1
|
Novel targeted C3 inhibitor pegcetacoplan for paroxysmal nocturnal hemoglobinuria. Clin Exp Med 2022:10.1007/s10238-022-00830-3. [PMID: 35441351 DOI: 10.1007/s10238-022-00830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/02/2022] [Indexed: 11/03/2022]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, life-threatening acquired blood disease characterized by chronic complement-mediated hemolysis and thrombosis. On May 14, 2021, the US FDA approved a new targeted C3 therapy Empaveli (pegcetacoplan), once called APL-2, for use in adult PNH. This review aims to review the pharmacological properties, clinical safety and efficacy of pegcetacoplan, and provides comprehensive drug information about pegcetacoplan. Pegcetacoplan is a pegylated peptide that targets the proximal complement protein C3. Pegcetacoplan plays a role in the complement cascade that controls C3b-mediated extravascular hemolysis and terminal complement-mediated intravascular hemolysis. Early pharmacokinetic and pharmacodynamic trials proved that pegcetacoplan had good tolerability and acceptable safety, while reducing complement activity. The pivotal phase III trial PEGASUS of PNH patients with a suboptimal response to eculizumab reported that pegcetacoplan improved hemoglobin levels better than eculizumab (p < 0.001). Compared with eculizumab, patients who received pegcetacoplan had a higher chance of not requiring a blood transfusion within 16 weeks (85% vs. 15%, p < 0.001). The safety of pegcetacoplan was similar to that of eculizumab. Adverse events such as injection site reactions and diarrhea occurred frequently following pegcetacoplan administration. The prescription recommended dosage is 1080 mg, subcutaneously infusion twice a week.
Collapse
|
2
|
Kamtchum-Tatuene J, Nomani AZ, Falcione S, Munsterman D, Sykes G, Joy T, Spronk E, Vargas MI, Jickling GC. Non-stenotic Carotid Plaques in Embolic Stroke of Unknown Source. Front Neurol 2021; 12:719329. [PMID: 34630291 PMCID: PMC8492999 DOI: 10.3389/fneur.2021.719329] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/30/2021] [Indexed: 01/01/2023] Open
Abstract
Embolic stroke of unknown source (ESUS) represents one in five ischemic strokes. Ipsilateral non-stenotic carotid plaques are identified in 40% of all ESUS. In this narrative review, we summarize the evidence supporting the potential causal relationship between ESUS and non-stenotic carotid plaques; discuss the remaining challenges in establishing the causal link between non-stenotic plaques and ESUS and describe biomarkers of potential interest for future research. In support of the causal relationship between ESUS and non-stenotic carotid plaques, studies have shown that plaques with high-risk features are five times more prevalent in the ipsilateral vs. the contralateral carotid and there is a lower incidence of atrial fibrillation during follow-up in patients with ipsilateral non-stenotic carotid plaques. However, non-stenotic carotid plaques with or without high-risk features often coexist with other potential etiologies of stroke, notably atrial fibrillation (8.5%), intracranial atherosclerosis (8.4%), patent foramen ovale (5-9%), and atrial cardiopathy (2.4%). Such puzzling clinical associations make it challenging to confirm the causal link between non-stenotic plaques and ESUS. There are several ongoing studies exploring whether select protein and RNA biomarkers of plaque progression or vulnerability could facilitate the reclassification of some ESUS as large vessel strokes or help to optimize secondary prevention strategies.
Collapse
Affiliation(s)
- Joseph Kamtchum-Tatuene
- Faculty of Medicine and Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ali Z. Nomani
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sarina Falcione
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Danielle Munsterman
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Gina Sykes
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Twinkle Joy
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Elena Spronk
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Maria Isabel Vargas
- Division of Neuroradiology, Department of Radiology and Medical Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Glen C. Jickling
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Atypical hemolytic uremic syndrome and complement blockade: established and emerging uses of complement inhibition. Curr Opin Nephrol Hypertens 2020; 28:278-287. [PMID: 30865166 DOI: 10.1097/mnh.0000000000000499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Atypical hemolytic uremic syndrome (aHUS) is a diagnosis that has captured the interest of specialists across multiple fields. The hallmark features of aHUS are microangiopathic hemolysis and thrombocytopenia, which creates a diagnostic dilemma because of the occurrence of these findings in a wide variety of clinical disorders. RECENT FINDINGS In most of the instances, aHUS is a diagnosis of exclusion after ruling out causes such as Shigella toxin, acquired or genetic a disintegrin and metalloproteinase thrombospondin motif 13 deficiency (thrombotic thrombocytopenic purpura), and vitamin B12 deficiency. In the purest sense, aHUS is a genetic condition that is activated (or unmasked) by an environmental exposure. However, it is now evident that complement activation is a feature of many diseases. Variants in complement regulatory genes predispose to microangiopathic hemolysis in many rheumatologic, oncologic, and drug-induced vascular, obstetric, peritransplant, and infectious syndromes. SUMMARY Many 'hemolysis syndromes' overlap clinically with aHUS, and we review the literature on the treatment of these conditions with complement inhibition. New reports on the treatment of C3 glomerulopathy, Shiga toxin-related classic hemolytic uremic syndrome, and medication-related thrombotic microangiopathy will be reviewed as well.
Collapse
|
4
|
Donor Urinary C5a Levels Independently Correlate With Posttransplant Delayed Graft Function. Transplantation 2019; 103:e29-e35. [PMID: 30451738 DOI: 10.1097/tp.0000000000002494] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Accumulating evidence implicates the complement cascade as pathogenically contributing to ischemia-reperfusion injury and delayed graft function (DGF) in human kidney transplant recipients. Building on observations that kidney injury can initiate in the donor before nephrectomy, we tested the hypothesis that anaphylatoxins C3a and C5a in donor urine before transplantation associate with risk of posttransplant injury. METHODS We evaluated the effects of C3a and C5a in donor urine on outcomes of 469 deceased donors and their corresponding 902 kidney recipients in a subset of a prospective cohort study. RESULTS We found a threefold increase of urinary C5a concentrations in donors with stage 2 and 3 acute kidney injury (AKI) compared donors without AKI (P < 0.001). Donor C5a was higher for the recipients with DGF (defined as dialysis in the first week posttransplant) compared with non-DGF (P = 0.002). In adjusted analyses, C5a remained independently associated with recipient DGF for donors without AKI (relative risk, 1.31; 95% confidence interval, 1.13-1.54). For donors with AKI, however, urinary C5a was not associated with DGF. We observed a trend toward better 12-month allograft function for kidneys from donors with C5a concentrations in the lowest tertile (P = 0.09). Urinary C3a was not associated with donor AKI, recipient DGF, or 12-month allograft function. CONCLUSIONS Urinary C5a correlates with the degree of donor AKI. In the absence of clinical donor AKI, donor urinary C5a concentrations associate with recipient DGF, providing a foundation for testing interventions aimed at preventing DGF within this high-risk patient subgroup.
Collapse
|
5
|
Copenhaver M, Yu CY, Hoffman RP. Complement Components, C3 and C4, and the Metabolic Syndrome. Curr Diabetes Rev 2019; 15:44-48. [PMID: 29663892 DOI: 10.2174/1573399814666180417122030] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/10/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Increased systemic inflammation plays a significant role in the development of adult cardiometabolic diseases such as insulin resistance, dyslipidemia, atherosclerosis, and hypertension. The complement system is a part of the innate immune system and plays a key role in the regulation of inflammation. Of particular importance is the activation of complement components C3 and C4. C3 is produced primarily by the liver but is also produced in adipocytes, macrophages and endothelial cells, all of which are present in adipose tissues. Dietary fat and chylomicrons stimulate C3 production. Adipocytes in addition to producing C3 also have receptors for activated C3 and other complement components and thus also respond to as well as produce a target for complement. C3adesArg, also known as acylation stimulation factor, increases adipocyte triglyceride synthesis and release. These physiological effects play a significant role in the development of metabolic syndrome. Epidemiologically, obese adults and non-obese adults with cardiometabolic disease who are not obese have been shown to have increased complement levels. C4 levels also correlate with body mass index. Genetically, specific C3 polymorphisms have been shown to predict future cardiovascular events and. D decreased C4 long gene copy number is associated with increased longevity. CONCLUSION Future research is clearly needed to clarify the role of complement in the development of cardiovascular disease and mechanisms for its action. The complement system may provide a new area for intervention in the prevention of cardiometabolic diseases.
Collapse
Affiliation(s)
- Melanie Copenhaver
- Pediatric Endocrinology Fellow, Division of Pediatric Endocrinology, Department of Pediatrics, Nationwide Children's Hospital, OH 43205, United States
| | - Chack-Yung Yu
- Pediatric Endocrinology Fellow, Division of Pediatric Endocrinology, Department of Pediatrics, Nationwide Children's Hospital, OH 43205, United States
| | - Robert P Hoffman
- Pediatric Endocrinology Fellow, Division of Pediatric Endocrinology, Department of Pediatrics, Nationwide Children's Hospital, OH 43205, United States
| |
Collapse
|
6
|
Garcia BL, Zwarthoff SA, Rooijakkers SHM, Geisbrecht BV. Novel Evasion Mechanisms of the Classical Complement Pathway. THE JOURNAL OF IMMUNOLOGY 2017; 197:2051-60. [PMID: 27591336 DOI: 10.4049/jimmunol.1600863] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022]
Abstract
Complement is a network of soluble and cell surface-associated proteins that gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of nonself cells by one of three initiating mechanisms known as the classical, lectin, and alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. Although many complement-inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review, we focus on several recent investigations that revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules.
Collapse
Affiliation(s)
- Brandon L Garcia
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506; and
| | - Seline A Zwarthoff
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506; and
| |
Collapse
|
7
|
Verghese PS, Reed RC, Lihong B, Matas AJ, Kim Y. The clinical implications of the unique glomerular complement deposition pattern in transplant glomerulopathy. J Nephrol 2016; 31:157-164. [PMID: 27848227 DOI: 10.1007/s40620-016-0365-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/05/2016] [Indexed: 11/25/2022]
Abstract
The etiology and treatment of transplant glomerulopathy (TG) is not clear. TG is associated with donor-specific antibodies but the lack of C4d deposition in the peritubular capillaries (ptc-C4d) in some cases has caused the role of complement in the pathogenesis of TG to be debated. There is however, little information on C4d deposition in the glomerulus itself. We retrieved random frozen sections from 25 cases with well-established TG by light microscopy (LM) and 25 cases without TG as controls and reviewed the LM and immunofluorescence (nine biopsies were excluded due to inadequate samples). Glomerular complement deposition was assessed in all included biopsies. Glomerular C3d and C4d deposition occurred in a distinct pattern in all TG biopsies: segmental or global double linear staining of the glomerular capillary wall in 23 (100%). This pattern was not present in any NON-TG biopsies. The distinct glomerular complement deposition patterns in all TG cases are suggestive that TG is a proximal complement-mediated process and therapies should focus on proximal complement inhibition.
Collapse
Affiliation(s)
- Priya S Verghese
- Division of Pediatric Nephrology, University of Minnesota, Minneapolis, USA.
| | - Robin C Reed
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, USA
| | - Bu Lihong
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, USA
| | - Arthur J Matas
- Department of Surgery, University of Minnesota, Minneapolis, USA
| | - Youngki Kim
- Division of Pediatric Nephrology, University of Minnesota, Minneapolis, USA
| |
Collapse
|
8
|
Abstract
Post-infectious hemolytic uremic syndrome (HUS) is caused by specific pathogens in patients with no identifiable HUS-associated genetic mutation or autoantibody. The majority of episodes is due to infections by Shiga toxin (Stx) producing Escherichia coli (STEC). This chapter reviews the epidemiology and pathogenesis of STEC-HUS, including bacterial-derived factors and host responses. STEC disease is characterized by hematological (microangiopathic hemolytic anemia), renal (acute kidney injury) and extrarenal organ involvement. Clinicians should always strive for an etiological diagnosis through the microbiological or molecular identification of Stx-producing bacteria and Stx or, if negative, serological assays. Treatment of STEC-HUS is supportive; more investigations are needed to evaluate the efficacy of putative preventive and therapeutic measures, such as non-phage-inducing antibiotics, volume expansion and anti-complement agents. The outcome of STEC-HUS is generally favorable, but chronic kidney disease, permanent extrarenal, mainly cerebral complication and death (in less than 5 %) occur and long-term follow-up is recommended. The remainder of this chapter highlights rarer forms of (post-infectious) HUS due to S. dysenteriae, S. pneumoniae, influenza A and HIV and discusses potential interactions between these pathogens and the complement system.
Collapse
Affiliation(s)
- Denis F. Geary
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Franz Schaefer
- Division of Pediatric Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Bertram P, Akk AM, Zhou HF, Mitchell LM, Pham CTN, Hourcade DE. Anti-mouse properdin TSR 5/6 monoclonal antibodies block complement alternative pathway-dependent pathogenesis. Monoclon Antib Immunodiagn Immunother 2015; 34:1-6. [PMID: 25723276 DOI: 10.1089/mab.2014.0066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The complement alternative pathway (AP) is a major contributor to a broad and growing spectrum of diseases that includes age-related macular degeneration, atypical hemolytic uremic syndrome, and preeclampsia. As a result, there is much interest in the therapeutic disruption of AP activity. Properdin, the only positive regulator of the AP, is a particularly promising AP target. Several issues need to be clarified before the potential for properdin-directed therapy can be realized. In this report we use a portion of the mouse properdin protein, expressed in a bacterial system, to raise rabbit polyclonal and hamster monoclonal antibodies that block properdin-dependent pathogenesis. These antibodies, when employed with AP-dependent mouse disease models, can help evaluate the feasibility of properdin-directed therapy.
Collapse
Affiliation(s)
- Paula Bertram
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri
| | | | | | | | | | | |
Collapse
|
10
|
Identification of peptidic inhibitors of the alternative complement pathway based on Staphylococcus aureus SCIN proteins. Mol Immunol 2015; 67:193-205. [PMID: 26052070 DOI: 10.1016/j.molimm.2015.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
The complement system plays a central role in a number of human inflammatory diseases, and there is a significant need for development of complement-directed therapies. The discovery of an arsenal of anti-complement proteins secreted by the pathogen Staphylococcus aureus brought with it the potential for harnessing the powerful inhibitory properties of these molecules. One such family of inhibitors, the SCINs, interact with a functional "hot-spot" on the surface of C3b. SCINs not only stabilize an inactive form of the alternative pathway (AP) C3 convertase (C3bBb), but also overlap the C3b binding site of complement factors B and H. Here we determined that a conserved Arg residue in SCINs is critical for function of full-length SCIN proteins. Despite this, we also found SCIN-specific differences in the contributions of other residues found at the C3b contact site, which suggested that a more diverse repertoire of residues might be able to recognize this region of C3b. To investigate this possibility, we conducted a phage display screen aimed at identifying SCIN-competitive 12-mer peptides. In total, seven unique sequences were identified and all exhibited direct C3b binding. A subset of these specifically inhibited the AP in assays of complement function. The mechanism of AP inhibition by these peptides was probed through surface plasmon resonance approaches, which revealed that six of the seven peptides disrupted C3bBb formation by interfering with factor B/C3b binding. To our knowledge this study has identified the first small molecules that retain inhibitory properties of larger staphylococcal immune evasion proteins.
Collapse
|
11
|
[Diagnostic and therapeutic guidelines of thrombotic microangiopathies of the Spanish Apheresis Group]. Med Clin (Barc) 2014; 144:331.e1-331.e13. [PMID: 25433791 DOI: 10.1016/j.medcli.2014.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/18/2014] [Indexed: 12/18/2022]
Abstract
Thrombotic microangiopathies (TMA) are disorders defined by the presence of a microangiopathic hemolytic anemia (with the characteristic hallmark of schistocytes in the peripheral blood smear), thrombocytopenia and organ malfunction of variable intensity. Thrombotic thrombocytopenic purpura and hemolytic uremic syndrome are the most important forms of TMA and, without the adequate treatment, they are associated with high morbimortality. In recent years, significant advances in the knowledge of the pathophysiology of TMA have occurred. Those advances have allowed us to move from a syndromic diagnosis with a similar treatment to all entities to the search of etiologic diagnosis which would lead to a specific treatment, finally leading to a better outcome of the patient. This document pretends to summarize the current status of knowledge of the pathophysiology of TMA and the therapeutic options available, and to offer a diagnostic and therapeutic practical tool to the professionals caring for the patients.
Collapse
|
12
|
Martí-Carvajal AJ, Anand V, Cardona AF, Solà I. Eculizumab for treating patients with paroxysmal nocturnal hemoglobinuria. Cochrane Database Syst Rev 2014:CD010340. [PMID: 25356860 DOI: 10.1002/14651858.cd010340.pub2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Paroxysmal nocturnal hemoglobinuria (PNH) is a chronic, not malignant, disease of the hematopoietic stem cells, associated with significant morbidity and mortality. It is a rare disease with an estimated incidence of 1.3 new cases per one million individuals per year. The treatment of PNH has been largely empirical and symptomatic, with blood transfusions, anticoagulation, and supplementation with folic acid or iron. Eculizumab, a biological agent that inhibits complement cascade, was developed for preventing hemolytic anemia and severe thrombotic episodes. OBJECTIVES To assess the clinical benefits and harms of eculizumab for treating patients with paroxysmal nocturnal hemoglobinuria (PNH). SEARCH METHODS We conducted a comprehensive search strategy. We searched the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library 2014, Issue 5), Ovid MEDLINE (from 1946 to 15 May 2014), EMBASE (from 1980 to 25 June 2014), and LILACS (from 1982 to 25 June 2014). We did not apply any language restrictions. SELECTION CRITERIA We included randomized controlled trials (RCTs) irrespective of their publication status or language. No limits were applied with respect to period of follow-up. We excluded quasi-RCTs. We included trials comparing eculizumab with placebo or best available therapy. We included any patient with a confirmed diagnosis of PNH. Primary outcome was overall survival. DATA COLLECTION AND ANALYSIS We independently performed a duplicate selection of eligible trials, risk of bias assessment, and data extraction. We estimated risk ratios (RRs) and 95% confidence interval (CIs) for dichotomous outcomes, and mean differences (MDs) and 95% CIs for continuous outcomes. We used a random-effects model for analysis. MAIN RESULTS We identified one multicenter (34 sites) phase III RCT involving 87 participants. The trial compared eculizumab versus placebo, and was conducted in the US, Canada, Europe, and Australia with 26 weeks of follow-up. This small trial had high risk of bias in many domains (attrition and selective reporting). It was sponsored by a pharmaceutical company. No patients died during the study. By using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (scores can range from 0 to 100, with higher scores on the global health status and functioning scales indicating improvement), the trial showed improvement in health-related quality of life in patients treated with eculizumab (mean difference (MD) 19.4, 95% CI 8.25 to 30.55; P = 0.0007; low quality of evidence). By using the Functional Assessment of Chronic Illness Therapy Fatigue instrument (scores can range from 0 to 52, with higher scores indicating improvement in fatigue), the trial showed a reduction in fatigue (MD 10.4, 95% CI 9.97 to 10.83; P = 0.00001; moderate quality of evidence) in the eculizumab group compared with placebo. Eculizumab compared with placebo showed a greater proportion of patients with transfusion independence: 51% (22/43) versus 0% (0/44); risk ratio (RR) 46.02, 95% CI 2.88 to 735.53; P = 0.007; moderate quality of evidence; and withdrawal for any reason: 4.7% (2/43) versus 22.72% (10/44); RR 0.20, 95% CI 0.05 to 0.88; P = 0.03; moderate quality of evidence. Due to the low rate of events observed, the included trial did not show any difference between eculizumab and placebo in terms of serious adverse events: 9.3% (4/43) versus 20.4% (9/44); RR 0.15, 95% CI 0.15 to 1.37; P = 0.16; low quality of evidence. We did not observe any difference between intervention and placebo for the most frequent adverse events. One participant receiving placebo showed an episode of thrombosis. The trial did not assess overall survival, transformation to myelodysplastic syndrome and acute myelogenous leukemia, or development or recurrence of aplastic anemia on treatment. AUTHORS' CONCLUSIONS This review has detected an absence of evidence for eculizumab compared with placebo for treating paroxysmal nocturnal hemoglobinuria (PNH), in terms of overall survival, nonfatal thrombotic events, transformation to myelodysplastic syndrome and acute myelogenous leukemia, and development and recurrence of aplastic anemia on treatment. Current evidence indicates that compared with placebo, eculizumab increases health-related quality of life and increases transfusion independence. During the execution of the included trial, no patients died. Furthermore, the intervention seems to reduce fatigue and withdrawals for any reason. The safety profile of eculizumab is unclear. These conclusions are based on one small trial with risk of attrition and selective reporting bias.Therefore, prescription of eculizumab for treating patients with PNH can neither be supported nor rejected, unless new evidence from a large high quality trial alters this conclusion. Therefore, we urge the reader to interpret the trial results with much caution. Future trials on this issue should be conducted according to the SPIRIT statement and reported according to the CONSORT statement by independent investigators, and using the Foundation of Patient-Centered Outcomes Research recommendations.
Collapse
|