hong-Mei Jing
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, PR China.
| |
Collapse
|
5
|
Korsholm LM, Gál Z, Nieto B, Quevedo O, Boukoura S, Lund CC, Larsen DH. Recent advances in the nucleolar responses to DNA double-strand breaks. Nucleic Acids Res 2020; 48:9449-9461. [PMID: 32857853 PMCID: PMC7515731 DOI: 10.1093/nar/gkaa713] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
DNA damage poses a serious threat to human health and cells therefore continuously monitor and repair DNA lesions across the genome. Ribosomal DNA is a genomic domain that represents a particular challenge due to repetitive sequences, high transcriptional activity and its localization in the nucleolus, where the accessibility of DNA repair factors is limited. Recent discoveries have significantly extended our understanding of how cells respond to DNA double-strand breaks (DSBs) in the nucleolus, and new kinases and multiple down-stream targets have been identified. Restructuring of the nucleolus can occur as a consequence of DSBs and new data point to an active regulation of this process, challenging previous views. Furthermore, new insights into coordination of cell cycle phases and ribosomal DNA repair argue against existing concepts. In addition, the importance of nucleolar-DNA damage response (n-DDR) mechanisms for maintenance of genome stability and the potential of such factors as anti-cancer targets is becoming apparent. This review will provide a detailed discussion of recent findings and their implications for our understanding of the n-DDR. The n-DDR shares features with the DNA damage response (DDR) elsewhere in the genome but is also emerging as an independent response unique to ribosomal DNA and the nucleolus.
Collapse
Affiliation(s)
| | | | - Blanca Nieto
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Oliver Quevedo
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Stavroula Boukoura
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Casper Carstens Lund
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | | |
Collapse
|
6
|
Crosetto N, Bienko M. Radial Organization in the Mammalian Nucleus. Front Genet 2020; 11:33. [PMID: 32117447 PMCID: PMC7028756 DOI: 10.3389/fgene.2020.00033] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
In eukaryotic cells, most of the genetic material is contained within a highly specialized organelle-the nucleus. A large body of evidence indicates that, within the nucleus, chromatinized DNA is spatially organized at multiple length scales. The higher-order organization of chromatin is crucial for proper execution of multiple genome functions, including DNA replication and transcription. Here, we review our current knowledge on the spatial organization of chromatin in the nucleus of mammalian cells, focusing in particular on how chromatin is radially arranged with respect to the nuclear lamina. We then discuss the possible mechanisms by which the radial organization of chromatin in the cell nucleus is established. Lastly, we propose a unifying model of nuclear spatial organization, and suggest novel approaches to test it.
Collapse
Affiliation(s)
| | - Magda Bienko
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Mei X, Chen Y, Gan D, Chen Y, Wang L, Cao Y, Wu Z, Liu W, Zhao C, Lin M, Yang T, Hu J. Effect of nucleolin on adriamycin resistance via the regulation of B-cell lymphoma 2 expression in Burkitt's lymphoma cells. J Cell Physiol 2019; 234:22666-22674. [PMID: 31127617 PMCID: PMC6771757 DOI: 10.1002/jcp.28833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 01/26/2023]
Abstract
Nucleolin (NCL, C23) is an important nucleocytoplasmic multifunctional protein. Due to its multifaceted profile and high expression in cancer, NCL is considered to be a marker of drug resistance associated with chemotherapy. However, the biochemical mechanisms in which NCL suppresses drug sensitivity in several cancers have yet to be fully elucidated. This study aims to explore the effect of NCL on drug sensitivity and its potential mechanism in CA46 Burkitt's lymphoma (BL) cells. CA46 BL cells were transfected with lentiviruses carrying the NCL gene (CA46-NCL-overexpression, CA46-NCL-OE), or shRNA sequences that target the endogenous NCL gene (CA46-NCL-knockdown, CA46-NCL-KD). Adriamycin (ADM) IC50 levels for CA46-NCL-overexpressed (OE), CA46-NCL-OE control (OEC), CA46-NCL-knockdown (KD), and CA46-NCL-KD control (KDC) cells were 0.68 ± 0.06 μg/ml, 0.68 ± 0.06 μg/ml, 0.68 ± 0.06 μg/ml, and 0.30 ± 0.04 μg/ml, respectively. Apoptosis rates were significantly increased following NCL KD, whereas the opposite effect was noted in OE cells. A significant reduction of B-cell lymphoma 2 (Bcl-2) mRNA and protein levels in KD cells was observed, while OE cells displayed the opposite effect. The stability of Bcl-2 mRNA was influenced by NCL levels, the half-life of which was extended after NCL-OE, whereas it was reduced in KD cells. Finally, results of RNA-immunoprecipitation assays indicated that NCL could bind to Bcl-2 mRNA in CA46 cells. Taken together, these results suggested that NCL could mediate Bcl-2 expression and stability, and thus enhance ADM resistance in CA46 BL cells.
Collapse
Affiliation(s)
- Xuqiao Mei
- Fujian Provincial Key Laboratory of HematologyFujian Institute of Hematology, Fujian Medical University Union HospitalFuzhouFujianChina
- Department of Clinical LaboratoryThe Affiliated Zhangzhou Municipal Hospital, Fujian Medical UniversityZhangzhouFujianChina
| | - Yanxin Chen
- Fujian Provincial Key Laboratory of HematologyFujian Institute of Hematology, Fujian Medical University Union HospitalFuzhouFujianChina
| | - Donghui Gan
- Fujian Provincial Key Laboratory of HematologyFujian Institute of Hematology, Fujian Medical University Union HospitalFuzhouFujianChina
- Department of HematologyThe Affiliated Hospital of Putian UniversityPutianFujianChina
| | - Yingyu Chen
- Fujian Provincial Key Laboratory of HematologyFujian Institute of Hematology, Fujian Medical University Union HospitalFuzhouFujianChina
| | - Lingyan Wang
- Fujian Provincial Key Laboratory of HematologyFujian Institute of Hematology, Fujian Medical University Union HospitalFuzhouFujianChina
| | - Yanqin Cao
- Fujian Provincial Key Laboratory of HematologyFujian Institute of Hematology, Fujian Medical University Union HospitalFuzhouFujianChina
| | - Zhengjun Wu
- Fujian Provincial Key Laboratory of HematologyFujian Institute of Hematology, Fujian Medical University Union HospitalFuzhouFujianChina
| | - Weijuan Liu
- Fujian Provincial Key Laboratory of HematologyFujian Institute of Hematology, Fujian Medical University Union HospitalFuzhouFujianChina
| | - Chenxing Zhao
- Fujian Provincial Key Laboratory of HematologyFujian Institute of Hematology, Fujian Medical University Union HospitalFuzhouFujianChina
| | - Minhui Lin
- Fujian Provincial Key Laboratory of HematologyFujian Institute of Hematology, Fujian Medical University Union HospitalFuzhouFujianChina
| | - Ting Yang
- Fujian Provincial Key Laboratory of HematologyFujian Institute of Hematology, Fujian Medical University Union HospitalFuzhouFujianChina
| | - Jianda Hu
- Fujian Provincial Key Laboratory of HematologyFujian Institute of Hematology, Fujian Medical University Union HospitalFuzhouFujianChina
| |
Collapse
|
8
|
Babosova O, Kapralova K, Raskova Kafkova L, Korinek V, Divoky V, Prchal JT, Lanikova L. Iron chelation and 2-oxoglutarate-dependent dioxygenase inhibition suppress mantle cell lymphoma's cyclin D1. J Cell Mol Med 2019; 23:7785-7795. [PMID: 31517438 PMCID: PMC6815829 DOI: 10.1111/jcmm.14655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 01/21/2023] Open
Abstract
The patients with mantle cell lymphoma (MCL) have translocation t(11;14) associated with cyclin D1 overexpression. We observed that iron (an essential cofactor of dioxygenases including prolyl hydroxylases [PHDs]) depletion by deferoxamine blocked MCL cells' proliferation, increased expression of DNA damage marker γH2AX, induced cell cycle arrest and decreased cyclin D1 level. Treatment of MCL cell lines with dimethyloxalylglycine, which blocks dioxygenases involving PHDs by competing with their substrate 2-oxoglutarate, leads to their decreased proliferation and the decrease of cyclin D1 level. We then postulated that loss of EGLN2/PHD1 in MCL cells may lead to down-regulation of cyclin D1 by blocking the degradation of FOXO3A, a cyclin D1 suppressor. However, the CRISPR/Cas9-based loss-of-function of EGLN2/PHD1 did not affect cyclin D1 expression and the loss of FOXO3A did not restore cyclin D1 levels after iron chelation. These data suggest that expression of cyclin D1 in MCL is not controlled by ENGL2/PHD1-FOXO3A pathway and that chelation- and 2-oxoglutarate competition-mediated down-regulation of cyclin D1 in MCL cells is driven by yet unknown mechanism involving iron- and 2-oxoglutarate-dependent dioxygenases other than PHD1. These data support further exploration of the use of iron chelation and 2-oxoglutarate-dependent dioxygenase inhibitors as a novel therapy of MCL.
Collapse
Affiliation(s)
- Olga Babosova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Katarina Kapralova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic.,Division of Hematology & Hematologic Malignancies, Department of Internal Medicine, University of Utah School of Medicine and VAH, Salt Lake City, Utah
| | - Leona Raskova Kafkova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Vladimir Korinek
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Vladimir Divoky
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Josef T Prchal
- Division of Hematology & Hematologic Malignancies, Department of Internal Medicine, University of Utah School of Medicine and VAH, Salt Lake City, Utah
| | - Lucie Lanikova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.,Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic.,Division of Hematology & Hematologic Malignancies, Department of Internal Medicine, University of Utah School of Medicine and VAH, Salt Lake City, Utah
| |
Collapse
|
9
|
Sall FB, El Amine R, Markozashvili D, Tsfasman T, Oksenhendler E, Lipinski M, Vassetzky Y, Germini D. HIV-1 Tat protein induces aberrant activation of AICDA in human B-lymphocytes from peripheral blood. J Cell Physiol 2019; 234:15678-15685. [PMID: 30701532 DOI: 10.1002/jcp.28219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Individuals infected with human immunodeficiency virus (HIV) are at increased risk for Burkitt lymphoma, a B-cell malignancy which occurs after a chromosomal translocation rearranging the MYC oncogene with an immunoglobulin gene locus, usually the IGH heavy chain gene locus. We have previously reported that the HIV protein Tat which circulates in all HIV-positive individuals whatever their immune status caused an increased rate of colocalization between IGH and MYC in B-cells nuclei. We here present in vitro evidence that Tat activates the expression of the AICDA gene that encodes the activation-induced cytidine deaminase whose physiological function is to create double-strand breaks for immunoglobulin gene maturation. In the presence of Tat, DNA damage was observed concomitantly in both MYC and IGH, followed by DNA repair by nonhomologous end joining. AICDA was further found overexpressed in vivo in peripheral blood B-cells from HIV-infected individuals. Thus, the capacity of Tat to spontaneously penetrate B-cells could be sufficient to favor the occurrence of MYC-IGH oncogenic rearrangements during erroneous repair, a plausible cause for the increased incidence of Burkitt lymphoma in the HIV-infected population.
Collapse
Affiliation(s)
- Fatimata Bintou Sall
- Department of UMR8126, Institut Gustave Roussy, Villejuif, France.,LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France
| | - Rawan El Amine
- Department of UMR8126, Institut Gustave Roussy, Villejuif, France.,LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France
| | - Diana Markozashvili
- Laboratory of Synthetic Biology, Peter the Great St. Petersburg Polytechnic University, St.Petersburg, Russia
| | - Tatyana Tsfasman
- Department of UMR8126, Institut Gustave Roussy, Villejuif, France.,LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint-Louis, Paris, France
| | - Marc Lipinski
- Department of UMR8126, Institut Gustave Roussy, Villejuif, France.,LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France
| | - Yegor Vassetzky
- Department of UMR8126, Institut Gustave Roussy, Villejuif, France.,LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France.,Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Diego Germini
- Department of UMR8126, Institut Gustave Roussy, Villejuif, France.,LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France
| |
Collapse
|
10
|
Iarovaia OV, Minina EP, Sheval EV, Onichtchouk D, Dokudovskaya S, Razin SV, Vassetzky YS. Nucleolus: A Central Hub for Nuclear Functions. Trends Cell Biol 2019; 29:647-659. [PMID: 31176528 DOI: 10.1016/j.tcb.2019.04.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022]
Abstract
The nucleolus is the largest and most studied nuclear body, but its role in nuclear function is far from being comprehensively understood. Much work on the nucleolus has focused on its role in regulating RNA polymerase I (RNA Pol I) transcription and ribosome biogenesis; however, emerging evidence points to the nucleolus as an organizing hub for many nuclear functions, accomplished via the shuttling of proteins and nucleic acids between the nucleolus and nucleoplasm. Here, we discuss the cellular mechanisms affected by shuttling of nucleolar components, including the 3D organization of the genome, stress response, DNA repair and recombination, transcription regulation, telomere maintenance, and other essential cellular functions.
Collapse
Affiliation(s)
- Olga V Iarovaia
- Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France
| | - Elizaveta P Minina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugene V Sheval
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Daria Onichtchouk
- Developmental Biology Unit, Department of Biology I, University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany
| | - Svetlana Dokudovskaya
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France; UMR8126, Université Paris-Sud, CNRS, Institut Gustave Roussy, 94805 Villejuif, France
| | - Sergey V Razin
- Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France; Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yegor S Vassetzky
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France; Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; UMR8126, Université Paris-Sud, CNRS, Institut Gustave Roussy, 94805 Villejuif, France.
| |
Collapse
|
11
|
Jain P, Wang M. Mantle cell lymphoma: 2019 update on the diagnosis, pathogenesis, prognostication, and management. Am J Hematol 2019; 94:710-725. [PMID: 30963600 DOI: 10.1002/ajh.25487] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022]
Abstract
Unprecedented advances in our understanding of the pathobiology, prognostication, and therapeutic options in mantle cell lymphoma (MCL) have taken place in the last few years. Heterogeneity in the clinical course of MCL-indolent vs aggressive-is further delineated by a correlation with the mutational status of the variable region of immunoglobulin heavy chain, methylation status, and SOX-11 expression. Cyclin-D1 negative MCL, in situ MCL neoplasia, and impact of the karyotype on prognosis are distinguished. Apart from Ki-67% and morphology pattern (classic vs blastoid/pleomorphic), the proliferation gene signature has helped to further refine prognostication. Studies focusing on mutational dynamics and clonal evolution on Bruton's tyrosine kinase (BTK) inhibitors (ibrutinib, acalabrutinib) and/or Bcl2 antagonists (venetoclax) have further clarified the prognostic impact of somatic mutations in TP53, BIRC3, CDKN2A, MAP3K14, NOTCH2, NSD2, and SMARCA4 genes. In therapy, long-term follow-up on chemo-immunotherapy studies has demonstrated durable remissions in some patients; however, long-term toxicities, especially from second cancers, are a serious concern with chemotherapy. The therapeutic options in MCL are constantly evolving, with dramatic responses from nonchemotherapeutic agents (ibrutinib, acalabrutinib, and venetoclax). Chimeric antigen receptor therapy and combinations of nonchemotherapeutic agents are actively being studied and our focus is shifting toward making the treatment of MCL chemotherapy-free. Still, MCL remains incurable. The following aspects of MCL continue to pose a challenge: disease transformation, role of the cytokine-microenvironmental milieu, incorporation of positron emission tomography-computerized tomography imaging, minimal residual disease in the prognosis, circulating tumor DNA testing for clonal evolution, predicting resistance to BTK inhibitors, and optimal management of patients who progress on BTK/Bcl2 inhibitors. Next-generation clinical trials should incorporate nonchemotherapeutic agents and personalize the treatment based upon the genomic profile of individual patient. Recent advances in the field of MCL are reviewed.
Collapse
Affiliation(s)
- Preetesh Jain
- Division of Cancer Medicine, Department of Lymphoma/MyelomaThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Michael Wang
- Division of Cancer Medicine, Department of Lymphoma/MyelomaThe University of Texas MD Anderson Cancer Center Houston Texas
| |
Collapse
|
12
|
Li X, Wu N, Li B. A high mutation rate of immunoglobulin heavy chain variable region gene associates with a poor survival and chemotherapy response of mantle cell lymphoma patients. Medicine (Baltimore) 2019; 98:e15811. [PMID: 31145313 PMCID: PMC6708879 DOI: 10.1097/md.0000000000015811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Immunoglobulin heavy chain variable region (IGHV) gene mutation status is a biomarker for the prognosis of chronic lymphocytic leukemia, whether it is associated with the diagnosis, staging, and prognosis of patients with mantle cell lymphoma (MCL) remains to be determined.The IGHV gene mutations of 52 MCL patients were determined by DNA sequencing and compared with published IGHV germline sequences.DNA sequence alignment of IGHV variable regions with published IGHV germline sequences showed that the coincidence rate was 94% to 100%. Ten cases (21%) were significantly mutated with the rate of 96.9% to 94.0%. The overall survival time of patients was negatively correlated with the degree of IGHV gene mutation. Further survival analysis with log-rank test demonstrated that the patients with significant IGHV gene mutations showed a trend towards poor survival.The mutation rate of the IGHV variant region may be determined to assess the prognosis and overall survival time of MCL patients.
Collapse
Affiliation(s)
- Xianqian Li
- Clinical Laboratory, Shanghai Yangpu District Psychiatric Hospital
| | | | - Bin Li
- Department of Pathology, Shanghai Xuhui Central Hospital, Shanghai, China
| |
Collapse
|
13
|
Pichugin A, Iarovaia OV, Gavrilov A, Sklyar I, Barinova N, Barinov A, Ivashkin E, Caron G, Aoufouchi S, Razin SV, Fest T, Lipinski M, Vassetzky YS. The IGH locus relocalizes to a "recombination compartment" in the perinucleolar region of differentiating B-lymphocytes. Oncotarget 2018; 8:40079-40089. [PMID: 28445143 PMCID: PMC5522243 DOI: 10.18632/oncotarget.16941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022] Open
Abstract
The immunoglobulin heavy chain (IGH) gene loci are subject to specific recombination events during B-cell differentiation including somatic hypermutation and class switch recombination which mark the end of immunoglobulin gene maturation in germinal centers of secondary lymph nodes. These two events rely on the activity of activation-induced cytidine deaminase (AID) which requires DNA double strand breaks be created, a potential danger to the cell. Applying 3D-fluorescence in situ hybridization coupled with immunofluorescence staining to a previously described experimental system recapitulating normal B-cell differentiation ex vivo, we have kinetically analyzed the radial positioning of the two IGH gene loci as well as their proximity with the nucleolus, heterochromatin and γH2AX foci. Our observations are consistent with the proposal that these IGH gene rearrangements take place in a specific perinucleolar “recombination compartment” where AID could be sequestered thus limiting the extent of its potentially deleterious off-target effects.
Collapse
Affiliation(s)
- Andrey Pichugin
- UMR8126, CNRS, Université Paris Sud Paris Saclay, Institut Gustave Roussy, Villejuif, France.,LIA 1066, Laboratoire Franco-Russe de Recherche en Oncologie, Villejuif, France.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Olga V Iarovaia
- UMR8126, CNRS, Université Paris Sud Paris Saclay, Institut Gustave Roussy, Villejuif, France.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,LIA 1066, Laboratoire Franco-Russe de Recherche en Oncologie, Villejuif, France
| | - Alexey Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,LIA 1066, Laboratoire Franco-Russe de Recherche en Oncologie, Villejuif, France
| | - Ilya Sklyar
- UMR8126, CNRS, Université Paris Sud Paris Saclay, Institut Gustave Roussy, Villejuif, France.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,LIA 1066, Laboratoire Franco-Russe de Recherche en Oncologie, Villejuif, France
| | - Natalja Barinova
- UMR8126, CNRS, Université Paris Sud Paris Saclay, Institut Gustave Roussy, Villejuif, France.,LIA 1066, Laboratoire Franco-Russe de Recherche en Oncologie, Villejuif, France
| | - Aleksandr Barinov
- LIA 1066, Laboratoire Franco-Russe de Recherche en Oncologie, Villejuif, France
| | - Evgeny Ivashkin
- UMR8126, CNRS, Université Paris Sud Paris Saclay, Institut Gustave Roussy, Villejuif, France.,LIA 1066, Laboratoire Franco-Russe de Recherche en Oncologie, Villejuif, France.,Department of Experimental Neurocytology, Research Center of Neurology, Branch of Brain Research, Moscow, Russia
| | - Gersende Caron
- INSERM U1236, CHU de Rennes, Université Rennes 1, Rennes, France
| | - Said Aoufouchi
- UMR8200 CNRS, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,LIA 1066, Laboratoire Franco-Russe de Recherche en Oncologie, Villejuif, France.,Moscow State University, Moscow, Russia
| | - Thierry Fest
- INSERM U1236, CHU de Rennes, Université Rennes 1, Rennes, France
| | - Marc Lipinski
- UMR8126, CNRS, Université Paris Sud Paris Saclay, Institut Gustave Roussy, Villejuif, France.,LIA 1066, Laboratoire Franco-Russe de Recherche en Oncologie, Villejuif, France
| | - Yegor S Vassetzky
- UMR8126, CNRS, Université Paris Sud Paris Saclay, Institut Gustave Roussy, Villejuif, France.,LIA 1066, Laboratoire Franco-Russe de Recherche en Oncologie, Villejuif, France.,Moscow State University, Moscow, Russia
| |
Collapse
|
14
|
Sall FB, Germini D, Kovina AP, Ribrag V, Wiels J, Toure AO, Iarovaia OV, Lipinski M, Vassetzky Y. Effect of Environmental Factors on Nuclear Organization and Transformation of Human B Lymphocytes. BIOCHEMISTRY (MOSCOW) 2018; 83:402-410. [DOI: 10.1134/s0006297918040119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Iarovaia OV, Ioudinkova ES, Razin SV, Vassetzky YS. Role of the Nucleolus in Rearrangements of the IGH Locus. Mol Biol 2018. [DOI: 10.1134/s0026893317050211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
The IgH 3' regulatory region and c-myc-induced B-cell lymphomagenesis. Oncotarget 2018; 8:7059-7067. [PMID: 27729620 PMCID: PMC5351691 DOI: 10.18632/oncotarget.12535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/05/2016] [Indexed: 01/18/2023] Open
Abstract
Deregulation and mutations of c-myc have been reported in multiple mature B-cell malignancies such as Burkitt lymphoma, myeloma and plasma cell lymphoma. After translocation into the immunoglobulin heavy chain (IgH) locus, c-myc is constitutively expressed under the control of active IgH cis-regulatory enhancers. Those located in the IgH 3 regulatory region (3RR) are master control elements of transcription. Over the past decade numerous convincing demonstrations of 3RRs contribution to mature c-myc-induced lymphomagenesis have been made using transgenic models with various types of IgH-c-myc translocations and transgenes. This review highlights how IgH 3RR physiological functions play a critical role in c-myc deregulation during lymphomagenesis.
Collapse
|
17
|
Saintamand A, Ghazzaui N, Issaoui H, Denizot Y. [The IgH 3'RR: Doctor Jekyll and Mister Hyde of B-cell maturation and lymphomagenesis]. Med Sci (Paris) 2017; 33:963-970. [PMID: 29200394 DOI: 10.1051/medsci/20173311013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The four transcriptional enhancers located in the 3' regulatory region (3'RR) of the IgH locus control the late phases of B-cell maturation, namely IgH locus transcription, somatic hypermutation and class switch recombination. Doctor Jekyll by nature, the 3'RR acts as Mister Hyde in case of oncogenic translocation at the IgH locus taking under its transcriptional control the translocated oncogene. The aim of this review is to show this duality on the basis of the latest scientific advances in the structure and function of the 3'RR and to hIghlight the targeting of the 3'RR as a potential therapeutic approach in mature B-cell lymphomas.
Collapse
Affiliation(s)
- Alexis Saintamand
- UMR CNRS 7276, Université de Limoges, rue Pr Descottes, 87025 Limoges, France
| | - Nour Ghazzaui
- UMR CNRS 7276, Université de Limoges, rue Pr Descottes, 87025 Limoges, France
| | - Hussein Issaoui
- UMR CNRS 7276, Université de Limoges, rue Pr Descottes, 87025 Limoges, France
| | - Yves Denizot
- UMR CNRS 7276, Université de Limoges, rue Pr Descottes, 87025 Limoges, France
| |
Collapse
|
18
|
Kumar S, Gomez EC, Chalabi-Dchar M, Rong C, Das S, Ugrinova I, Gaume X, Monier K, Mongelard F, Bouvet P. Integrated analysis of mRNA and miRNA expression in HeLa cells expressing low levels of Nucleolin. Sci Rep 2017; 7:9017. [PMID: 28827664 PMCID: PMC5567140 DOI: 10.1038/s41598-017-09353-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/26/2017] [Indexed: 01/30/2023] Open
Abstract
Nucleolin is an essential protein that plays important roles in the regulation of cell cycle and cell proliferation. Its expression is up regulated in many cancer cells but its molecular functions are not well characterized. Nucleolin is present in the nucleus where it regulates gene expression at the transcriptional and post-transcriptional levels. Using HeLa cells depleted in nucleolin we performed an mRNA and miRNA transcriptomics analysis to identify biological pathways involving nucleolin. Bioinformatic analysis strongly points to a role of nucleolin in lipid metabolism, and in many signaling pathways. Down regulation of nucleolin is associated with lower level of cholesterol while the amount of fatty acids is increased. This could be explained by the decreased and mis-localized expression of the transcription factor SREBP1 and the down-regulation of enzymes involved in the beta-oxidation and degradation of fatty acids. Functional classification of the miRNA-mRNA target genes revealed that deregulated miRNAs target genes involved in apoptosis, proliferation and signaling pathways. Several of these deregulated miRNAs have been shown to control lipid metabolism. This integrated transcriptomic analysis uncovers new unexpected roles for nucleolin in metabolic regulation and signaling pathways paving the way to better understand the global function of nucleolin within the cell.
Collapse
Affiliation(s)
- Sanjeev Kumar
- BioCOS Life Sciences Private Limited, AECS Layout, B-Block, Singasandra Hosur Road SAAMI Building, 851/A, 3rd Floor, Bengaluru, Karnataka, India.
| | - Elizabhet Cruz Gomez
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS, 5286, Centre Léon Bérard, Lyon, France
| | - Mounira Chalabi-Dchar
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS, 5286, Centre Léon Bérard, Lyon, France
| | - Cong Rong
- Université de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Sadhan Das
- Université de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Iva Ugrinova
- Institute of Molecular Biology "Acad. Roumen Tsanev" Bulgarian Academy of Sciences "Acad. G Bonchev str. bl. 21, 1113, Sofia, Bulgaria
| | - Xavier Gaume
- Université de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Karine Monier
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS, 5286, Centre Léon Bérard, Lyon, France
| | - Fabien Mongelard
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS, 5286, Centre Léon Bérard, Lyon, France
- Université de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Philippe Bouvet
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS, 5286, Centre Léon Bérard, Lyon, France.
- Université de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
19
|
Masamha CP. The drive to generate multiple forms of oncogenic cyclin D1 transcripts in mantle cell lymphoma. Biomark Res 2017; 5:16. [PMID: 28503306 PMCID: PMC5422887 DOI: 10.1186/s40364-017-0094-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
Alternative polyadenylation is a rapidly emerging form of gene regulation, which in its simplest form, enables the generation of mRNA transcripts that code for the same protein but have 3'UTRs of different lengths and regulatory content. For oncogenes, shorter 3'UTRs would be preferred as a mechanism to evade miRNA regulation. The shortening of the 3'UTR of cyclin D1 in mantle cell lymphoma offers provocative insights into this process. Patient samples have revealed that 3'UTR shortening may occur due to mutations, or translocations that result in the generation of a chimeric 3'UTR. The truncated cyclin D1 3'UTRs resulting from alternative polyadenylation, use a premature canonical polyadenylation signal close to the stop codon that was generated either as a result of mutations or provided by another gene in the chimeric 3'UTR. The sequence of the polyadenylation signal in mantle cell lymphoma appears to be critical for 3'end formation of the cyclin D1 transcript. Shortening the 3'UTR allows cyclin D1 to potentially evade regulation by over 80 miRNAs that are predicted to bind to its full length 3'UTR.
Collapse
Affiliation(s)
- Chioniso Patience Masamha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, 4600 Sunset Avenue, Indianapolis, IN 46208 USA
| |
Collapse
|
20
|
HIV Tat induces a prolonged MYC relocalization next to IGH in circulating B-cells. Leukemia 2017; 31:2515-2522. [PMID: 28360415 DOI: 10.1038/leu.2017.106] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
With combined antiretroviral therapy (cART), the risk for HIV-infected individuals to develop a non-Hodgkin lymphoma is diminished. However, the incidence of Burkitt lymphoma (BL) remains strikingly elevated. Most BL present a t(8;14) chromosomal translocation which must take place at a time of spatial proximity between the translocation partners. The two partner genes, MYC and IGH, were found colocalized only very rarely in the nuclei of normal peripheral blood B-cells examined using 3D-FISH while circulating B-cells from HIV-infected individuals whose exhibited consistently elevated levels of MYC-IGH colocalization. In vitro, incubating normal B-cells from healthy donors with a transcriptionally active form of the HIV-encoded Tat protein rapidly activated transcription of the nuclease-encoding RAG1 gene. This created DNA damage, including in the MYC gene locus which then moved towards the center of the nucleus where it sustainably colocalized with IGH up to 10-fold more frequently than in controls. In vivo, this could be sufficient to account for the elevated risk of BL-specific chromosomal translocations which would occur following DNA double strand breaks triggered by AID in secondary lymph nodes at the final stage of immunoglobulin gene maturation. New therapeutic attitudes can be envisioned to prevent BL in this high risk group.
Collapse
|
21
|
Clawson GA. Histone deacetylase inhibitors as cancer therapeutics. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:287. [PMID: 27568481 DOI: 10.21037/atm.2016.07.22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cancer cells contain significant alterations in their epigenomic landscape, which several enzyme families reversibly contribute to. One class of epigenetic modifying enzymes is that of histone deacetylases (HDAC), which are receiving considerable scrutiny clinically as a therapeutic target in many cancers. The underlying rationale is that inhibiting HDACs will reverse dysregulated target gene expression by modulating functional histone (or other) acetylation marks. This perspective will discuss a recent paper by Markozashvili and co-workers which appeared in Gene, which indicates that the mechanisms by which HDAC inhibitors (HDACis) alter the epigenetic landscape include widespread alternative effects beyond simply controlling regional epigenetic marks. HDACs are involved in many processes/diseases, and it is not surprising that HDACis have considerable off-target effects, and thus a major effort is being directed toward identification of inhibitors which are selective for HDAC isoforms often uniquely implicated in various cancers. This Perspective will also discuss some representative work with inhibitors targeting individual HDAC classes or isoforms. At present, it is not really clear that isoform-specific HDACis will avoid non-selective effects on other unrecognized activities of HDACs.
Collapse
Affiliation(s)
- Gary A Clawson
- Departments of Pathology, Biochemistry & Molecular Biology, and the Gittlen Cancer Research Laboratories, Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
22
|
Histone deacetylase inhibitor abexinostat affects chromatin organization and gene transcription in normal B cells and in mantle cell lymphoma. Gene 2016; 580:134-143. [DOI: 10.1016/j.gene.2016.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 12/26/2022]
|
23
|
Sklyar I, Iarovaia OV, Gavrilov AA, Pichugin A, Germini D, Tsfasman T, Caron G, Fest T, Lipinski M, Razin SV, Vassetzky YS. Distinct Patterns of Colocalization of theCCND1andCMYCGenes With Their Potential Translocation PartnerIGHat Successive Stages of B-Cell Differentiation. J Cell Biochem 2016; 117:1506-10. [DOI: 10.1002/jcb.25516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Ilya Sklyar
- UMR8126, CNRS; Université Paris-Sud, Institut de Cancérologie Gustave Roussy; Villejuif France
- LIA1066; Laboratoire Franco-Russe de Recherche en Oncologie; Villejuif France
- Institute of Gene Biology; Russian Academy of Sciences; Moscow Russia
| | - Olga V. Iarovaia
- UMR8126, CNRS; Université Paris-Sud, Institut de Cancérologie Gustave Roussy; Villejuif France
- LIA1066; Laboratoire Franco-Russe de Recherche en Oncologie; Villejuif France
- Institute of Gene Biology; Russian Academy of Sciences; Moscow Russia
| | - Alexey A. Gavrilov
- LIA1066; Laboratoire Franco-Russe de Recherche en Oncologie; Villejuif France
- Institute of Gene Biology; Russian Academy of Sciences; Moscow Russia
| | - Andrey Pichugin
- UMR8126, CNRS; Université Paris-Sud, Institut de Cancérologie Gustave Roussy; Villejuif France
- LIA1066; Laboratoire Franco-Russe de Recherche en Oncologie; Villejuif France
- Peter the Great St. Petersburg Polytechnic University; St. Petersburg Russia
| | - Diego Germini
- UMR8126, CNRS; Université Paris-Sud, Institut de Cancérologie Gustave Roussy; Villejuif France
- LIA1066; Laboratoire Franco-Russe de Recherche en Oncologie; Villejuif France
- Peter the Great St. Petersburg Polytechnic University; St. Petersburg Russia
| | - Tatiana Tsfasman
- UMR8126, CNRS; Université Paris-Sud, Institut de Cancérologie Gustave Roussy; Villejuif France
- LIA1066; Laboratoire Franco-Russe de Recherche en Oncologie; Villejuif France
| | | | - Thierry Fest
- INSERM U917; Université de Rennes; Rennes France
| | - Marc Lipinski
- UMR8126, CNRS; Université Paris-Sud, Institut de Cancérologie Gustave Roussy; Villejuif France
- LIA1066; Laboratoire Franco-Russe de Recherche en Oncologie; Villejuif France
| | - Sergey V. Razin
- LIA1066; Laboratoire Franco-Russe de Recherche en Oncologie; Villejuif France
- Institute of Gene Biology; Russian Academy of Sciences; Moscow Russia
- Faculty of Biology; M.V. Lomonosov Moscow State University; 119992 Moscow Russia
| | - Yegor S. Vassetzky
- UMR8126, CNRS; Université Paris-Sud, Institut de Cancérologie Gustave Roussy; Villejuif France
- LIA1066; Laboratoire Franco-Russe de Recherche en Oncologie; Villejuif France
- Faculty of Biology; M.V. Lomonosov Moscow State University; 119992 Moscow Russia
| |
Collapse
|
24
|
Shen CL, Liu CD, You RI, Ching YH, Liang J, Ke L, Chen YL, Chen HC, Hsu HJ, Liou JW, Kieff E, Peng CW. Ribosome Protein L4 is essential for Epstein-Barr Virus Nuclear Antigen 1 function. Proc Natl Acad Sci U S A 2016; 113:2229-34. [PMID: 26858444 PMCID: PMC4776490 DOI: 10.1073/pnas.1525444113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Epstein-Barr Virus (EBV) Nuclear Antigen 1 (EBNA1)-mediated origin of plasmid replication (oriP) DNA episome maintenance is essential for EBV-mediated tumorigenesis. We have now found that EBNA1 binds to Ribosome Protein L4 (RPL4). RPL4 shRNA knockdown decreased EBNA1 activation of an oriP luciferase reporter, EBNA1 DNA binding in lymphoblastoid cell lines, and EBV genome number per lymphoblastoid cell line. EBV infection increased RPL4 expression and redistributed RPL4 to cell nuclei. RPL4 and Nucleolin (NCL) were a scaffold for an EBNA1-induced oriP complex. The RPL4 N terminus cooperated with NCL-K429 to support EBNA1 and oriP-mediated episome binding and maintenance, whereas the NCL C-terminal K380 and K393 induced oriP DNA H3K4me2 modification and promoted EBNA1 activation of oriP-dependent transcription. These observations provide new insights into the mechanisms by which EBV uses NCL and RPL4 to establish persistent B-lymphoblastoid cell infection.
Collapse
Affiliation(s)
- Chih-Lung Shen
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Cheng-Der Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Ren-In You
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Jun Liang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Liangru Ke
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Ya-Lin Chen
- Department of Life Sciences, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Hong-Chi Chen
- Department of Life Sciences, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Je-Wen Liou
- Institute of Biochemical Sciences, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Elliott Kieff
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115;
| | - Chih-Wen Peng
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; Department of Life Sciences, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan;
| |
Collapse
|
25
|
Bhatia S, Reister S, Mahotka C, Meisel R, Borkhardt A, Grinstein E. Control of AC133/CD133 and impact on human hematopoietic progenitor cells through nucleolin. Leukemia 2015; 29:2208-20. [PMID: 26183533 DOI: 10.1038/leu.2015.146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/19/2015] [Accepted: 05/29/2015] [Indexed: 01/01/2023]
Abstract
AC133 is a prominent surface marker of CD34+ and CD34- hematopoietic stem/progenitor cell (HSPC) subsets. AC133+ HSPCs contain high progenitor cell activity and are capable of hematopoietic reconstitution. Furthermore, AC133 is used for prospective isolation of tumor-initiating cells in several hematological malignancies. Nucleolin is a multifunctional factor of growing and cancer cells, which is aberrantly active in certain hematological neoplasms, and serves as a candidate molecular target for cancer therapy. Nucleolin is involved in gene transcription and RNA metabolism and is prevalently expressed in HSPCs, as opposed to differentiated hematopoietic tissue. The present study dissects nucleolin-mediated activation of surface AC133 and its cognate gene CD133, via specific interaction of nucleolin with the tissue-dependent CD133 promoter P1, as a mechanism that crucially contributes to AC133 expression in CD34+ HSPCs. In mobilized peripheral blood (MPB)-derived HSPCs, nucleolin elevates colony-forming unit (CFU) frequencies and enriches granulocyte-macrophage CFUs. Furthermore, nucleolin amplifies long-term culture-initiating cells and also promotes long-term, cytokine-dependent maintenance of hematopoietic progenitor cells. Active β-catenin, active Akt and Bcl-2 levels in MPB-derived HSPCs are nucleolin-dependent, and effects of nucleolin on these cells partially rely on β-catenin activity. The study provides new insights into molecular network relevant to stem/progenitor cells in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- S Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - S Reister
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - C Mahotka
- Institute of Pathology, Heinrich Heine University, Düsseldorf, Germany
| | - R Meisel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - A Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - E Grinstein
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
26
|
Histone deacetylase inhibitors and epigenetic regulation in lymphoid malignancies. Invest New Drugs 2015; 33:1280-91. [PMID: 26423245 DOI: 10.1007/s10637-015-0290-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
Abstract
A vast majority of lymphomas and leukaemias are results of translocations. These translocations produce various genetic and epigenetic changes that lead to oncogenesis. This opens an opportunity to use a relatively new class of anti-cancer agents, inhibitors of histone deacetylases (HDACi) to target lymphoid malignancies. Surprisingly, the rational basis for treatment of lymphomas with HDACi is far from clear, although some positive results have been obtained. Here we analyze the effect of histone deacetylase (HDAC) inhibitors on lymphoid malignancies.
Collapse
|
27
|
Strongin DE, Groudine M, Politz JCR. Nucleolar tethering mediates pairing between the IgH and Myc loci. Nucleus 2015; 5:474-81. [PMID: 25482199 PMCID: PMC4164489 DOI: 10.4161/nucl.36233] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gene loci on different chromosomes can preferentially colocalize in the cell nucleus. However, many of the mechanisms mediating this spatial proximity remain to be elucidated. The IgH locus on Chromosome 12 and the Myc locus on Chromosome 15 are a well-studied model for gene colocalization in murine B cells, where the two loci are positioned in close proximity at a higher than expected frequency. These gene loci are also partners in the chromosomal translocation that causes murine plasmacytoma and Burkitt’s lymphoma. Because both Chromosome 12 and Chromosome 15 carry nucleolar organizer regions (NORs) in the most commonly studied mouse strains, we hypothesized that NOR-mediated tethering of the IgH and Myc loci to shared nucleoli could serve as a mechanism to drive IgH:Myc colocalization. Using mouse strains that naturally carry nucleolar organizer regions (NORs) on different sets of chromosomes, we establish that IgH and Myc are positioned proximal to nucleoli in a NOR dependent manner and show that their joint association with nucleoli significantly increases the frequency of IgH and Myc pairing. Thus we demonstrate that simple nucleolar tethering can increase the colocalization frequency of genes on NOR-bearing chromosomes.
Collapse
Affiliation(s)
- Daniel E Strongin
- a Division of Basic Sciences; Fred Hutchinson Cancer Research Center; Seattle, WA USA
| | | | | |
Collapse
|
28
|
Erokhin M, Vassetzky Y, Georgiev P, Chetverina D. Eukaryotic enhancers: common features, regulation, and participation in diseases. Cell Mol Life Sci 2015; 72:2361-75. [PMID: 25715743 PMCID: PMC11114076 DOI: 10.1007/s00018-015-1871-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/07/2015] [Accepted: 02/20/2015] [Indexed: 01/01/2023]
Abstract
Enhancers are positive DNA regulatory sequences controlling temporal and tissue-specific gene expression. These elements act independently of their orientation and distance relative to the promoters of target genes. Enhancers act through a variety of transcription factors that ensure their correct match with target promoters and consequent gene activation. There is a growing body of evidence on association of enhancers with transcription factors, co-activators, histone chromatin marks, and lncRNAs. Alterations in enhancers lead to misregulation of gene expression, causing a number of human diseases. In this review, we focus on the common characteristics of enhancers required for transcription stimulation.
Collapse
Affiliation(s)
- Maksim Erokhin
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334 Russia
- LIA 1066, Laboratoire Franco-Russe de recherche en oncologie, 119334 Moscow, Russia
| | - Yegor Vassetzky
- LIA 1066, Laboratoire Franco-Russe de recherche en oncologie, 119334 Moscow, Russia
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, 94805 Villejuif, France
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334 Russia
- LIA 1066, Laboratoire Franco-Russe de recherche en oncologie, 119334 Moscow, Russia
| | - Darya Chetverina
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334 Russia
| |
Collapse
|
29
|
Shrestha R, Bhatt VR, Guru Murthy GS, Armitage JO. Clinicopathologic features and management of blastoid variant of mantle cell lymphoma. Leuk Lymphoma 2015; 56:2759-67. [PMID: 25747972 DOI: 10.3109/10428194.2015.1026902] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The blastoid variant of mantle cell lymphoma (MCL), which accounts for less than one-third of MCL, may arise de novo or as a transformation from the classical form of MCL. Blastoid variant, which predominantly involves men in their sixth decade, has frequent extranodal involvement (40-60%), stage IV disease (up to 85%) and central nervous system (CNS) involvement. Diagnosis relies on morphological features and is challenging. Immunophenotyping may display CD23 and CD10 positivity and CD5 negativity in a subset. Genetic analysis demonstrates an increased number of complex genetic alterations. Blastoid variant responds poorly to conventional chemotherapy and has a short duration of response. Although the optimal therapy remains to be established, CNS prophylaxis and the use of aggressive immunochemotherapy followed by autologous stem cell transplant may prolong the remission rate and survival. Further studies are crucial to expand our understanding of this disease entity and improve the clinical outcome.
Collapse
Affiliation(s)
- Rajesh Shrestha
- a Department of Internal Medicine , Memorial Hospital of Rhode Island , Pawtucket , RI , USA
| | - Vijaya Raj Bhatt
- b Department of Internal Medicine , Division of Hematology-Oncology, University of Nebraska Medical Center , Omaha , NE , USA
| | | | - James O Armitage
- b Department of Internal Medicine , Division of Hematology-Oncology, University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
30
|
Abstract
In this issue of Blood, Allinne et al propose the nucleolin-dependent activation of the translocated CCND1 allele in mantle cell lymphoma (MCL) because of its relocalization to a transcriptionally favorable area in the perinucleolar region.
Collapse
Affiliation(s)
- Sílvia Beà
- INSTITUT D'INVESTIGACIONS BIOMÈDIQUES AUGUST PI I SUNYER
| |
Collapse
|
31
|
Sklyar IV, Iarovaia OV, Lipinski M, Vassetzky YS. Translocations affecting human immunoglobulin heavy chain locus. ACTA ACUST UNITED AC 2014. [DOI: 10.7124/bc.000886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- I. V. Sklyar
- CNRS UMR8126, Paris-Sud University, Gustave Roussy Institute
- Institute of Gene Biology, Russian Academy of Sciences
- LIA 1066 French-Russian Joint Cancer Research Laboratory
| | - O. V. Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences
- LIA 1066 French-Russian Joint Cancer Research Laboratory
| | - M. Lipinski
- CNRS UMR8126, Paris-Sud University, Gustave Roussy Institute
- LIA 1066 French-Russian Joint Cancer Research Laboratory
| | - Y. S. Vassetzky
- Institute of Gene Biology, Russian Academy of Sciences
- LIA 1066 French-Russian Joint Cancer Research Laboratory
| |
Collapse
|