1
|
Little CJ, Kim SC, Fechner JH, Post J, Coonen J, Chlebeck P, Winslow M, Kobuzi D, Strober S, Kaufman DB. Early allogeneic immune modulation after establishment of donor hematopoietic cell-induced mixed chimerism in a nonhuman primate kidney transplant model. Front Immunol 2024; 15:1343616. [PMID: 38318170 PMCID: PMC10839019 DOI: 10.3389/fimmu.2024.1343616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Background Mixed lymphohematopoietic chimerism is a proven strategy for achieving operational transplant tolerance, though the underlying immunologic mechanisms are incompletely understood. Methods A post-transplant, non-myeloablative, tomotherapy-based total lymphoid (TLI) irradiation protocol combined with anti-thymocyte globulin and T cell co-stimulatory blockade (belatacept) induction was applied to a 3-5 MHC antigen mismatched rhesus macaque kidney and hematopoietic cell transplant model. Mechanistic investigations of early (60 days post-transplant) allogeneic immune modulation induced by mixed chimerism were conducted. Results Chimeric animals demonstrated expansion of circulating and graft-infiltrating CD4+CD25+Foxp3+ regulatory T cells (Tregs), as well as increased differentiation of allo-protective CD8+ T cell phenotypes compared to naïve and non-chimeric animals. In vitro mixed lymphocyte reaction (MLR) responses and donor-specific antibody production were suppressed in animals with mixed chimerism. PD-1 upregulation was observed among CD8+ T effector memory (CD28-CD95+) subsets in chimeric hosts only. PD-1 blockade in donor-specific functional assays augmented MLR and cytotoxic responses and was associated with increased intracellular granzyme B and extracellular IFN-γ production. Conclusions These studies demonstrated that donor immune cell engraftment was associated with early immunomodulation via mechanisms of homeostatic expansion of Tregs and early PD-1 upregulation among CD8+ T effector memory cells. These responses may contribute to TLI-based mixed chimerism-induced allogenic tolerance.
Collapse
Affiliation(s)
- Christopher J. Little
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
- Department of Surgery, University of Washington School of Medicine, Seattle, WA, United States
| | - Steven C. Kim
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - John H. Fechner
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
| | - Jen Post
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
| | - Jennifer Coonen
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States
| | - Peter Chlebeck
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
| | - Max Winslow
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
| | - Dennis Kobuzi
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
| | - Samuel Strober
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Dixon B. Kaufman
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
| |
Collapse
|
2
|
Huang Y, Wu X, Tang S, Wu H, Nasri U, Qin Q, Song Q, Wang B, Tao H, Chong AS, Riggs AD, Zeng D. Donor programmed cell death 1 ligand 1 is required for organ transplant tolerance in major histocompatibility complex-mismatched mixed chimeras although programmed cell death 1 ligand 1 and major histocompatibility complex class II are not required for inducing chimerism. Am J Transplant 2023; 23:1116-1129. [PMID: 37105316 DOI: 10.1016/j.ajt.2023.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Induction of major histocompatibility complex (MHC) human leukocyte antigen (HLA)-mismatched mixed chimerism is a promising approach for organ transplantation tolerance; however, human leukocyte antigen-mismatched stable mixed chimerism has not been achieved in the clinic. Tolerogenic dendritic cell (DC) expression of MHC class II (MHC II) and programmed cell death 1 ligand 1 (PD-L1) is important for immune tolerance, but whether donor-MHC II or PD-L1 is required for the induction of stable MHC-mismatched mixed chimerism and transplant tolerance is unclear. Here, we show that a clinically applicable radiation-free regimen can establish stable MHC-mismatched mixed chimerism and organ transplant tolerance in murine models. Induction of MHC-mismatched mixed chimerism does not require donor cell expression of MHC II or PD-L1, but donor-type organ transplant tolerance in the mixed chimeras (MC) requires the donor hematopoietic cells and the organ transplants to express PD-L1. The PD-L1 expressed by donor hematopoietic cells and the programmed cell death 1 expressed by host cells augment host-type donor-reactive CD4+ and CD8+ T cell anergy/exhaustion and differentiation into peripheral regulatory T (pTreg) cells in association with the organ transplant tolerance in the MC. Conversely, host-type Treg cells augment the expansion of donor-type tolerogenic CD8+ DCs that express PD-L1. These results indicate that PD-L1 expressed by donor-type tolerogenic DCs and expansion of host-type pTreg cells in MHC-mismatched MCs play critical roles in mediating organ transplant tolerance.
Collapse
Affiliation(s)
- Yaxun Huang
- Department of Liver Transplantation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Xiwei Wu
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Shanshan Tang
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Huiqing Wu
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Ubaydah Nasri
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Qi Qin
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingxiao Song
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Bixin Wang
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Fujian Medical University Center of Translational Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hansen Tao
- Arthur Riggs Diabetes and Metabolism Research Institute, Summer Student Academy of City of Hope, Duarte, California, USA
| | - Anita S Chong
- The section of Transplantation, Department of Surgery, the University of Chicago, Chicago, Illinois, USA
| | - Arthur D Riggs
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Defu Zeng
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA.
| |
Collapse
|
3
|
Sadozai H, Rojas-Luengas V, Farrokhi K, Moshkelgosha S, Guo Q, He W, Li A, Zhang J, Chua C, Ferri D, Mian M, Adeyi O, Seidman M, Gorczynski RM, Juvet S, Atkins H, Levy GA, Chruscinski A. Congenic hematopoietic stem cell transplantation promotes survival of heart allografts in murine models of acute and chronic rejection. Clin Exp Immunol 2023; 213:138-154. [PMID: 37004176 PMCID: PMC10324556 DOI: 10.1093/cei/uxad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/19/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The ability to induce tolerance would be a major advance in the field of solid organ transplantation. Here, we investigated whether autologous (congenic) hematopoietic stem cell transplantation (HSCT) could promote tolerance to heart allografts in mice. In an acute rejection model, fully MHC-mismatched BALB/c hearts were heterotopically transplanted into C57BL/6 (CD45.2) mice. One week later, recipient mice were lethally irradiated and reconstituted with congenic B6 CD45.1 Lin-Sca1+ckit+ cells. Recipient mice received a 14-day course of rapamycin both to prevent rejection and to expand regulatory T cells (Tregs). Heart allografts in both untreated and rapamycin-treated recipients that did not undergo HSCT were rejected within 33 days (median survival time = 8 days for untreated recipients, median survival time = 32 days for rapamycin-treated recipients), whereas allografts in HSCT-treated recipients had a median survival time of 55 days (P < 0.001 vs. both untreated and rapamycin-treated recipients). Enhanced allograft survival following HSCT was associated with increased intragraft Foxp3+ Tregs, reduced intragraft B cells, and reduced serum donor-specific antibodies. In a chronic rejection model, Bm12 hearts were transplanted into C57BL/6 (CD45.2) mice, and congenic HSCT was performed two weeks following heart transplantation. HSCT led to enhanced survival of allografts (median survival time = 70 days vs. median survival time = 28 days in untreated recipients, P < 0.01). Increased allograft survival post-HSCT was associated with prevention of autoantibody development and absence of vasculopathy. These data support the concept that autologous HSCT can promote immune tolerance in the setting of allotransplantation. Further studies to optimize HSCT protocols should be performed before this procedure is adopted clinically.
Collapse
Affiliation(s)
- Hassan Sadozai
- Center for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa Rojas-Luengas
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Kaveh Farrokhi
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Sajad Moshkelgosha
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Qinli Guo
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Wei He
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Angela Li
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jianhua Zhang
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Conan Chua
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Dario Ferri
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Muhtashim Mian
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Oyedele Adeyi
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Seidman
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Reginald M Gorczynski
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Juvet
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Harold Atkins
- Division of Hematology, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Gary A Levy
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Andrzej Chruscinski
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Kaufman DB, Forrest LJ, Fechner J, Post J, Coonen J, Haynes LD, Haynes WJ, Christensen N, Zhong W, Little CJ, D’Alessandro A, Fernandez L, Brunner K, Jensen K, Burlingham WJ, Hematti P, Strober S. Helical TomoTherapy Total Lymphoid Irradiation and Hematopoietic Cell Transplantation for Kidney Transplant Tolerance in Rhesus Macaques. Transpl Int 2023; 36:11279. [PMID: 37426429 PMCID: PMC10324513 DOI: 10.3389/ti.2023.11279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Development of a post-transplant kidney transplant tolerance induction protocol involving a novel total lymphoid irradiation (TLI) conditioning method in a rhesus macaque model is described. We examined the feasibility of acheiving tolerance to MHC 1-haplotype matched kidney transplants by establishing a mixed chimeric state with infusion of donor hematopoietic cells (HC) using TomoTherapy TLI. The chimeric state was hypothesized to permit the elimination of all immunosuppressive (IS) medications while preserving allograft function long-term without development of graft-versus-host-disease (GVHD) or rejection. An experimental group of 11 renal transplant recipients received the tolerance induction protocol and outcomes were compared to a control group (n = 7) that received the same conditioning but without donor HC infusion. Development of mixed chimerism and operational tolerance was accomplished in two recipients in the experimental group. Both recipients were withdrawn from all IS and continued to maintain normal renal allograft function for 4 years without rejection or GVHD. None of the animals in the control group achieved tolerance when IS was eliminated. This novel experimental model demonstrated the feasibility for inducing of long-term operational tolerance when mixed chimerism is achieved using a TLI post-transplant conditioning protocol in 1-haplotype matched non-human primate recipients of combined kidney and HC transplantation.
Collapse
Affiliation(s)
- Dixon B. Kaufman
- Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Lisa J. Forrest
- School of Veternary Medicine, University of Wisconsin, Madison, WI, United States
| | - John Fechner
- Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Jennifer Post
- Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Jennifer Coonen
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States
| | - Lynn D. Haynes
- Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - W. John Haynes
- Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Neil Christensen
- School of Veternary Medicine, University of Wisconsin, Madison, WI, United States
| | - Weixiong Zhong
- Department of Pathology, University of Wisconsin, Madison, WI, United States
| | | | | | - Luis Fernandez
- Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Kevin Brunner
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States
| | - Kent Jensen
- Department of Medicine, Stanford University, Palo Alto, CA, United States
| | | | - Peiman Hematti
- Department of Medicine, University of Wisconsin, Madison, WI, United States
| | - Samuel Strober
- Department of Medicine, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
5
|
Haploidentical Stem Cell Transplantation for Patients with Sickle Cell Disease: Current Status. Transfus Apher Sci 2022; 61:103534. [DOI: 10.1016/j.transci.2022.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Short treatment of peripheral blood cells product with Fas ligand using closed automated cell processing system significantly reduces immune cell reactivity of the graft in vitro and in vivo. Bone Marrow Transplant 2022; 57:1250-1259. [PMID: 35538142 PMCID: PMC9088133 DOI: 10.1038/s41409-022-01698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 11/08/2022]
Abstract
Mobilized peripheral blood cells (MPBCs) graft and peripheral blood cells apheresis are used for bone marrow transplantation and for treatment of graft versus host disease (GvHD). We demonstrate that a short treatment of MPBCs with Fas ligand (FasL, CD95L) for 2 h using a closed automated cell processing system selectively induces apoptosis of specific donor T cells, B cells and antigen presenting cells, but, critically, not CD34+ hematopoietic stem cells and progenitors, all of which may contribute to an increased likelihood of graft survival and functionality and reduced GvHD. Treated cells secreted lower levels of interferon-gamma as compared with control, untreated, cells. Moreover, FasL treatment of immune cells increased signals, which led to their phagocytosis by activated macrophages. FasL treated immune cells also reduced the ability of activated macrophages to secrete pro-inflammatory cytokines. Most importantly, FasL ex vivo treated MPBCs prior to transplantation in NOD-SCID NSG mice prevented GvHD and improved stem cell transplantation in vivo. In conclusion, MPBCs, as well as other blood cell products, treated with FasL by automated manufacturing (AM), may be used as potential treatments for conditions where the immune system is over-responding to both self and non-self-antigens.
Collapse
|
7
|
Gulieva RE, Higgins AZ. Human induced pluripotent stem cell derived kidney organoids as a model system for studying cryopreservation. Cryobiology 2021; 103:153-156. [PMID: 34478696 DOI: 10.1016/j.cryobiol.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022]
Abstract
The ability to cryopreserve organs would have an enormous impact in transplantation medicine. To investigate organ cryopreservation strategies, experiments are typically done on whole organs, or on cells in 2D culture. Whole organs are not amenable to high throughput investigation, while conventional 2D culture is limited to a single cell type and lacks the complexity of the whole organ. In this study, we examine kidney organoids as a model system for studying cryopreservation. Consistent with previous studies, we show that kidney organoids comprised of multiple cell types can be generated in 96-well plates, with an average of about 8 organoids per well. We present a live/dead staining and image analysis method for quantifying organoid viability and show that this method can be used for assessing cryoprotectant toxicity. Our results highlight the potential for using organoids for high throughput investigation of cryopreservation approaches.
Collapse
Affiliation(s)
- Ramila E Gulieva
- School of Chemical, Biological and Environmental Engineering, Oregon State University, USA
| | - Adam Z Higgins
- School of Chemical, Biological and Environmental Engineering, Oregon State University, USA.
| |
Collapse
|
8
|
Farhadfar N, Dias A, Wang T, Fretham C, Chhabra S, Murthy HS, Broglie L, D'Souza A, Gadalla SM, Gale RP, Hashmi S, Al-Homsi AS, Hildebrandt GC, Hematti P, Rizzieri D, Chee L, Lazarus HM, Bredeson C, Jaimes EA, Beitinjaneh A, Bashey A, Prestidge T, Krem MM, Marks DI, Benoit S, Yared JA, Nishihori T, Olsson RF, Freytes CO, Stadtmauer E, Savani BN, Sorror ML, Ganguly S, Wingard JR, Pasquini M. Impact of Pretransplantation Renal Dysfunction on Outcomes after Allogeneic Hematopoietic Cell Transplantation. Transplant Cell Ther 2021; 27:410-422. [PMID: 33775617 DOI: 10.1016/j.jtct.2021.02.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Accepted: 02/09/2021] [Indexed: 01/09/2023]
Abstract
Renal dysfunction is a recognized risk factor for mortality after allogeneic hematopoietic cell transplantation (alloHCT), yet our understanding of the effect of different levels of renal dysfunction at time of transplantation on outcomes remains limited. This study explores the impact of different degrees of renal dysfunction on HCT outcomes and examines whether the utilization of incremental degrees of renal dysfunction based on estimated glomerular filtration rate (eGFR) improve the predictability of the hematopoietic cell transplantation comorbidity index (HCT-CI). The study population included 2 cohorts: cohort 1, comprising patients age ≥40 years who underwent alloHCT for treatment of hematologic malignancies between 2008 and 2016 (n = 13,505; cohort selected given a very low incidence of renal dysfunction in individuals age <40 years), and cohort 2, comprising patients on dialysis at the time of HCT (n = 46). eGFR was measured using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) method. The patients in cohort 1 were assigned into 4 categories-eGFR ≥90 mL/min (n = 7062), eGFR 60 to 89 mL/min (n = 5264), eGFR 45 to 59 mL/min (n = 897), and eGFR <45 mL/min (n=282)-to assess the impact of degree of renal dysfunction on transplantation outcomes. Transplantation outcomes in patients on dialysis at the time of alloHCT were analyzed separately. eGFR <60 mL/min was associated with an increased risk for nonrelapse mortality (NRM) and requirement for dialysis post-HCT. Compared with the eGFR ≥90 group, the hazard ratio (HR) for NRM was 1.46 (P = .0001) for the eGFR 45 to 59 mL/min group and 1.74 (P = .004) for the eGFR <45 mL/min group. Compared with the eGFR ≥90 mL/min group, the eGFR 45 to 59 mL/min group (HR, 2.45; P < .0001) and the eGFR <45 mL/min group (HR, 3.09; P < .0001) had a higher risk of renal failure necessitating dialysis after alloHCT. In addition, eGFR <45 mL/min was associated with an increased overall mortality (HR, 1.63; P < .0001). An eGFR-based revised HCT-CI was also developed and shown to be predictive of overall survival (OS) and NRM, with predictive performance similar to the original HCT-CI. Among 46 patients on dialysis at alloHCT, the 1-year probability of OS was 20%, and that of NRM was 67%. The degree of pretransplantation renal dysfunction is an independent predictor of OS, NRM, and probability of needing dialysis after alloHCT. An eGFR-based HCT-CI is a validated index for predicting outcomes in adults with hematologic malignancies undergoing alloHCT. The outcomes of alloHCT recipients on dialysis are dismal; therefore, one should strongly weigh the significant risks of being on hemodialysis as a factor in determining alloHCT candidacy.
Collapse
Affiliation(s)
- Nosha Farhadfar
- Division of Hematology/Oncology, University of Florida College of Medicine, Gainesville, Florida
| | - Ajoy Dias
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Caitrin Fretham
- CIBMTR (Center for International Blood and Marrow Transplant Research), National marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Saurabh Chhabra
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - Hemant S Murthy
- Division of Hematology-Oncology, Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, Florida
| | - Larisa Broglie
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Anita D'Souza
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shahinaz M Gadalla
- Division of Cancer Epidemiology & Genetics, NIH-NCI Clinical Genetics Branch, Rockville, Maryland
| | - Robert Peter Gale
- Haematology Research Centre, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Shahrukh Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota; Department of Medicine, Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | | | | | - Peiman Hematti
- Division of Hematology/Oncology/Bone Marrow Transplantation, Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - David Rizzieri
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina
| | - Lynette Chee
- The Royal Melbourne Hospital City Campus and Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Hillard M Lazarus
- University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Christopher Bredeson
- The Ottawa Hospital Blood and Marrow Transplant Program and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Edgar A Jaimes
- Renal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amer Beitinjaneh
- Division of Transplantation and Cellular Therapy, University of Miami, Miami, Florida
| | - Asad Bashey
- Blood and Marrow Transplant Program at Northside Hospital, Atlanta, Georgia
| | - Tim Prestidge
- Blood and Cancer Centre, Starship Children's Hospital, Auckland, New Zealand
| | - Maxwell M Krem
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| | - David I Marks
- Adult Bone Marrow Transplant, University Hospitals Bristol NHS Trust, Bristol, United Kingdom
| | - Stefanie Benoit
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Jean A Yared
- Blood & Marrow Transplantation Program, Division of Hematology/Oncology, Department of Medicine, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland
| | - Taiga Nishihori
- Department of Blood & Marrow Transplant and Cellular Immunotherapy (BMT CI), Moffitt Cancer Center, Tampa, Florida
| | - Richard F Olsson
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Clinical Research Sormland, Uppsala University, Uppsala, Sweden
| | | | - Edward Stadtmauer
- Abramson Cancer Center, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania
| | - Bipin N Savani
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mohamed L Sorror
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Division of Medical Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Siddhartha Ganguly
- Division of Hematological Malignancy and Cellular Therapeutics, University of Kansas Health System, Kansas City, Kansas
| | - John R Wingard
- Division of Hematology & Oncology, Department of Medicine, University of Florida, Gainesville, Florida
| | - Marcelo Pasquini
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
9
|
Johnstone BH, Messner F, Brandacher G, Woods EJ. A Large-Scale Bank of Organ Donor Bone Marrow and Matched Mesenchymal Stem Cells for Promoting Immunomodulation and Transplant Tolerance. Front Immunol 2021; 12:622604. [PMID: 33732244 PMCID: PMC7959805 DOI: 10.3389/fimmu.2021.622604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Induction of immune tolerance for solid organ and vascular composite allografts is the Holy Grail for transplantation medicine. This would obviate the need for life-long immunosuppression which is associated with serious adverse outcomes, such as infections, cancers, and renal failure. Currently the most promising means of tolerance induction is through establishing a mixed chimeric state by transplantation of donor hematopoietic stem cells; however, with the exception of living donor renal transplantation, the mixed chimerism approach has not achieved durable immune tolerance on a large scale in preclinical or clinical trials with other solid organs or vascular composite allotransplants (VCA). Ossium Health has established a bank of cryopreserved bone marrow (BM), termed "hematopoietic progenitor cell (HPC), Marrow," recovered from deceased organ donor vertebral bodies. This new source for hematopoietic cell transplant will be a valuable resource for treating hematological malignancies as well as for inducing transplant tolerance. In addition, we have discovered and developed a large source of mesenchymal stem (stromal) cells (MSC) tightly associated with the vertebral body bone fragment byproduct of the HPC, Marrow recovery process. Thus, these vertebral bone adherent MSC (vBA-MSC) are matched to the banked BM obtained from each donor, as opposed to third-party MSC, which enhances safety and potentially efficacy. Isolation and characterization of vBA-MSC from over 30 donors has demonstrated that the cells are no different than traditional BM-MSC; however, their abundance is >1,000-fold higher than obtainable from living donor BM aspirates. Based on our own unpublished data as well as reports published by others, MSC facilitate chimerism, especially at limiting hematopoietic stem and progenitor cell (HSPC) numbers and increase safety by controlling and/or preventing graft-vs.-host-disease (GvHD). Thus, vBA-MSC have the potential to facilitate mixed chimerism, promote complementary peripheral immunomodulatory functions and increase safety of BM infusions. Both HPC, Marrow and vBA-MSC have potential use in current VCA and solid organ transplant (SOT) tolerance clinical protocols that are amenable to "delayed tolerance." Current trials with HPC, Marrow are planned with subsequent phases to include vBA-MSC for tolerance of both VCA and SOT.
Collapse
Affiliation(s)
- Brian H. Johnstone
- Ossium Health, Indianapolis, IN, United States
- Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, United States
| | - Franka Messner
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Erik J. Woods
- Ossium Health, Indianapolis, IN, United States
- Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
10
|
Tang S, Zhang M, Zeng S, Huang Y, Qin M, Nasri U, Santamaria P, Riggs AD, Jin L, Zeng D. Reversal of autoimmunity by mixed chimerism enables reactivation of β cells and transdifferentiation of α cells in diabetic NOD mice. Proc Natl Acad Sci U S A 2020; 117:31219-31230. [PMID: 33229527 PMCID: PMC7733788 DOI: 10.1073/pnas.2012389117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) results from the autoimmune destruction of β cells, so cure of firmly established T1D requires both reversal of autoimmunity and restoration of β cells. It is known that β cell regeneration in nonautoimmune diabetic mice can come from differentiation of progenitors and/or transdifferentiation of α cells. However, the source of β cell regeneration in autoimmune nonobese diabetic (NOD) mice remains unclear. Here, we show that, after reversal of autoimmunity by induction of haploidentical mixed chimerism, administration of gastrin plus epidermal growth factor augments β cell regeneration and normalizes blood glucose in the firmly established diabetic NOD mice. Using transgenic NOD mice with inducible lineage-tracing markers for insulin-producing β cells, Sox9+ ductal progenitors, Nestin+ mesenchymal stem cells, and glucagon-producing α cells, we have found that both reactivation of dysfunctional low-level insulin expression (insulinlo) β cells and neogenesis contribute to the regeneration, with the latter predominantly coming from transdifferentiation of α cells. These results indicate that, after reversal of autoimmunity, reactivation of β cells and transdifferentiation of α cells can provide sufficient new functional β cells to reach euglycemia in firmly established T1D.
Collapse
Affiliation(s)
- Shanshan Tang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 210009 Nanjing, China
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
| | - Mingfeng Zhang
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
| | - Samuel Zeng
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Yaxun Huang
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Department of Organ Transplantation, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Melissa Qin
- Diabetes and Metabolism Research Institute, Summer Student Academy of City of Hope, Duarte, CA 91010
| | - Ubaydah Nasri
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Center, Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
- Pathogenesis and Treatment of Autoimmunity Laboratory, Institut D'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Arthur D Riggs
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010;
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 210009 Nanjing, China;
| | - Defu Zeng
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010;
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
| |
Collapse
|
11
|
Liu Y, Wang X, Zhu Y, Zhang M, Nasri U, Sun SS, Forman SJ, Riggs AD, Zhang X, Zeng D. Haploidentical mixed chimerism cures autoimmunity in established type 1 diabetic mice. J Clin Invest 2020; 130:6457-6476. [PMID: 32817590 DOI: 10.1172/jci131799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/13/2020] [Indexed: 12/21/2022] Open
Abstract
Clinical trials are currently testing whether induction of haploidentical mixed chimerism (Haplo-MC) induces organ transplantation tolerance. Whether Haplo-MC can be used to treat established autoimmune diseases remains unknown. Here, we show that established autoimmunity in euthymic and adult-thymectomized NOD (H-2g7) mice was cured by induction of Haplo-MC under a non-myeloablative anti-thymocyte globulin-based conditioning regimen and infusion of CD4+ T cell-depleted hematopoietic graft from H-2b/g7 F1 donors that expressed autoimmune-resistant H-2b or from H-2s/g7 F1 donors that expressed autoimmune-susceptible H-2s. The cure was associated with enhanced thymic negative selection, increased thymic Treg (tTreg) production, and anergy or exhaustion of residual host-type autoreactive T cells in the periphery. The peripheral tolerance was accompanied by expansion of donor- and host-type CD62L-Helios+ tTregs as well as host-type Helios-Nrp1+ peripheral Tregs (pTregs) and PD-L1hi plasmacytoid DCs (pDCs). Depletion of donor- or host-type Tregs led to reduction of host-type PD-L1hi pDCs and recurrence of autoimmunity, whereas PD-L1 deficiency in host-type DCs led to reduction of host-type pDCs and Helios-Nrp1+ pTregs. Thus, induction of Haplo-MC reestablished both central and peripheral tolerance through mechanisms that depend on allo-MHC+ donor-type DCs, PD-L1hi host-type DCs, and the generation and persistence of donor- and host-type tTregs and pTregs.
Collapse
Affiliation(s)
- Yuqing Liu
- Diabetes and Metabolism Research Institute, and.,Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute of City of Hope, Duarte, California, USA.,Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xiaoqi Wang
- Diabetes and Metabolism Research Institute, and.,Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute of City of Hope, Duarte, California, USA.,Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Yongping Zhu
- Diabetes and Metabolism Research Institute, and.,Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute of City of Hope, Duarte, California, USA.,Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingfeng Zhang
- Diabetes and Metabolism Research Institute, and.,Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Ubaydah Nasri
- Diabetes and Metabolism Research Institute, and.,Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Sharne S Sun
- Eugene and Ruth Roberts Summer Student Academy of City of Hope, Duarte, California, USA
| | - Stephen J Forman
- Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| | | | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Defu Zeng
- Diabetes and Metabolism Research Institute, and.,Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| |
Collapse
|
12
|
McCurdy SR, Luznik L. Post-transplantation cyclophosphamide for chimerism-based tolerance. Bone Marrow Transplant 2020; 54:769-774. [PMID: 31431698 DOI: 10.1038/s41409-019-0615-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-dose cyclophosphamide given post-transplant (PTCy) successfully enables tolerance induction in HLA-mismatched related blood or marrow transplantation (haploBMT) manifested by low rates of graft failure, severe acute graft-versus-host disease (GVHD), and chronic GVHD. When proceeded by nonmyeloablative conditioning, PTCy has also been associated with a low incidence of nonrelapse mortality. The safety of this platform has garnered interest in expanding its use to non-malignant indications for allogeneic blood or marrow transplantation (alloBMT). After success in a preliminary Phase I/II trial, use of a PTCy-based haploBMT platform is now being explored in a large Blood and Marrow Transplant Clinical Trials Network (BMT CTN) study for sickle cell disease. These emerging data in patients with hemoglobinopathies provided the rationale for exploring the use of PTCy in combined solid organ and BM transplantation as a means of tolerance induction through donor hematopoietic chimerism with a goal to obviate the need for a lifetime of immunosuppression. Several case reports, series, and small clinical trials have now been published of combined solid organ and alloBMT in patients with hematologic malignancies who had organ failure that would have been preclusive of alloBMT in the absence of solid organ transplantation. Here we will review the pre-clinical and clinical studies supporting the use of PTCy for chimerism-based tolerance induction.
Collapse
Affiliation(s)
- Shannon R McCurdy
- Abramson Cancer Center and the Division of Hematology and Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Leo Luznik
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Kadyk LC, Okamura RM, Talib S. Enabling allogeneic therapies: CIRM-funded strategies for immune tolerance and immune evasion. Stem Cells Transl Med 2020; 9:959-964. [PMID: 32585084 PMCID: PMC7445020 DOI: 10.1002/sctm.20-0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/02/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
A major goal for the field of regenerative medicine is to enable the safe and durable engraftment of allogeneic tissues and organs. In contrast to autologous therapies, allogeneic therapies can be produced for many patients, thus reducing costs and increasing availability. However, the need to overcome strong immune system barriers to engraftment poses a significant biological challenge to widespread adoption of allogeneic therapies. While the use of powerful immunosuppressant drugs has enabled the engraftment of lifesaving organ transplants, these drugs have serious side effects and often the organ is eventually rejected by the recipient immune system. Two conceptually different strategies have emerged to enable durable engraftment of allogeneic therapies in the absence of immune suppression. One strategy is to induce immune tolerance of the transplant, either by creating “mixed chimerism” in the hematopoietic system, or by retraining the immune system using modified thymic epithelial cells. The second strategy is to evade the immune system altogether, either by engineering the donor tissue to be “invisible” to the immune system, or by sequestering the donor tissue in an immune impermeable barrier. We give examples of research funded by the California Institute for Regenerative Medicine (CIRM) in each of these areas, ranging from early discovery‐stage work through clinical trials. The advancements that are being made in this area hold promise that many more patients will be able to benefit from regenerative medicine therapies in the future.
Collapse
Affiliation(s)
- Lisa C Kadyk
- California Institute for Regenerative Medicine, Oakland, California, USA
| | - Ross M Okamura
- California Institute for Regenerative Medicine, Oakland, California, USA
| | - Sohel Talib
- California Institute for Regenerative Medicine, Oakland, California, USA
| |
Collapse
|
14
|
Abstract
The present review discusses current developments in tolerance induction for solid organ transplantation with a particular emphasis on chimerism-based approaches. It explains the basic mechanisms of chimerism-based tolerance and provides an update on ongoing clinical tolerance trials. The concept of "delayed tolerance" is presented, and ongoing preclinical studies in the nonhuman primate setting-including current limitations and hurdles regarding this approach-are illustrated. In addition, a brief overview and update on cell-based tolerogenic clinical trials is provided. In a critical approach, advantages, limitations, and potential implications for the future of these different regimens are discussed.
Collapse
|
15
|
Kato K, Takeuchi A, Akashi K, Eto M. Cyclophosphamide-Induced Tolerance in Allogeneic Transplantation: From Basic Studies to Clinical Application. Front Immunol 2020; 10:3138. [PMID: 32082305 PMCID: PMC7005582 DOI: 10.3389/fimmu.2019.03138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/24/2019] [Indexed: 01/02/2023] Open
Abstract
Immune tolerance against alloantigens plays an important role in the success of clinical organ and allogeneic hematopoietic stem cell transplantation. The mechanisms of immune tolerance to alloantigens have gradually been elucidated over time. Although there have been numerous reports to date on the induction of tolerance to alloantigens, the establishment of mixed chimerism is well-known to be crucial in the induction and maintenance of immune tolerance for either of the methods. Since the early 1980s, the murine system of cyclophosphamide (Cy)-induced tolerance has also been examined extensively. The present review focuses on studies conducted on Cy-induced immune tolerance. Clinical data of patients with allogeneic transplantation suggest that the posttransplant Cy method to induce immune tolerance has been successfully translated from basic studies into clinical practice.
Collapse
Affiliation(s)
- Koji Kato
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Ario Takeuchi
- Department of Urology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
16
|
Tanase AD, Sinescu I, Baston C, Tacu D, Domnisor L, Stefan L, Ranete A, Lipan L, Craciun O, Manea I, Bumbea H, Ciurea SO. Sequential kidney and allogeneic hematopoietic stem cell transplantation. Am J Hematol 2019; 94:E267-E270. [PMID: 31342545 DOI: 10.1002/ajh.25589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/17/2019] [Accepted: 07/20/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Alina D. Tanase
- Bone Marrow Transplantation UnitFundeni Clinical Institute Bucharest Romania
- University of Medicine Carol Davila Bucharest Romania
| | - Ioanel Sinescu
- Bone Marrow Transplantation UnitFundeni Clinical Institute Bucharest Romania
- Department for Uronephrology and Renal TransplantationFundeni Clinical Institute Bucharest Romania
| | - Catalin Baston
- Bone Marrow Transplantation UnitFundeni Clinical Institute Bucharest Romania
- Department for Uronephrology and Renal TransplantationFundeni Clinical Institute Bucharest Romania
| | - Dorina Tacu
- Bone Marrow Transplantation UnitFundeni Clinical Institute Bucharest Romania
| | - Liliana Domnisor
- Bone Marrow Transplantation UnitFundeni Clinical Institute Bucharest Romania
| | - Laura Stefan
- Bone Marrow Transplantation UnitFundeni Clinical Institute Bucharest Romania
| | - Adela Ranete
- Bone Marrow Transplantation UnitFundeni Clinical Institute Bucharest Romania
| | - Lavinia Lipan
- Bone Marrow Transplantation UnitFundeni Clinical Institute Bucharest Romania
| | - Oana Craciun
- Bone Marrow Transplantation UnitFundeni Clinical Institute Bucharest Romania
| | - Ioan Manea
- Bone Marrow Transplantation UnitFundeni Clinical Institute Bucharest Romania
| | - Horia Bumbea
- Department for Uronephrology and Renal TransplantationFundeni Clinical Institute Bucharest Romania
- University Titu Maiorescu Bucharest Romania
| | - Stefan O. Ciurea
- Department of HematologyEmergency University Hospital Bucharest Romania
- Department of Stem Cell Transplantation and Cellular TherapyDivision of Cancer Medicine, The University of Texas MD Anderson Cancer Center Houston Texas USA
| |
Collapse
|
17
|
Prosthetic Rehabilitation and Vascularized Composite Allotransplantation following Upper Limb Loss. Plast Reconstr Surg 2019; 143:1688-1701. [PMID: 31136485 DOI: 10.1097/prs.0000000000005638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Upper limb loss is a devastating condition with dramatic physical, psychological, financial, and social consequences. Improvements in the fields of prosthetics and vascularized composite allotransplantation have opened exciting new frontiers for treatment and rehabilitation following upper limb loss. Each modality offers a unique set of advantages and limitations with regard to the restoration of hand function following amputation. METHODS Presented in this article is a discussion outlining the complex considerations and decisions encountered when determining patient appropriateness for either prosthetic rehabilitation or vascularized composite allotransplantation following upper limb loss. In this review, the authors examine how psychosocial factors, nature of injury, rehabilitation course, functional outcomes, and risks and benefits may affect overall patient selection for either rehabilitative approach. RESULTS This review summarizes the current state of the literature. Advancements in both prosthetic and biological strategies demonstrate promise with regard to facilitating rehabilitation following upper limb loss. However, there remains a dearth of research directly comparing outcomes in prosthetic rehabilitation to that following upper extremity transplantation. CONCLUSIONS Few studies have performed a direct comparison between patients undergoing vascularized composite allotransplantation and those undergoing prosthetic rehabilitation. Upper extremity transplantation and prosthetic reconstruction should not be viewed as competing options, but rather as two treatment modalities with different risk-to-benefit profiles and indications.
Collapse
|
18
|
Thomson AW, Metes DM, Ezzelarab MB, Raïch-Regué D. Regulatory dendritic cells for human organ transplantation. Transplant Rev (Orlando) 2019; 33:130-136. [PMID: 31130302 DOI: 10.1016/j.trre.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/09/2019] [Indexed: 12/30/2022]
Abstract
Current immunosuppressive (IS) regimens used to prevent organ allograft rejection have well-recognized side effects, that include enhanced risk of infection and certain types of cancer, metabolic disorders, cardiovascular disease, renal complications and failure to control chronic allograft rejection. The life-long dependency of patients on these IS agents reflects their inability to induce donor-specific tolerance. Extensive studies in rodent and non-human primate models have demonstrated the ability of adoptively-transferred regulatory immune cells (either regulatory myeloid cells or regulatory T cells) to promote transplant tolerance. Consequently, there is considerable interest in the potential of regulatory immune cell therapy to allow safe minimization/complete withdrawal of immunosuppression and the promotion of organ transplant tolerance in the clinic. Here, we review the properties of regulatory dendritic cells (DCreg) with a focus on the approaches being taken to generate human DCreg for clinical testing. We also document the early phase clinical trials that are underway to assess DCreg therapy in clinical organ transplantation as well as in autoimmune disorders.
Collapse
Affiliation(s)
- Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Diana M Metes
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mohamed B Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dalia Raïch-Regué
- Nephropathies Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
19
|
|
20
|
Adipose-derived cellular therapies in solid organ and vascularized-composite allotransplantation. Curr Opin Organ Transplant 2018; 22:490-498. [PMID: 28873074 DOI: 10.1097/mot.0000000000000452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Controlling acute allograft rejection following vascularized composite allotransplantation requires strict adherence to courses of systemic immunosuppression. Discovering new methods to modulate the alloreactive immune response is essential for widespread application of vascularized composite allotransplantation. Here, we discuss how adipose-derived cellular therapies represent novel treatment options for immune modulation and tolerance induction in vascularized composite allotransplantation. RECENT FINDINGS Adipose-derived mesenchymal stromal cells are cultured from autologous or allogeneic adipose tissue and possess immunomodulatory qualities capable of prolonging allograft survival in animal models of vascularized composite allotransplantation. Similar immunosuppressive and immunomodulatory effects have been observed with noncultured adipose stromal-vascular-fraction-derived therapies, albeit publication of in-vivo stromal vascular fraction cell modulation in transplantation models is lacking. However, both stromal vascular fraction and adipose derived mesenchymal stem cell therapies have the potential to effectively modulate acute allograft rejection via recruitment and induction of regulatory immune cells. SUMMARY To date, most reports focus on adipose derived mesenchymal stem cells for immune modulation in transplantation despite their phenotypic plasticity and reliance upon culture expansion. Along with the capacity for immune modulation, the supplemental wound healing and vasculogenic properties of stromal vascular fraction, which are not shared by adipose derived mesenchymal stem cells, hint at the profound therapeutic impact stromal vascular fraction-derived treatments could have on controlling acute allograft rejection and tolerance induction in vascularized composite allotransplantation. Ongoing projects in the next few years will help design the best applications of these well tolerated and effective treatments that should reduce the risk/benefit ratio and allow more patients access to vascularized composite allotransplantation therapy.
Collapse
|
21
|
Chimerism: A Clinical Guide to Tolerance Induction. CHIMERISM 2018. [DOI: 10.1007/978-3-319-89866-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Mahr B, Granofszky N, Muckenhuber M, Wekerle T. Transplantation Tolerance through Hematopoietic Chimerism: Progress and Challenges for Clinical Translation. Front Immunol 2017; 8:1762. [PMID: 29312303 PMCID: PMC5743750 DOI: 10.3389/fimmu.2017.01762] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
The perception that transplantation of hematopoietic stem cells can confer tolerance to any tissue or organ from the same donor is widely accepted but it has not yet become a treatment option in clinical routine. The reasons for this are multifaceted but can generally be classified into safety and efficacy concerns that also became evident from the results of the first clinical pilot trials. In comparison to standard immunosuppressive therapies, the infection risk associated with the cytotoxic pre-conditioning necessary to allow allogeneic bone marrow engraftment and the risk of developing graft-vs.-host disease (GVHD) constitute the most prohibitive hurdles. However, several approaches have recently been developed at the experimental level to reduce or even overcome the necessity for cytoreductive conditioning, such as costimulation blockade, pro-apoptotic drugs, or Treg therapy. But even in the absence of any hazardous pretreatment, the recipients are exposed to the risk of developing GVHD as long as non-tolerant donor T cells are present. Total lymphoid irradiation and enriching the stem cell graft with facilitating cells emerged as potential strategies to reduce this peril. On the other hand, the long-lasting survival of kidney allografts, seen with transient chimerism in some clinical series, questions the need for durable chimerism for robust tolerance. From a safety point of view, loss of chimerism would indeed be favorable as it eliminates the risk of GVHD, but also complicates the assessment of tolerance. Therefore, other biomarkers are warranted to monitor tolerance and to identify those patients who can safely be weaned off immunosuppression. In addition to these safety concerns, the limited efficacy of the current pilot trials with approximately 40-60% patients becoming tolerant remains an important issue that needs to be resolved. Overall, the road ahead to clinical routine may still be rocky but the first successful long-term patients and progress in pre-clinical research provide encouraging evidence that deliberately inducing tolerance through hematopoietic chimerism might eventually make it from dream to reality.
Collapse
Affiliation(s)
- Benedikt Mahr
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| | - Nicolas Granofszky
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| | - Moritz Muckenhuber
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Abstract
Renal transplantation has become the preferred treatment for end stage kidney failure. Although short-term graft survival has significantly improved as advances in immunosuppression have occurred, long-term patient and graft survival have not. Approximately only 50% of renal transplant recipients are alive at 10 years due to the toxicities of immunosuppression and alloimmunity. Emerging research on cell-based therapies is opening a new door for patients to receive the organs they need without sacrificing quality of life and longevity because of drug-based immunosuppression. Research has focused on inducing tolerance, a state in which the body accepts the transplant and graft function is stable. Cell-based therapies to facilitate chimerism and achieve tolerance in major histocompatibility disparate recipients have been developed in mouse, swine, canine, and nonhuman primate models. These findings are now being translated into the clinic in several trials currently underway. Protocols that use a combination of traditional therapeutic agents paired with cell populations including hematopoietic stem cells, regulatory T cells, and facilitating cells are being conducted with the objective to harness the donor immune system to protect the transplanted tissue. The benefits and feasibility of the clinical application of cell-based therapy has been demonstrated, and promising results have been achieved. Here we discuss the preclinical work that has led to the clinical application of the various approaches and a summary of the most current clinical data from groups throughout the world.
Collapse
|
24
|
Radu CA, Fischer S, Diehm Y, Hetzel O, Neubrech F, Dittmar L, Kleist C, Gebhard MM, Terness P, Kneser U, Kiefer J. The combination of mitomycin-induced blood cells with a temporary treatment of ciclosporin A prolongs allograft survival in vascularized composite allotransplantation. Langenbecks Arch Surg 2017; 403:83-92. [PMID: 28823033 DOI: 10.1007/s00423-017-1616-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 08/10/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Vascularized composite allotransplantation (VCA) is a rapidly expanding field of transplantation and provides a potential treatment for complex tissue defects. Peripheral blood mononuclear cells (PBMCs) shortly incubated with the antibiotic and chemotherapeutic agent mitomycin C (MMC) can suppress allogeneic T cell response and control allograft rejection in various organ transplantation models. MMC-incubated PBMCs (MICs) are currently being tested in a phase I clinical trial in kidney transplant patients. Previous studies with MICs in a complex VCA model showed the immunomodulatory potential of these cells. The aim of this study is to optimize and evaluate the use of MICs in combination with a standard immunosuppressive drug in VCA. METHODS Fully mismatched rats were used as hind limb donors [Lewis (RT11)] and recipients [Brown-Norway (RT1n)]. Sixty allogeneic hind limb transplantations were performed in six groups. Group A received donor-derived MICs combined with a temporary ciclosporin A (CsA) treatment. Group B received MICs in combination with a temporarily administered reduced dose of CsA. Group C served as a control and received a standard CsA dose temporarily without an additional administration of MICs, whereas Group D was solely medicated with a reduced CsA dose. Group E received no immunosuppressive therapy, neither CsA nor MICs. Group F was given a continuous standard immunosuppressive regimen consisting of CsA and prednisolone. The endpoint of the study was the onset of allograft rejection which was assessed clinically and histologically. RESULTS In group A and B, the rejection-free interval of the allograft was significantly prolonged to an average of 23.1 ± 1.7 and 24.7 ± 1.8 days compared to the corresponding control groups (p < 0.01). Rejection in groups C, D, and E was noted after 14.3 ± 1.1, 7.8 ± 0.7, and 6.9 ± 0.6 days. No rejection occurred in control group F during the follow-up period of 100 days. No adverse events have been noted. CONCLUSION The findings of this study show that the combination of MICs with a temporary CsA treatment significantly prolongs the rejection-free interval in a complex VCA model. The combination of MICs with CsA showed no adverse events such as graft-versus-host disease. MICs, which are generated by a simple and reliable in vitro technique, represent a potential therapeutic tool for prolonging allograft survival through immunomodulation.
Collapse
Affiliation(s)
- Christian Andreas Radu
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Sebastian Fischer
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Yannick Diehm
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Otto Hetzel
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Florian Neubrech
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Laura Dittmar
- Transplantation Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany
| | - Christian Kleist
- Transplantation Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany.,Department of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany
| | - Martha Maria Gebhard
- Department of Experimental Surgery, University of Heidelberg, Heidelberg, Germany
| | - Peter Terness
- Transplantation Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Jurij Kiefer
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany.
| |
Collapse
|
25
|
Hahm E, Peev V, Reiser J. Extrarenal determinants of kidney filter function. Cell Tissue Res 2017; 369:211-216. [PMID: 28560690 DOI: 10.1007/s00441-017-2635-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/28/2017] [Indexed: 12/27/2022]
Abstract
The kidney is an organ involved in cross talk with many human organs. The link between the immune system and the kidney has been studied in some detail, although data precisely elucidating their interaction are sparse, in particular with regard to the function of the kidney filter apparatus. Current research suggests that an understanding of the impairment of this cross talk between the bone marrow, as a fundament of the immune system and the kidney will provide meaningful insights into the pathophysiological mechanisms of impaired kidney filter function. Circulating factors have long been implicated in the pathogenesis of idiopathic nephrotic syndrome, particularly focal segmental glomerulosclerosis (FSGS) and its recurrence. Soluble urokinase receptor (suPAR) has emerged as a circulating factor responsible for FSGS and also as an early predictive marker for the development of various renal diseases. The bone marrow has recently been revealed as a predominant source of suPAR with deleterious effects on the kidney filter. These new findings have led to bone marrow or hematopoietic stem cell transplants being considered as potential therapeutic options for preventing the post-transplantation recurrence of FSGS or even as a treatment for the original disease associated with high suPAR levels. Whereas bone marrow transplantation for patients with pre-existing chronic kidney disease is challenging, recent clinical trials have demonstrated the promising outcome of combined bone marrow and kidney transplantation in patients with kidney failure. In this review, with its brief update on suPAR, we describe the critical new role of the bone marrow in the pathogenesis of the kidney disease process and the functional connection between these two organs through the soluble mediator, suPAR. We also comment on the feasibility of bone marrow transplants for the treatment of patients with chronic renal failure arising from recurrent FSGS.
Collapse
Affiliation(s)
- Eunsil Hahm
- Department of Internal Medicine, Rush University Medical Center, Chicago, Ill., USA
| | - Vasil Peev
- Department of Internal Medicine, Rush University Medical Center, Chicago, Ill., USA. .,Rush University Transplant Program, 1725 W. Harrison Street, Suite 161, Chicago, IL, 60612, USA.
| | - Jochen Reiser
- Department of Internal Medicine, Rush University Medical Center, Chicago, Ill., USA
| |
Collapse
|
26
|
Tolerogenic interactions between CD8 + dendritic cells and NKT cells prevent rejection of bone marrow and organ grafts. Blood 2017; 129:1718-1728. [PMID: 28096089 DOI: 10.1182/blood-2016-07-723015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022] Open
Abstract
The combination of total lymphoid irradiation and anti-T-cell antibodies safely induces immune tolerance to combined hematopoietic cell and organ allografts in humans. Our mouse model required host natural killer T (NKT) cells to induce tolerance. Because NKT cells normally depend on signals from CD8+ dendritic cells (DCs) for their activation, we used the mouse model to test the hypothesis that, after lymphoid irradiation, host CD8+ DCs play a requisite role in tolerance induction through interactions with NKT cells. Selective deficiency of either CD8+ DCs or NKT cells abrogated chimerism and organ graft acceptance. After radiation, the CD8+ DCs increased expression of surface molecules required for NKT and apoptotic cell interactions and developed suppressive immune functions, including production of indoleamine 2,3-deoxygenase. Injection of naive mice with apoptotic spleen cells generated by irradiation led to DC changes similar to those induced by lymphoid radiation, suggesting that apoptotic body ingestion by CD8+ DCs initiates tolerance induction. Tolerogenic CD8+ DCs induced the development of tolerogenic NKT cells with a marked T helper 2 cell bias that, in turn, regulated the differentiation of the DCs and suppressed rejection of the transplants. Thus, reciprocal interactions between CD8+ DCs and invariant NKT cells are required for tolerance induction in this system that was translated into a successful clinical protocol.
Collapse
|
27
|
Bone marrow chimerism as a strategy to produce tolerance in solid organ allotransplantation. Curr Opin Organ Transplant 2016; 21:595-602. [PMID: 27805947 DOI: 10.1097/mot.0000000000000366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW Clinical transplant tolerance has been most successfully achieved combining hematopoietic chimerism with kidney transplantation. This review outlines this strategy in animal models and human transplantation, and possible clinical challenges. RECENT FINDINGS Kidney transplant tolerance has been achieved through chimerism in several centers beginning with Massachusetts General Hospital's success with mixed chimerism in human leukocyte antigen (HLA)-mismatched patients and the Stanford group with HLA-matched patients, and the more recent success of the Northwestern protocol achieving full chimerism. This has challenged the original view that stable mixed chimerism is necessary for organ graft tolerance. However, among the HLA-mismatched kidney transplant-tolerant patients, loss of mixed chimerism does not lead to renal-graft rejection, and the development of host Foxp3+ regulatory T cells has been observed. Recent animal models suggest that graft tolerance through bone marrow chimerism occurs through both clonal deletion and regulatory immune cells. Further, Tregs have been shown to improve chimerism in animal models. SUMMARY Animal studies continue to suggest ways to improve our current clinical strategies. Advances in chimerism protocols suggest that tolerance may be clinically achievable with relative safety for HLA-mismatched kidney transplants.
Collapse
|
28
|
Timsit MO, Branchereau J, Thuret R, Kleinclauss F. [Renal transplantation in 2046: Future and perspectives]. Prog Urol 2016; 26:1132-1142. [PMID: 27665406 DOI: 10.1016/j.purol.2016.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To report major findings that may build the future of kidney transplantation. MATERIAL AND METHODS Relevant publications were identified through Medline (http://www.ncbi.nlm.nih.gov) and Embase (http://www.embase.com) database from 1960 to 2016 using the following keywords, in association, "bio-engineering; heterotransplantation; immunomodulation; kidney; regenerative medicine; xenotransplantation". Articles were selected according to methods, language of publication and relevance. A total of 5621 articles were identified including 2264 for xenotransplantation, 1058 for regenerative medicine and 2299 for immunomodulation; after careful selection, 86 publications were eligible for our review. RESULTS Despite genetic constructs, xenotransplantation faces the inevitable obstacle of species barrier. Uncertainty regarding xenograft acceptance by recipients as well as ethical considerations due to the debatable utilization of animal lives, are major limits for its future. Regenerative medicine and tridimensional bioprinting allow successful implantation of organs. Bioengineering, using decellularized tissue matrices or synthetic scaffold, seeded with pluripotent cells and assembled using bioreactors, provide exciting results but remain far for reconstituting renal complexity and vascular patency. Immune tolerance may be achieved through a tough initial T-cell depletion or a combined haplo-identical bone marrow transplant leading to lymphohematopoietic chimerism. CONCLUSION Current researches aim to increase the pool of organs available for transplantation (xenotransplants and bio-artificial kidneys) and to increase allograft survival through the induction of immune tolerance. Reported results suggest the onset of a thrilling new era for renal transplantation providing end-stage renal disease-patients with an improved survival and quality of life.
Collapse
Affiliation(s)
- M-O Timsit
- Service d'urologie, hôpital européen Georges-Pompidou, AP-HP, 20, rue Leblanc, 75015 Paris, France; Université Paris-Descartes, 75006 Paris, France.
| | - J Branchereau
- Service d'urologie et transplantation, CHU de Nantes, 44000 Nantes, France
| | - R Thuret
- Service d'urologie et transplantation rénale, CHU de Montpellier, 34090 Montpellier, France; Université de Montpellier, 34090 Montpellier, France
| | - F Kleinclauss
- Service d'urologie et transplantation rénale, CHRU de Besançon, 25000 Besançon, France; Université de Franche-Comté, 25000 Besançon, France; Inserm UMR 1098, 25000 Besançon, France
| |
Collapse
|