1
|
Guo H, Liu C, Kang L, Liu C, Liu Y. Safety and efficacy of eltrombopag in patients with aplastic anemia: a systematic review and meta-analysis of randomized controlled trials. Hematology 2024; 29:2335419. [PMID: 38553907 DOI: 10.1080/16078454.2024.2335419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024] Open
Abstract
OBJECTIVE This article conducts a systematic review of eltrombopag combined with immunosuppressive therapy for the treatment of aplastic anemia (AA), to demonstrate the effectiveness and safety of eltrombopag. METHODS PubMed, Cochrane Library, Embase, OVID, Web of Science, China National Knowledge Infrastructure, and Wanfang databases were searched. Studies that met the inclusion criteria were collected, ranging from the establishment of the database to August 2023. Two reviewers performed meta-analyses using the Cochrane systematic review method and RevMan 5.3 software. RESULTS This meta-analysis enrolled 5 studies with a total of 542 AA patients, including 274 in the experimental group and 268 in the control group. Meta-analyses were performed for efficacy and adverse reactions. The endpoint of effects included 6-month complete response (CR), 6-month partial response (PR), and 6-month overall response (OR). Eltrombopag combined with immunotherapy showed significant improvements in 6-month CR (OR: 2.20; 95% CI;1.54-3.12; P < 0.0001) and 6-month OR (OR = 3.66, 95% CI 2.39-5.61, P < 0.001)compared to immunosuppressive therapy for AA patients. In terms of safety, eltrombopag combined with immunosuppressive therapy showed significantly increased pigment deposition and abnormal liver function compared to immunosuppressive therapy alone. CONCLUSION Compared to immunosuppressive therapy alone, eltrombopag combined with immunosuppressive therapy showed significant improvements in 6-month CR and 6-month OR. However, it also resulted in increased pigment deposition and abnormal liver function in terms of safety.
Collapse
Affiliation(s)
- Huaipeng Guo
- Department of Hematopathology, Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Cangchun Liu
- Department of Hematopathology, Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Lei Kang
- Department of Cardiology, Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Cong Liu
- Department of Hematopathology, Xi'an International Medical Center Hospital, Xi'an, People's Republic of China
| | - Ying Liu
- Department of Hematopathology, Xi'an International Medical Center Hospital, Xi'an, People's Republic of China
| |
Collapse
|
2
|
Marcos-Peña S, Fernández-Pernia B, Provan D, González-López TJ. Tapering and Sustained Remission of Thrombopoietin Receptor Agonists (TPO-RAs): Is it Time for Paediatric ITP? Adv Ther 2024; 41:3771-3777. [PMID: 39162982 DOI: 10.1007/s12325-024-02951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024]
Abstract
Thrombopoietin receptor agonists (TPO-Ras; romiplostim/eltrombopag/avatrombopag) have demonstrated high efficacy rates (59-88%) and a good safety profile in clinical trials with adult patients with immune thrombocytopenia (ITP). Similar efficacy and safety results have been observed with romiplostim and eltrombopag in paediatric cohorts. Continuous treatment with TPO-RAs has shown durable responses with long-term use, up to 3 years. The effect of TPO-RAs was generally considered transient, as platelet counts tended to drop to baseline values after a short period of time (about 2 weeks), unless treatment was maintained. Several groups have reported successful discontinuation of TPO-RAs without the need for concomitant treatments. This is referred to as sustained remission off treatment (SROT). Both short- and medium-term treatment with TPO-RAs may reduce costs to our healthcare systems and, more importantly, may reduce the potential side effects that may be associated with continuous TPO-RA treatment. The issue of tapering and discontinuation of TPO-RAs in paediatric patients with ITP has received little attention to date. Given that paediatric ITP has much higher rates of spontaneous remission than ITP in adults, we consider that the possibility of SROT of TPO-RAs in paediatric patients with ITP is a neglected but very relevant issue in this subtype of the disease.
Collapse
Affiliation(s)
- Susana Marcos-Peña
- San Agustín Health Center, Burgos Primary Care Management, Burgos, Spain
| | | | - Drew Provan
- Department of Haematology, Barts and The London School of Medicine, London, UK
| | - Tomás José González-López
- Hematology Department, Hospital Universitario de Burgos, Avenida Islas Baleares, 3, 09006, Burgos, Spain.
| |
Collapse
|
3
|
Semple JW, Schifferli A, Cooper N, Saad H, Mytych DT, Chea LS, Newland A. Immune thrombocytopenia: Pathophysiology and impacts of Romiplostim treatment. Blood Rev 2024; 67:101222. [PMID: 38942688 DOI: 10.1016/j.blre.2024.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune bleeding disease caused by immune-mediated platelet destruction and decreased platelet production. ITP is characterized by an isolated thrombocytopenia (<100 × 109/L) and increased risk of bleeding. The disease has a complex pathophysiology wherein immune tolerance breakdown leads to platelet and megakaryocyte destruction. Therapeutics such as corticosteroids, intravenous immunoglobulins (IVIg), rituximab, and thrombopoietin receptor agonists (TPO-RAs) aim to increase platelet counts to prevent hemorrhage and increase quality of life. TPO-RAs act via stimulation of TPO receptors on megakaryocytes to directly stimulate platelet production. Romiplostim is a TPO-RA that has become a mainstay in the treatment of ITP. Treatment significantly increases megakaryocyte maturation and growth leading to improved platelet production and it has recently been shown to have additional immunomodulatory effects in treated patients. This review will highlight the complex pathophysiology of ITP and discuss the usage of Romiplostim in ITP and its ability to potentially immunomodulate autoimmunity.
Collapse
Affiliation(s)
- John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden, Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden; Departments of Pharmacology, Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, USA.
| | - Alexandra Schifferli
- Department of Hematology/Oncology, University Children's Hospital Basel, Basel, Switzerland
| | | | | | | | | | - Adrian Newland
- Barts and The London School of Medicine and Dentistry, London, UK.
| |
Collapse
|
4
|
Wang L, Wang H, Zhu M, Ni X, Sun L, Wang W, Xie J, Li Y, Xu Y, Wang R, Han S, Zhang P, Peng J, Hou M, Hou Y. Platelet-derived TGF-β1 induces functional reprogramming of myeloid-derived suppressor cells in immune thrombocytopenia. Blood 2024; 144:99-112. [PMID: 38574321 DOI: 10.1182/blood.2023022738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
ABSTRACT Platelet α-granules are rich in transforming growth factor β1 (TGF-β1), which is associated with myeloid-derived suppressor cell (MDSC) biology. Responders to thrombopoietin receptor agonists (TPO-RAs) revealed a parallel increase in the number of both platelets and MDSCs. Here, anti-CD61 immune-sensitized splenocytes were transferred into severe combined immunodeficient mice to establish an active murine model of immune thrombocytopenia (ITP). Subsequently, we demonstrated that TPO-RAs augmented the inhibitory activities of MDSCs by arresting plasma cells differentiation, reducing Fas ligand expression on cytotoxic T cells, and rebalancing T-cell subsets. Mechanistically, transcriptome analysis confirmed the participation of TGF-β/Smad pathways in TPO-RA-corrected MDSCs, which was offset by Smad2/3 knockdown. In platelet TGF-β1-deficient mice, TPO-RA-induced amplification and enhanced suppressive capacity of MDSCs was waived. Furthermore, our retrospective data revealed that patients with ITP achieving complete platelet response showed superior long-term outcomes compared with those who only reach partial response. In conclusion, we demonstrate that platelet TGF-β1 induces the expansion and functional reprogramming of MDSCs via the TGF-β/Smad pathway. These data indicate that platelet recovery not only serves as an end point of treatment response but also paves the way for immune homeostasis in immune-mediated thrombocytopenia.
Collapse
Affiliation(s)
- Lingjun Wang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Haoyi Wang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Mingfang Zhu
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Xiaofei Ni
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lu Sun
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Wanru Wang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Jie Xie
- Department of Hematology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yubin Li
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Yitong Xu
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Ruting Wang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Shouqing Han
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Ping Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| |
Collapse
|
5
|
Liu L, Xiang Y, Shao L, Yuan C, Song X, Sun M, Liu Y, Zhang X, Du S, Hou M, Peng J, Shi Y. E3 ubiquitin ligase casitas B-lineage lymphoma-b modulates T-cell anergic resistance via phosphoinositide 3-kinase signaling in patients with immune thrombocytopenia. J Thromb Haemost 2024; 22:1202-1214. [PMID: 38184203 DOI: 10.1016/j.jtha.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/01/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND The E3 ubiquitin ligase casitas B-lineage lymphoma-b (CBLB) is a newly identified component of the ubiquitin-dependent protein degradation system and is considered an important negative regulator of immune cells. CBLB is essential for establishing a threshold of T-cell activation and regulating peripheral T-cell tolerance through various mechanisms. However, the involvement of CBLB in the pathogenesis of immune thrombocytopenia (ITP) is unknown. OBJECTIVES We aimed to investigate the expression and role of CBLB in CD4+ T cells obtained from patients with ITP through quantitative proteomics analyses. METHODS CD4+ T cells were transfected with adenoviral vectors overexpressing CBLB to clarify the effect of CBLB on anergic induction of T cells in patients with ITP. DNA methylation levels of the CBLB promoter and 5' untranslated region (UTR) in patient-derived CD4+ T cells were detected via MassARRAY EpiTYPER assay (Agena Bioscience). RESULTS CD4+ T cells from patients with ITP showed resistance to anergic induction, highly activated phosphoinositide 3-kinase-protein kinase B (AKT) signaling, decreased CBLB expression, and 5' UTR hypermethylation of CBLB. CBLB overexpression in T cells effectively attenuated the elevated phosphorylated protein kinase B level and resistance to anergy. Low-dose decitabine treatment led to significantly elevated levels of CBLB expression in CD4+ T cells from 7 patients showing a partial or complete response. CONCLUSION These results indicate that the 5' UTR hypermethylation of CBLB in CD4+ T cells induces resistance to T-cell anergy in ITP. Thus, the upregulation of CBLB expression by low-dose decitabine treatment may represent a potential therapeutic approach to ITP.
Collapse
Affiliation(s)
- Lu Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong, China
| | - Yujiao Xiang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Linlin Shao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chenglu Yuan
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong, China
| | - Xiaofeng Song
- Department of Hand and Foot Surgery, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong, China
| | - Meng Sun
- Jinan Vocational College of Nursing, Jinan, Shandong, China
| | - Yanfeng Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xianlei Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shenghong Du
- Department of Hematology, Taian Central Hospital, Taian, Shandong, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Clinical Research Center in Hematological Diseases, Jinan, Shandong, China; Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yan Shi
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
6
|
Wang Z, Wang N, Juntao O, Ma J, Dong S, Meng J, Liu J, Chen Z, Cheng X, Wu R. Long-term eltrombopag in children with chronic immune thrombocytopenia: A single-centre extended real-life observational study in China. Br J Haematol 2024; 204:1017-1023. [PMID: 38087811 DOI: 10.1111/bjh.19253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 03/14/2024]
Abstract
We have previously confirmed the efficacy and safety of eltrombopag (ELT) in children with chronic immune thrombocytopenia (cITP). However, data on both long-term exposure and early use of TPO-RAs are lacking, so further 'field-practice' evidence on treatment is required. Here, we report the long-term follow-up results (between September 2018 and June 2023) of our previous study. The main objective of this study was to retrospectively review our large institutional experience with ITP patients previously enrolled in our paediatric cITP study. We had more than 3 years of follow-up by June 2023 for treatment patterns and outcomes. A total of 65 patients (28 males) were enrolled, with a median age at ELT initiation of 6.34 (range 1.65, 14.13) years and a follow-up of 47.07 (36.00, 57.00) months, with 40.36 (10.53, 56.83) months of ELT therapy at the time of analysis. In total, 29.23% (19/65) of patients discontinued ELT due to stable response, and 18.46% (12/65) of patients switched to other ITP therapies due to loss of response (LOR) after 19.13 (14.53, 26.37) months. Of the 19 patients who discontinued ELT due to a stable response, 24.62% (16/65) achieved a 12 m sustained response off-treatment (SRoT); the last recorded platelet count ranged from 56 to 166 × 109 /L (median 107 × 109/L); and 4.62% (3/65) patients relapsed at 5, 6 and 9 months after discontinuation. Of the 12 patients who LOR to ELT after 19.13 (14.53, 26.37) months of therapy, four switched to avatrombopag, three switched to hetrombopag, two switched to traditional Chinese medicine (TCM), one underwent splenectomy and two received additional prednisolone under ELT treatment. Thirty-four patients who tapered and maintained a durable response. The patients with LOR and the patients with tapering were compared; the platelet count at the start of ELT is lower, and the time to response is longer in the patients with LOR. The platelet count at the start of ELT and the time to response may be the predictive factors for LOR during ELT treatment. We report more than 3 years of long-term clinical data on children with cITP using ELT. These data do not raise any new safety concerns regarding the long-term use of ELT in children with cITP.
Collapse
Affiliation(s)
- Zhifa Wang
- Hemophilia Comprehensive Care Center, Hematology Center, Beijing Key Laboratory of Pediatric Hematology-Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Nan Wang
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Ouyang Juntao
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jingyao Ma
- Hemophilia Comprehensive Care Center, Hematology Center, Beijing Key Laboratory of Pediatric Hematology-Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shuyue Dong
- Hemophilia Comprehensive Care Center, Hematology Center, Beijing Key Laboratory of Pediatric Hematology-Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jinxi Meng
- Hemophilia Comprehensive Care Center, Hematology Center, Beijing Key Laboratory of Pediatric Hematology-Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jingjing Liu
- Hemophilia Comprehensive Care Center, Hematology Center, Beijing Key Laboratory of Pediatric Hematology-Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhenping Chen
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaoling Cheng
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Runhui Wu
- Hemophilia Comprehensive Care Center, Hematology Center, Beijing Key Laboratory of Pediatric Hematology-Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
7
|
Cao J, Ji L, Zhan Y, Shao X, Xu P, Wu B, Chen P, Cheng L, Zhuang X, Ou Y, Hua F, Sun L, Li F, Chen H, Zhou Z, Cheng Y. MST4 kinase regulates immune thrombocytopenia by phosphorylating STAT1-mediated M1 polarization of macrophages. Cell Mol Immunol 2023; 20:1413-1427. [PMID: 37833401 PMCID: PMC10687271 DOI: 10.1038/s41423-023-01089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Primary immune thrombocytopenia (ITP) is an autoimmune hemorrhagic disorder in which macrophages play a critical role. Mammalian sterile-20-like kinase 4 (MST4), a member of the germinal-center kinase STE20 family, has been demonstrated to be a regulator of inflammation. Whether MST4 participates in the macrophage-dependent inflammation of ITP remains elusive. The expression and function of MST4 in macrophages of ITP patients and THP-1 cells, and of a macrophage-specific Mst4-/- (Mst4ΔM/ΔM) ITP mouse model were determined. Macrophage phagocytic assays, RNA sequencing (RNA-seq) analysis, immunofluorescence analysis, coimmunoprecipitation (co-IP), mass spectrometry (MS), bioinformatics analysis, and phosphoproteomics analysis were performed to reveal the underlying mechanisms. The expression levels of the MST4 gene were elevated in the expanded M1-like macrophages of ITP patients, and this elevated expression of MST4 was restored to basal levels in patients with remission after high-dose dexamethasone treatment. The expression of the MST4 gene was significantly elevated in THP-1-derived M1 macrophages. Silencing of MST4 decreased the expression of M1 macrophage markers and cytokines, and impaired phagocytosis, which could be increased by overexpression of MST4. In a passive ITP mouse model, macrophage-specific depletion of Mst4 reduced the numbers of M1 macrophages in the spleen and peritoneal lavage fluid, attenuated the expression of M1 cytokines, and promoted the predominance of FcγRIIb in splenic macrophages, which resulted in amelioration of thrombocytopenia. Downregulation of MST4 directly inhibited STAT1 phosphorylation, which is essential for M1 polarization of macrophages. Our study elucidates a critical role for MST4 kinase in the pathology of ITP and identifies MST4 kinase as a potential therapeutic target for refractory ITP.
Collapse
Affiliation(s)
- Jingjing Cao
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lili Ji
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanxia Zhan
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xia Shao
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Pengcheng Xu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Boting Wu
- Department of Transfusion Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Pu Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Luya Cheng
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xibing Zhuang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yang Ou
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Fanli Hua
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, 201700, China
| | - Lihua Sun
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, 201700, China
| | - Feng Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, 201700, China
| | - Hao Chen
- Department of Thoracic Surgery, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Yunfeng Cheng
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, 201700, China.
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
González-López TJ, Schifferli A. Early immunomodulation in immune thrombocytopenia-A report of the ICIS meeting in Lenzerheide, Switzerland 2022. Br J Haematol 2023; 203:101-111. [PMID: 37735547 DOI: 10.1111/bjh.19082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023]
Abstract
The only way to prevent immune thrombocytopenia (ITP) from becoming refractory would be to restore tolerance to platelets at an early phase of the disease. Numerous immune alterations probably accumulate in chronic ITP; thus, the chances of cure decrease significantly with time. Currently, sustained remission off treatment (SROT) is a clinical definition describing patients who can discontinue their ITP treatment without risk and maintain a state of remission. Different treatment strategies are presently being evaluated with the goal of attaining SROT, mostly combining drugs targeting the innate and/or the adaptive immune system, the inflammation state, so as increasing the platelet load. In this sense, thrombopoietin receptor agonists (TPO-RAs) have shown promising results if used as upfront treatment. TPO-RAs seem to exhibit immunomodulation and immune tolerance properties, increasing not only the platelet antigen mass but also increasing the transforming growth factor-β concentration, and stimulating regulatory T and B lymphocytes. However, more immunological studies are needed to establish accurate molecular alterations in ITP that are potentially reversed with treatments.
Collapse
Affiliation(s)
| | - Alexandra Schifferli
- Department of Haematology/Oncology, University Children's Hospital Basel, Basel, Switzerland
| |
Collapse
|
9
|
Sanfilippo KM, Cuker A. TPO-RAs and ITP remission: cause or coincidence? Blood 2023; 141:2790-2791. [PMID: 37289475 DOI: 10.1182/blood.2023020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Affiliation(s)
- Kristen M Sanfilippo
- Washington University School of Medicine St. Louis
- John Cochran St. Louis Veterans Administration Medical Center
| | | |
Collapse
|
10
|
González-López TJ, Newland A, Provan D. Current Concepts in the Diagnosis and Management of Adult Primary Immune Thrombocytopenia: Our Personal View. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:815. [PMID: 37109773 PMCID: PMC10143742 DOI: 10.3390/medicina59040815] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Primary immune thrombocytopenia (ITP) is an acquired blood disorder that causes a reduction in circulating platelets with the potential for bleeding. The incidence of ITP is slightly higher in adults and affects more women than men until 60 years, when males are more affected. Despite advances in basic science, primary ITP remains a diagnosis of exclusion. The disease is heterogeneous in its clinical behavior and response to treatment. This reflects the complex underlying pathophysiology, which remains ill-understood. Platelet destruction plays a role in thrombocytopenia, but underproduction is also a major contributing factor. Active ITP is a proinflammatory autoimmune disease involving abnormalities within the T and B regulatory cell compartments, along with several other immunological abnormalities. Over the last several years, there has been a shift from using immunosuppressive therapies for ITP towards approved treatments, such as thrombopoietin receptor agonists. The recent COVID-19 pandemic has hastened this management shift, with thrombopoietin receptor agonists becoming the predominant second-line treatment. A greater understanding of the underlying mechanisms has led to the development of several targeted therapies, some of which have been approved, with others still undergoing clinical development. Here we outline our view of the disease, including our opinion about the major diagnostic and therapeutic challenges. We also discuss our management of adult ITP and our placement of the various available therapies.
Collapse
Affiliation(s)
| | - Adrian Newland
- Academic Haematology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2BB, UK
| | - Drew Provan
- Academic Haematology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2BB, UK
| |
Collapse
|
11
|
González-López TJ, Provan D. Sustained Remission Off-Treatment (SROT) of TPO-RAs: The Burgos Ten-Step Eltrombopag Tapering Scheme. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:659. [PMID: 37109617 PMCID: PMC10145072 DOI: 10.3390/medicina59040659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Background and Objectives: TPO-RAs (romiplostim/eltrombopag/avatrombopag) have broadly demonstrated high efficacy rates (59-88%), durable responses (up to three years) and a satisfactory safety profile in clinical trials. The effect of TPO-RAs is classically considered to be transient because platelet numbers usually dropped rapidly to baseline unless therapy was maintained. However, several groups have reported the possibility of successfully discontinuing TPO-RAs in some patients without further need for concomitant treatments. This concept is usually referred as sustained remission off-treatment (SROT). Materials and Methods: Unfortunately, we still lack predictors of the response to discontinuation even after the numerous biological, clinical and in vitro studies performed to study this phenomenon. The frequency of successful discontinuation is matter of controversy, although a percentage in the range of 25-40% may probably be considered a consensus. Here, we describe all major routine clinical practice studies and reviews that report the current position on this topic and compare them with our own results in Burgos. Results: We report our Burgos ten-step eltrombopag tapering scheme with which we have achieved an elevated percentage rate of success (70.3%) in discontinuing treatment. Conclusions: We hope this protocol may help successfully taper and discontinue TPO-RAs in daily clinical practice.
Collapse
Affiliation(s)
| | - Drew Provan
- Academic Haematology Unit, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2BB, UK;
| |
Collapse
|
12
|
Wang H, Yu T, An N, Sun Y, Xu P, Han P, Zhao Y, Wang L, Ni X, Li Y, Li G, Liu Y, Peng J, Hou M, Hou Y. Enhancing regulatory T-cell function via inhibition of high mobility group box 1 protein signaling in immune thrombocytopenia. Haematologica 2023; 108:843-858. [PMID: 36263841 PMCID: PMC9973480 DOI: 10.3324/haematol.2022.281557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
Primary immune thrombocytopenia (ITP) is the most common acquired autoimmune bleeding disorder. Abnormally increased levels of High Mobility Group Box 1 (HMGB1) protein associate with thrombocytopenia and therapeutic outcome in ITP. Previous studies proposed that a natural inhibitor of HMGB1, 18β-glycyrrhetinic acid (18β-GA), could be used for its anti-inflammatory and immune-modulatory effects, although its ability to correct immune balance in ITP is unclear. In this study, we showed that plasma HMGB1 correlated negatively with platelet counts in ITP patients, and confirmed that 18β-GA stimulated the production of regulatory T cells (Treg), restored the balance of CD4+ T-cell subsets and enhanced the suppressive function of Treg through blocking the effect on HMGB1 in patients with ITP. HMGB1 short hairpin RNA interference masked the effect of 18β-GA in Treg of ITP patients. Furthermore, we found that 18β-GA alleviated thrombocytopenia in mice with ITP. Briefly, anti-CD61 immune-sensitized splenocytes were transferred into severe combined immunodeficient mice to induce a murine model of severe ITP. The proportion of circulating Treg increased significantly, while the level of plasma HMGB1 and serum antiplatelet antibodies decreased significantly in ITP mice along 18β-GA treatment. In addition, 18β-GA reduced phagocytic activity of macrophages towards platelets both in ITP patients and ITP mice. These results indicate that 18β-GA has the potential to restore immune balance in ITP via inhibition of HMGB1 signaling. In short, this study reveals the role of HMGB1 in ITP, which may serve as a potential target for thrombocytopenia therapy.
Collapse
Affiliation(s)
- Haoyi Wang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Tianshu Yu
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Ning An
- Laboratory of Cancer Signaling, Interdisciplinary Cluster for Applied Genoproteomics (GIGA) Stem Cells, University of Liège, CHU, Sart-Tilman, Liège, 4000 Belgium
| | - Yunqi Sun
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Pengcheng Xu
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Panpan Han
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Yajing Zhao
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Lingjun Wang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Xiaofei Ni
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Yubin Li
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Guosheng Li
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Yanfeng Liu
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan.
| | - Yu Hou
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan.
| |
Collapse
|
13
|
Sun HP, You JH, Chen QS, Wang J, Li JM. [Maintenance of efficacy and its predictors after discontinuation of eltrombopag in adults with primary immune thrombocytopenia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:32-37. [PMID: 36987720 PMCID: PMC10067367 DOI: 10.3760/cma.j.issn.0253-2727.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 03/30/2023]
Abstract
Objective: To determine the efficacy of eltrombopag for primary immune thrombocytopenia (ITP) in adults and the predictive factors for treatment-free response (TFR) . Methods: Clinical data of adults with ITP who received eltrombopag from June 14, 2013 to May 31, 2021 in the Hematology Department of Ruijin Hospital affiliated with Shanghai Jiao Tong University Medical College were retrospectively analyzed. The initial dose of eltrombopag was 25 mg/d, and the maximum dose was 75 mg/d; the dose was adjusted to maintain the platelet count to within 50-150×10(9)/L. Treatment was discontinued according either to the protocol, on the patient's wishes or doctor's judgment (prescription medication), or based on clinical trials. The efficacy of eltrombopag and factors for TFR among patients who achieved complete response and those who discontinued treatment were analyzed. Results: Overall, 106 patients with ITP (33 men and 73 women) were included in the study. The median age of patients was 50 (18-89) years. There were 2, 10, and 94 cases of newly diagnosed, persistent, and chronic ITP, respectively. The complete response rate was 44.3% (47/106), the response rate was 34.0% (36/106), and the overall response rate was 78.3% (83/106). Meanwhile, 83 patients who responded to treatment discontinued eltrombopag; of these, 81 patients were evaluated. Additionally, 17 patients (21.0%) achieved TFR. The median follow-up duration of patients who achieved TFR was 126 (30-170) weeks. The recurrence rate was 17.6% (3/17), and the relapse-free survival rate was 76.5%. The results of univariate analysis revealed that non-recurrence after discontinuation of other treatments for ITP (P=0.001), and platelet count and eltrombopag dose of ≥100×10(9)/L (P=0.007) and ≤25 mg/d (P=0.031), respectively, upon discontinuation of eltrombopag were predictors of TFR; these effects were attributed to prolonged effective duration of eltrombopag. Multivariate analysis showed that there was a correlation between non-recurrence and prolonged effective duration after discontinuation of other treatments for ITP (P=0.002) . Conclusion: Eltrombopag is effective for patients with ITP as it can result in TFR. Predictors for TFR include non-recurrence after discontinuation of concomitant ITP treatment, and platelet count and eltrombopag dose of ≥100 × 10(9)/L and ≤25 mg/d upon discontinuation of treatment, respectively.
Collapse
Affiliation(s)
- H P Sun
- Department of Hematology, Institute of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai Rui Jin Hospital, Shanghai 200025, China
| | - J H You
- Department of Hematology, Institute of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai Rui Jin Hospital, Shanghai 200025, China
| | - Q S Chen
- Department of Hematology, Institute of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai Rui Jin Hospital, Shanghai 200025, China
| | - J Wang
- Department of Hematology, Institute of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai Rui Jin Hospital, Shanghai 200025, China
| | - J M Li
- Department of Hematology, Institute of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai Rui Jin Hospital, Shanghai 200025, China
| |
Collapse
|
14
|
Special Issue "Advances in Thrombocytopenia". J Clin Med 2022; 11:jcm11226679. [PMID: 36431157 PMCID: PMC9692737 DOI: 10.3390/jcm11226679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombocytopenia is a commonly encountered hematologic challenge in medicine [...].
Collapse
|
15
|
Yang F, Zong H, Li F, Luo S, Zhang X, Xu Y, Zhang X. Eltrombopag modulates the phenotypic evolution and potential immunomodulatory roles of monocytes/macrophages in immune thrombocytopenia. Platelets 2022; 34:2135694. [DOI: 10.1080/09537104.2022.2135694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Feifei Yang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, Chinaand
| | - Hui Zong
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Feng Li
- Nanjing First Hospital, Nanjing Medical University, Nanjing, Chinaand
| | - Shulin Luo
- Nanjing First Hospital, Nanjing Medical University, Nanjing, Chinaand
| | - Xiuqun Zhang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, Chinaand
| | - Yanli Xu
- Nanjing First Hospital, Nanjing Medical University, Nanjing, Chinaand
| | - Xuezhong Zhang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, Chinaand
| |
Collapse
|
16
|
Xiong Y, Li Y, Cui X, Zhang L, Yang X, Liu H. ADAP restraint of STAT1 signaling regulates macrophage phagocytosis in immune thrombocytopenia. Cell Mol Immunol 2022; 19:898-912. [PMID: 35637282 PMCID: PMC9149338 DOI: 10.1038/s41423-022-00881-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/09/2022] [Indexed: 01/08/2023] Open
Abstract
Heightened platelet phagocytosis by macrophages accompanied by an increase in IFN-γ play key roles in the etiology of immune thrombocytopenia (ITP); however, it remains elusive how macrophage-mediated platelet clearance is regulated in ITP. Here, we report that adhesion and degranulation-protein adaptor protein (ADAP) restrains platelet phagocytosis by macrophages in ITP via modulation of signal transducer and activator of transcription 1 (STAT1)-FcγR signaling. We show that ITP was associated with the underexpression of ADAP in splenic macrophages. Furthermore, macrophages from Adap-/- mice exhibited elevated platelet phagocytosis and upregulated proinflammatory signaling, and thrombocytopenia in Adap-/- mice was mitigated by the depletion of macrophages. Mechanistically, ADAP interacted and competed with STAT1 binding to importin α5. ADAP deficiency potentiated STAT1 nuclear entry, leading to a selective enhancement of FcγRI/IV transcription in macrophages. Moreover, pharmacological inhibition of STAT1 or disruption of the STAT1-importin α5 interaction relieved thrombocytopenia in Adap-/- mice. Thus, our findings not only reveal a critical role for ADAP as an intracellular immune checkpoint for shaping macrophage phagocytosis in ITP but also identify the ADAP-STAT1-importin α5 module as a promising therapeutic target in the treatment of ITP.
Collapse
Affiliation(s)
- Yiwei Xiong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Yanli Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Xinxing Cui
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Lifeng Zhang
- Department of General Surgery, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215123, China
| | - Xiaodong Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Hebin Liu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| |
Collapse
|
17
|
Emerging Roles of the Iron Chelators in Inflammation. Int J Mol Sci 2022; 23:ijms23147977. [PMID: 35887336 PMCID: PMC9318075 DOI: 10.3390/ijms23147977] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
Iron is a crucial element for mammalian cells, considering its intervention in several physiologic processes. Its homeostasis is finely regulated, and its alteration could be responsible for the onset of several disorders. Iron is closely related to inflammation; indeed, during inflammation high levels of interleukin-6 cause an increased production of hepcidin which induces a degradation of ferroportin. Ferroportin degradation leads to decreased iron efflux that culminates in elevated intracellular iron concentration and consequently iron toxicity in cells and tissues. Therefore, iron chelation could be considered a novel and useful therapeutic strategy in order to counteract the inflammation in several autoimmune and inflammatory diseases. Several iron chelators are already known to have anti-inflammatory effects, among them deferiprone, deferoxamine, deferasirox, and Dp44mT are noteworthy. Recently, eltrombopag has been reported to have an important role in reducing inflammation, acting both directly by chelating iron, and indirectly by modulating iron efflux. This review offers an overview of the possible novel biological effects of the iron chelators in inflammation, suggesting them as novel anti-inflammatory molecules.
Collapse
|
18
|
Yassin MA, Ghasoub R, Soliman A, Ismail O, Nashwan AJ, Alshurafa A, Ghori F, Sideeg D, Hamad A, Hussein R, Al-Okka R, Chandra P, Alasmar A. The Impact of Ethnicity on the Response to Eltrombopag in Patients With Immune Thrombocytopenia (ITP) in Qatar: A Single Institution Experience. Cureus 2022; 14:e25701. [PMID: 35812564 PMCID: PMC9260130 DOI: 10.7759/cureus.25701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Eltrombopag olamine (ELT) is a synthetic nonpeptide with a low molecular weight that has been investigated in various phase-3 studies and shown to be efficacious at a typical dose of 50 mg. Varied ethnic groups have reported different responses to ELT. Aim: The aim is to examine the efficacy of ELT in Asian and Arab patients with immune thrombocytopenia (ITP) from the Indian subcontinent by starting with (12.5 mg, as a minimum dose) and gradually increasing to a maximum dose of 50 mg. Methods: Between January 2015 and January 2019, we reviewed the electronic health records of non-Arab Asian (n = 17) versus Arab (n = 41) patients who were ≥18 years old, residing in Qatar, and with confirmed diagnoses with chronic ITP and under active treatment with a platelet count of 30,000/L, and bleeding symptoms. Following receiving ELT for three months or longer at various dosages, patients' response was examined. Results: After three months of ELT therapy, the response rate (platelet count of 50,000/L) was equivalent in non-Arab (88.2%) versus Arab (87.5%) patients. However, to achieve an adequate response, 26% of Arab patients required a lower dose of 12.5 or 25 mg, and 41.5% required a higher dose of 50 mg. Conclusion: In adult chronic ITP patients, ELT is typically well-tolerated and delivers the desired outcomes. In 67.5% of Arab patients, smaller dosages of ELT (12.5-50 mg) were helpful in sustaining acceptable PLT levels. This helps patients get the most benefit at the lowest feasible dose, reducing toxicity and expense.
Collapse
|
19
|
Tarantini F, Cumbo C, Anelli L, Zagaria A, Conserva MR, Redavid I, Specchia G, Musto P, Albano F. Exploring the Potential of Eltrombopag: Room for More? Front Pharmacol 2022; 13:906036. [PMID: 35677428 PMCID: PMC9168361 DOI: 10.3389/fphar.2022.906036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022] Open
Abstract
Since its introduction in clinical practice, eltrombopag (ELT) has demonstrated efficacy in heterogeneous clinical contexts, encompassing both benign and malignant diseases, thus leading researchers to make a more in-depth study of its mechanism of action. As a result, a growing body of evidence demonstrates that ELT displays many effects ranging from native thrombopoietin agonism to immunomodulation, anti-inflammatory, and metabolic properties. These features collectively explain ELT effectiveness in a broad spectrum of indications; moreover, they suggest that ELT could be effective in different, challenging clinical scenarios. We reviewed the extended ELT mechanism of action in various diseases, with the aim of further exploring its full potential and hypothesize new, fascinating indications.
Collapse
Affiliation(s)
- Francesco Tarantini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, Bari, Italy
| | - Cosimo Cumbo
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, Bari, Italy
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, Bari, Italy
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, Bari, Italy
| | - Maria Rosa Conserva
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, Bari, Italy
| | - Immacolata Redavid
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Pellegrino Musto
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, Bari, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, Bari, Italy
- *Correspondence: Francesco Albano,
| |
Collapse
|
20
|
Efficacy and Immunomodulating Properties of Eltrombopag in Aplastic Anemia following Autologous Stem Cell Transplant: Case Report and Review of the Literature. Pharmaceuticals (Basel) 2022; 15:ph15040419. [PMID: 35455416 PMCID: PMC9032708 DOI: 10.3390/ph15040419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022] Open
Abstract
Thrombopoietin receptor agonists (TPO-RA) are currently indicated for the treatment of chronic immune thrombocytopenia and relapsed refractory aplastic anemia. However, the off-label use of these drugs is more and more frequent, including in the setting of aplasia secondary to chemotherapy and hemopoietic stem cell transplant (SCT). Growing evidence suggests that mechanisms of action of TPO-RA go beyond the TPO-receptor stimulation and point at the immunomodulating properties of these drugs. Here, we present a case of prolonged bone marrow aplasia secondary to autologous SCT treated with eltrombopag. We describe the clinical efficacy and the immunomodulating effect of this drug on inflammatory cytokine profile and bone marrow histology. Furthermore, we provide a review of the most recent literature highlighting the efficacy and safety of TPO-RA after SCT and chemotherapy for hematologic conditions.
Collapse
|
21
|
Mei H, Liu X, Li Y, Zhou H, Feng Y, Gao G, Cheng P, Huang R, Yang L, Hu J, Hou M, Yao Y, Liu L, Wang Y, Wu D, Zhang L, Zheng C, Shen X, Hu Q, Liu J, Jin J, Luo J, Zeng Y, Gao S, Zhang X, Zhou X, Shi Q, Xia R, Xie X, Jiang Z, Gao L, Bai Y, Li Y, Xiong J, Li R, Zou J, Niu T, Yang R, Hu Y. Dose tapering to withdrawal stage and long-term efficacy and safety of hetrombopag for the treatment of immune thrombocytopenia: Results from an open-label extension study. J Thromb Haemost 2022; 20:716-728. [PMID: 34821020 DOI: 10.1111/jth.15602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND The efficacy of hetrombopag in Chinese patients with immune thrombocytopenia (ITP) has been demonstrated in a randomized, double-blind, placebo-controlled, multicenter, phase III trial (NCT03222843). OBJECTIVE This study aimed to report comprehensive data on a ≤6-week dose tapering to withdrawal (Stage 3) and an additional 24-week long-term extension period (Stage 4) in this phase III trial. PATIENTS/METHODS Patients who fulfilled the screening criteria were eligible to enter Stage 3 or 4. During Stage 3, hetrombopag was gradually tapered to withdrawal. During Stage 4, hetrombopag treatment was initiated at 2.5, 3.75, 5, or 7.5 mg once daily. The efficacy endpoints during Stage 3 or 4 and the safety profile during the entire treatment period were reported. RESULTS Among 194 patients who entered Stage 3, 171 (88.1%) relapsed. The median time to the first relapse since the start of Stage 3 was 15.0 days (95% CI, 14.0-16.0). In Stage 4, 144 (42.5%) patients responded at ≥75% of their assessments and 254 (74.9%) patients achieved platelet count ≥30 × 109 /L at least once, which was at least twice their baseline platelet count in the hetrombopag group (n = 339). The most common adverse events were upper respiratory tract infection (53.1%), thrombocytopenia (27.1%), and urinary tract infection (21.2%) in the hetrombopag group. CONCLUSION The majority of patients who experienced dose tapering to withdrawal experienced a relapse. Long-term treatment with hetrombopag was effective in increasing and maintaining platelet count within the desired range in Chinese adults with ITP. Hetrombopag was well tolerated.
Collapse
Affiliation(s)
- Heng Mei
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofan Liu
- Thrombosis and Hemostasis Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Tianjin Laboratory of Blood Disease Gene Therapy, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yan Li
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Feng
- Department of Hematopathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guangxun Gao
- The Blood Internal Medicine, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Peng Cheng
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ruibin Huang
- Hematology Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linhua Yang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianda Hu
- Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yazhou Yao
- Hematology Department, Baoji Central Hospital, Baoji, China
| | - Li Liu
- Department of Hematopathology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yi Wang
- Department of Hematopathology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Depei Wu
- Hematology Department, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liansheng Zhang
- Hematology Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Changcheng Zheng
- Hematology Department, The First Affiliated Hospital of USTC, Hefei, China
| | - Xuliang Shen
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Qi Hu
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Jing Liu
- Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Jianmin Luo
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yun Zeng
- Department of Hematology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Sujun Gao
- Hematology, The First Hospital of Jilin University, Changchun, China
| | - Xiaohui Zhang
- Department of Hematology, Peking University People's Hospital, Beijing, China
| | - Xin Zhou
- Hematology Department, Wuxi People's Hospital, Wuxi, China
| | - Qingzhi Shi
- Hematology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ruixiang Xia
- Hematology Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaobao Xie
- Hematology Department, The First People's Hospital of Changzhou, Changzhou, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Gao
- Department of Hematology, The Second Affiliated Hospital of Military Medical University PLA, Chongqing, China
| | - Yuansong Bai
- Hematology & Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Li
- Hematology Department, The First Hospital of China Medical University, Shenyang, China
| | - Junye Xiong
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Runzi Li
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Jianjun Zou
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Ting Niu
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Renchi Yang
- Thrombosis and Hemostasis Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Tianjin Laboratory of Blood Disease Gene Therapy, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Dionisi M, Cairoli S, Simeoli R, De Gennaro F, Paganelli V, Carta R, Rossi F, Dionisi-Vici C, Palumbo G, Goffredo BM. Pharmacokinetic Evaluation of Eltrombopag in ITP Pediatric Patients. Front Pharmacol 2021; 12:772873. [PMID: 34938187 PMCID: PMC8685423 DOI: 10.3389/fphar.2021.772873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/11/2021] [Indexed: 01/15/2023] Open
Abstract
Background: Eltrombopag (EPAG) is an oral thrombopoietin receptor agonist, approved for refractory primary immune thrombocytopenia (ITP) in pediatric patients. In two pediatric RCTs, EPAG led to an improvement of platelet counts and a reduction in bleeding severity. However, a significant number of pediatric patients did not achieve the primary endpoints. We performed a pharmacokinetic evaluation of EPAG in pediatric patients with refractory ITP. Methods: Outpatients aged from 1 to 17 y, affected by refractory ITP to first-line treatment, were enrolled for a pharmacokinetic assessment. The analysis of drug plasma concentration was performed by the LC-MS/MS platform. Non-compartmental and statistical subgroup analyses were carried out using the R package ncappc. Results: Among 36 patients eligible for PK analysis, the median dose of EPAG given once daily was 50 mg. The EPAG peak occurs between 2 and 4 h with a population Cmax and AUC 0-24 geo-mean of 23, 38 μg/ml, and 275, 4 µg*h/mL, respectively. The pharmacokinetic profile of EPAG did not show a dose proportionality. Female patients showed a statistically significant increase of dose-normalized exposure parameters, increasing by 110 and 123% for Cmax and AUC 0-24, respectively, when compared to male patients. Patients aged 1-5 y showed values increased by more than 100% considering both exposure parameters, compared to older children. Furthermore, patients presenting complete response (83%), showed augmented EPAG exposure parameters compared to subjects with partial or no response. Conclusion: These data highlight the need to further explore the variability of EPAG exposure and its pharmacokinetic/pharmacodynamic profile in pediatric patients also in a real-life setting.
Collapse
Affiliation(s)
- Marco Dionisi
- National Center for Drug Research and Evaluation, National Institute of Health (ISS), Rome, Italy
| | - Sara Cairoli
- Department of Pediatric Specialties and Liver-kidney Transplantation, Division of Metabolic Biochemistry, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Raffaele Simeoli
- Department of Pediatric Specialties and Liver-kidney Transplantation, Division of Metabolic Biochemistry, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Valeria Paganelli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Roberto Carta
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carlo Dionisi-Vici
- Department of Pediatric Specialties and Liver-kidney Transplantation, Division of Metabolic Biochemistry, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppe Palumbo
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Bianca Maria Goffredo
- Department of Pediatric Specialties and Liver-kidney Transplantation, Division of Metabolic Biochemistry, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
23
|
Chen F, McDonald V, Newland A. Experts' review: the emerging roles of romiplostim in immune thrombocytopenia (ITP). Expert Opin Biol Ther 2021; 21:1383-1393. [PMID: 34313512 DOI: 10.1080/14712598.2021.1960979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The management of ITP has in recent years been transformed from reliance on immunosuppressants and splenectomy to targeted therapy with thrombopoietin receptor agonists (TPO-RA) that directly stimulate platelet production in the bone marrow. This has reduced the long-term infective complications and toxicities associated with the use of potent immunosuppressants and splenectomy. The welltolerated romiplostim, itself a novel drug construct called peptibody, has established itself, alongside other TPO-RA as the preferred 2nd line therapy in major international guidelines on treatment of ITP. AREAS COVERED This review summarizes the data from early licensing trials of romiplostim and discusses the real-world experience to date, the unexpected emerging data on treatment-free long-term remission achieved using TPO-RA, and the case for its early introduction in the therapeutic pathway. The emerging risk of thrombosis is also discussed. EXPERT OPINION The use of romiplostim and other TPO-RA will be increasingly brought forward in the management pathway of ITP with the prospect of modifying the long-term outcome of the disease by increasing sustained treatment-free remission. With the prospect of several new targeted therapies been introduced into clinical practice, TPO-RA will likely be a key component of future combination therapies for difficult cases.
Collapse
Affiliation(s)
- Frederick Chen
- Department of Clinical Haematology, the Royal London Hospital, Barts Health NHS Trust, London, UK.,Academic Haematology Unit, Barts & the London School of Medicine & Dentistry, Queen Mary University of London, London, UK.,Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, UK
| | - Vickie McDonald
- Department of Clinical Haematology, the Royal London Hospital, Barts Health NHS Trust, London, UK.,Academic Haematology Unit, Barts & the London School of Medicine & Dentistry, Queen Mary University of London, London, UK.,Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry,QMUL, London, UK
| | - Adrian Newland
- Department of Clinical Haematology, the Royal London Hospital, Barts Health NHS Trust, London, UK.,Academic Haematology Unit, Barts & the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
24
|
Li C, Li L, Sun M, Sun J, Shao L, Xu M, Hou Y, Peng J, Wang L, Hou M. Predictive Value of High ICAM-1 Level for Poor Treatment Response to Low-Dose Decitabine in Adult Corticosteroid Resistant ITP Patients. Front Immunol 2021; 12:689663. [PMID: 34326842 PMCID: PMC8313967 DOI: 10.3389/fimmu.2021.689663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Primary immune thrombocytopenia (ITP) is an autoimmune hemorrhagic disease. Endothelial cell activation/injury has been found in some autoimmune diseases including SLE, systemic sclerosis, and rheumatoid arthritis, but its role in ITP pathogenesis remains unclear. This study attempted to elucidate the correlation between endothelial dysfunction and disease severity of ITP and find related markers to predict response to low-dose decitabine treatment. Compared with healthy volunteers, higher plasma levels of soluble intercellular adhesion molecule-1 (ICAM-1), vascular endothelial growth factor (VEGF), and Angiopoietin-2 were found in adult corticosteroid resistant ITP patients. Notably, ICAM-1 levels were negatively correlated with the platelet count, and positively associated with the bleeding score. Recently, we have reported the efficacy and safety of low-dose decitabine in adult patients with ITP who failed for the first line therapies. Here, we evaluated the correlation of plasma ICAM-1 level with the efficacy of low-dose decitabine therapy for corticosteroid resistant ITP. A total of 29 adult corticosteroid resistant ITP patients who received consecutive treatments of low-dose decitabine were enrolled in this study. Fourteen patients showed response (nine showed complete response and five showed partial response). The levels of ICAM-1 before and after treatment were significantly higher in the non-responsive ITP patients than in the responsive patients. As shown in the multivariable logistic regression model, the odds of developing no-response to low-dose decitabine increased by 36.8% for per 5 ng/ml increase in plasma ICAM-1 level [odds ratio (OR) 1.368, 95% confidence interval (CI): 1.060 to 1.764]. In summary, this was the first study to elucidate the relationship between endothelial dysfunction and corticosteroid resistant ITP and identify the potential predictive value of ICAM-1 level for response to low-dose decitabine.
Collapse
Affiliation(s)
- Chaoyang Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lizhen Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meng Sun
- Jinan Vocational College of Nursing, Jinan, China
| | - Jianzhi Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Linlin Shao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Miao Xu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lin Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
25
|
Lozano ML, Segú-Vergés C, Coma M, Álvarez-Roman MT, González-Porras JR, Gutiérrez L, Valcárcel D, Butta N. Elucidating the Mechanism of Action of the Attributed Immunomodulatory Role of Eltrombopag in Primary Immune Thrombocytopenia: An In Silico Approach. Int J Mol Sci 2021; 22:ijms22136907. [PMID: 34199099 PMCID: PMC8269123 DOI: 10.3390/ijms22136907] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Eltrombopag is a thrombopoietin receptor (MPL) agonist approved for the treatment of primary immune thrombocytopenia (ITP). Recent evidence shows that some patients may sustain platelet counts following eltrombopag discontinuation. The systemic immunomodulatory response that resolves ITP in some patients could result from an increase in platelet mass, caused either by the direct action of eltrombopag on megakaryocytes through MPL stimulation, or potential MPL-independent actions on other cell types. To uncover the possible mechanisms of action of eltrombopag, in silico analyses were performed, including a systems biology-based approach, a therapeutic performance mapping system, and structural analyses. Through manual curation of the available bibliography, 56 key proteins were identified and integrated into the ITP interactome analysis. Mathematical models (94.92% mean accuracy) were obtained to elucidate potential MPL-dependent pathways in non-megakaryocytic cell subtypes. In addition to the effects on megakaryocytes and platelet numbers, the results were consistent with MPL-mediated effects on other cells, which could involve interferon-gamma, transforming growth factor-beta, peroxisome proliferator-activated receptor-gamma, and forkhead box protein P3 pathways. Structural analyses indicated that effects on three apoptosis-related proteins (BCL2L1, BCL2, BAX) from the Bcl-2 family may be off-target effects of eltrombopag. In conclusion, this study proposes new hypotheses regarding the immunomodulatory functions of eltrombopag in patients with ITP.
Collapse
MESH Headings
- Benzoates/chemistry
- Benzoates/pharmacology
- Benzoates/therapeutic use
- Biomarkers
- Disease Management
- Disease Susceptibility
- Humans
- Hydrazines/chemistry
- Hydrazines/pharmacology
- Hydrazines/therapeutic use
- Immunomodulation/drug effects
- Models, Biological
- Models, Molecular
- Molecular Targeted Therapy/methods
- Protein Interaction Mapping
- Protein Interaction Maps
- Purpura, Thrombocytopenic, Idiopathic/drug therapy
- Purpura, Thrombocytopenic, Idiopathic/etiology
- Purpura, Thrombocytopenic, Idiopathic/metabolism
- Pyrazoles/chemistry
- Pyrazoles/pharmacology
- Pyrazoles/therapeutic use
- Receptors, Thrombopoietin/antagonists & inhibitors
- Receptors, Thrombopoietin/chemistry
- Receptors, Thrombopoietin/metabolism
- Signal Transduction/drug effects
- Structure-Activity Relationship
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Maria L. Lozano
- Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CB15/00055-CIBERER, 30007 Murcia, Spain
- Correspondence: (M.L.L.); (N.B.)
| | - Cristina Segú-Vergés
- Anaxomics Biotech S.L., Diputació 237, 1°, 1, 08007 Barcelona, Spain; (C.S.-V.); (M.C.)
| | - Mireia Coma
- Anaxomics Biotech S.L., Diputació 237, 1°, 1, 08007 Barcelona, Spain; (C.S.-V.); (M.C.)
| | - María T. Álvarez-Roman
- Unidad de Trombosis y Hemostasia, Servicio de Hematología, Hospital Universitario La Paz, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain;
| | - José R. González-Porras
- Unidad de Hemostasia y Trombosis, Servicio de Hematología, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007 Salamanca, Spain;
| | - Laura Gutiérrez
- Grupo de Investigación en Plaquetas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Departamento de Medicina, Universidad de Oviedo, 33071 Oviedo, Spain;
| | - David Valcárcel
- Servicio Hematología, Vall d´Hebron Insitute of Oncology (VHIO), Hospital Univesitario Vall d’Hebron, Universitat Autònoma de Barcelona, Centro Cellex, Natzaret, 115-117, 08035 Barcelona, Spain;
| | - Nora Butta
- Instituto de Investigación HospitaUniversitario La Paz (IdiPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain
- Correspondence: (M.L.L.); (N.B.)
| |
Collapse
|
26
|
Zhao Y, Xu P, Guo L, Wang H, Min Y, Feng Q, Hou Y, Sun T, Li G, Ji X, Qiu J, Peng J, Liu X, Hou M. Tumor Necrosis Factor-α Blockade Corrects Monocyte/Macrophage Imbalance in Primary Immune Thrombocytopenia. Thromb Haemost 2021; 121:767-781. [PMID: 33469903 DOI: 10.1055/s-0040-1722186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Primary immune thrombocytopenia (ITP) is an acquired autoimmune bleeding disorder. Monocytes and macrophages are the major cells involved in autoantibody-mediated platelet clearance in ITP. In the present study, we found increased percentages of peripheral blood proinflammatory CD16+ monocytes and elevated frequencies of splenic tumor necrosis factor-α (TNF-α)-expressing macrophages in ITP patients compared with healthy controls. Concurrently, we observed elevated TNF-α secretion in plasma as well as higher TNF-α mRNA expression in total peripheral blood mononuclear cells and CD14+ monocytes of ITP patients. Of note, in vitro TNF-α blockade with neutralizing antibody remarkably reduced polarization to M1 macrophages by inhibiting the nuclear factor kappa B (NF-κB) signaling pathway. Moreover, TNF-α blockade dampened macrophage phagocytosis and T cell stimulatory capacity. Finally, in passive and active murine models of ITP, anti-TNF-α therapy reduced the number of nonclassical monocytes and M1 macrophages, ameliorated the retention of platelets in spleen and liver, and increased the platelet count of ITP mice. Taken together, TNF-α blockade decreased the number and function of proinflammatory subsets of monocytes and macrophages by inhibiting the NF-κB signaling pathway, leading to remarkable attenuation of antibody-mediated platelet destruction. Thus, TNF-α blockade may be a promising therapeutic strategy for the management of ITP.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Animals
- Antibodies, Neutralizing/pharmacology
- Case-Control Studies
- Cells, Cultured
- Disease Models, Animal
- Female
- Humans
- Integrin beta3/genetics
- Integrin beta3/metabolism
- Lymphocyte Activation/drug effects
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Middle Aged
- Monocytes/drug effects
- Monocytes/immunology
- Monocytes/metabolism
- NF-kappa B/metabolism
- Phagocytosis/drug effects
- Purpura, Thrombocytopenic, Idiopathic/blood
- Purpura, Thrombocytopenic, Idiopathic/drug therapy
- Purpura, Thrombocytopenic, Idiopathic/genetics
- Purpura, Thrombocytopenic, Idiopathic/immunology
- Signal Transduction
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Necrosis Factor Inhibitors/pharmacology
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/blood
- Tumor Necrosis Factor-alpha/genetics
- Young Adult
- Mice
Collapse
Affiliation(s)
- Yajing Zhao
- Department of Haematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Pengcheng Xu
- Department of Haematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Guo
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Haoyi Wang
- Department of Haematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanan Min
- Department of Haematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qi Feng
- Department of Haematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Hou
- Department of Haematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Sun
- Department of Haematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guosheng Li
- Department of Haematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuebin Ji
- Department of Haematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jihua Qiu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Peng
- Department of Haematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Immunohaematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinguang Liu
- Department of Haematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Hou
- Department of Haematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Immunohaematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Science and Technology of Shandong Province, Leading Research Group of Scientific Innovation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
27
|
Jachiet V, Moulis G, Hadjadj J, Seguier J, Laribi K, Schleinitz N, Vey N, Sacre K, Godeau B, Beyne-Rauzy O, Bouvet R, Broner J, Brun N, Comont T, Gaudin C, Lambotte O, Le Clech L, Peterlin P, Roy-Peaud F, Salvado C, Versini M, Isnard F, Kahn JE, Gobert D, Adès L, Fenaux P, Fain O, Mekinian A. Clinical spectrum, outcome and management of immune thrombocytopenia associated with myelodysplastic syndromes and chronic myelomonocytic leukemia. Haematologica 2021; 106:1414-1422. [PMID: 33626866 PMCID: PMC8094121 DOI: 10.3324/haematol.2020.272559] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML) are associated with systemic inflammatory or autoimmune diseases in 10-20 % of cases. Among them, immune thrombocytopenia (ITP) has been reported but large studies assessing this association are missing. Whether such patients have a particular phenotype and require particular management is unclear. This study analyzes the clinical spectrum, outcome and therapeutic management of patients with ITP associated with MDS or CMML, in comparison (i) to patients with primary ITP without MDS/CMML and (ii) to patients with MDS/CMML without ITP. Forty-one MDS/CMML-associated ITP patients were included, with chronic ITP in 26 (63%) patients, low-risk myelodysplasia in 30 (73%) patients and CMML in 24 (59%) patients. An associated autoimmune disease was noted in 10 (24%) patients. In comparison to primary ITP patients, MDS/CMML-associated ITP patients had a higher occurrence of severe bleeding despite similar platelet counts at diagnosis. First-line treatment consisted of glucocorticoids (98%) and intravenous immunoglobulin (IVIg) (56%). Response achievement with IVIg was more frequent in primary ITP than in MDS/CMML-associated ITP patients. Response rates to second-line therapies were not statistically different between primary ITP and MDS/CMMLassociated ITP patients. Ten percent (n=4) of patients with MDS/CMML-associated ITP had multirefractory ITP versus none in primary ITP controls. After a median follow-up of 60 months, there was no difference in overall survival between MDS/CMML-associated ITP and primary ITP patients. Leukemia-free-survival was significantly better in MDS/CMMLassociated ITP patients than in MDS/CMML without ITP MDS/CMML-associated ITP have a particular outcome with more severe bleeding and multirefractory profile than primary ITP, similar response profile to primary ITP therapy except for IVIg, and less progression toward acute myeloid leukemia than MDS/CMML without ITP.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute
- Leukemia, Myelomonocytic, Chronic/complications
- Leukemia, Myelomonocytic, Chronic/diagnosis
- Leukemia, Myelomonocytic, Chronic/therapy
- Myelodysplastic Syndromes/complications
- Myelodysplastic Syndromes/diagnosis
- Myelodysplastic Syndromes/therapy
- Purpura, Thrombocytopenic, Idiopathic/diagnosis
- Purpura, Thrombocytopenic, Idiopathic/etiology
- Purpura, Thrombocytopenic, Idiopathic/therapy
- Thrombocytopenia
Collapse
Affiliation(s)
- Vincent Jachiet
- Sorbonne Université, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DMU 3iD), F-75012, Paris
| | - Guillaume Moulis
- Service de médecine interne, CHU de Toulouse, France; CIC 1436, CHU de Toulouse, France; UMR 1027 Inserm-Université de Toulouse
| | - Jérome Hadjadj
- Imagine Institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Université de Paris, F-75015, Paris ; Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Assistance Publique Hôpitaux de Paris-Centre (APHP-CUP), Université de Paris, F-75014
| | - Julie Seguier
- Département de médecine interne, Hôpital de la Timone, AP-HM, Aix Marseille Université, Marseille
| | - Kamel Laribi
- Department of Hematology, Centre hospitalier Le Mans, Le Mans
| | - Nicolas Schleinitz
- Département de médecine interne, Hôpital de la Timone, AP-HM, Aix Marseille Université, Marseille
| | - Norbert Vey
- Haematology Department, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille
| | - Karim Sacre
- Departement de Médecine Interne, Hôpital Bichat, APHP, Université de Paris, INSERM U1149, Paris
| | - Bertrand Godeau
- Hôpitaux de Paris, Hôpital Henri Mondor, Médecine Interne, Centre de Référence des Cytopénies Autoimmunes de L'Adulte, Université Paris-Est Créteil, F-94010, Créteil
| | - Odile Beyne-Rauzy
- Department of internal medicine, Toulouse University Hospital, Institut universitaire du cancer de Toulouse, and University of Toulouse, F-31059, Toulouse
| | - Romain Bouvet
- Médecine interne et maladies systémiques, CHU Dijon Bourgogne, 21000 Dijon
| | - Jonathan Broner
- Internal Médicine Department, Nîmes University Hospital, University of Montpellier, Nîmes
| | - Natacha Brun
- Service de Médecine Interne, Centre Hospitalier de Rodez, Rodez
| | - Thibault Comont
- Department of internal medicine, Toulouse University Hospital, Institut universitaire du cancer de Toulouse, and University of Toulouse, F-31059, Toulouse
| | - Clément Gaudin
- Department of oncogeriatric medicine, University Hospital Purpan, Toulouse
| | - Olivier Lambotte
- Hôpitaux de Paris, Hôpital Bicêtre, Médecine Interne et Immunologie Clinique, F-94275, Le Kremlin-Bicêtre, France; INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, F-94276, Le Kremlin-Bicêtre, France; Université Paris Sud, UMR 1184, F-94276, Le Kremlin-Bicêtre, France; CEA, DSV/iMETI, IDMIT, F-92265, Fontenay-aux-Roses
| | - Lenaïg Le Clech
- Department of Internal Medicine, Infectious Diseases and Haematology, Cornouaille Hospital Quimper
| | | | - Frédérique Roy-Peaud
- Service de médecine interne, maladies infectieuses et tropicales, CHU de Poitiers, Poitiers
| | | | | | - Françoise Isnard
- Department of Clinical Hematology, Saint-Antoine Hospital, AP-HP, Paris
| | | | - Delphine Gobert
- Sorbonne Université, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DMU 3iD), F-75012, Paris
| | - Lionel Adès
- Hopital Saint-Louis (APHP) and Paris University and INSERM U944, Paris
| | - Pierre Fenaux
- Hopital Saint-Louis (APHP) and Paris University and INSERM U944, Paris
| | - Olivier Fain
- Sorbonne Université, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DMU 3iD), F-75012, Paris
| | - Arsène Mekinian
- Sorbonne Université, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DMU 3iD), F-75012, Paris.
| |
Collapse
|
28
|
Miao W, Song B, Shi B, Wan Q, Lv Q, Chen H, Zhu M, Zhang L, Han Y, Wu D. Immune Thrombocytopenia Plasma-Derived Exosomes Impaired Megakaryocyte and Platelet Production through an Apoptosis Pathway. Thromb Haemost 2021; 121:495-505. [PMID: 33124021 DOI: 10.1055/s-0040-1718761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reduced megakaryocyte (MK) apoptosis and insufficient platelet production play important roles in the pathogenesis of immune thrombocytopenia (ITP). The contribution of plasma-derived exosomes to the decreased platelet count in ITP has not been entirely understood. Here, we found the percentage of apoptotic MKs in patients with ITP was significantly lower than those in healthy volunteers. In the presence of ITP plasma-derived exosomes (ITP-Exo), the apoptosis of MKs was reduced during the process of MK differentiation in vitro, which contributed to the reduced platelet production by Bcl-xL/caspase signaling. Furthermore, in vivo study demonstrated that ITP-Exo administration led to significantly delayed platelet recovery in mice after 3.5 Gy of irradiation. All these findings indicated that ITP-Exo, as a regulator of platelet production, impaired MK apoptosis and platelet production through Bcl-xL/caspase signaling, unveiling new mechanisms for reduced platelet count in ITP.
Collapse
Affiliation(s)
- Wenjing Miao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Baoquan Song
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Bingyu Shi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Qi Wan
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, of China
| | - Quansheng Lv
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hanqing Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mingqing Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Leisheng Zhang
- The Postdoctoral Research Station, School of Medicine, Nankai University, Tianjin, China
- Division of Precision Medicine, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
29
|
Antihuman CD44 antibody BJ18 inhibits platelet phagocytosis by correcting aberrant FcɣR expression and M1 polarization in immune thrombocytopenia. Int Immunopharmacol 2021; 95:107502. [PMID: 33690000 DOI: 10.1016/j.intimp.2021.107502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Immune thrombocytopenia (ITP) is an autoimmune hemorrhagic disease with a low platelet count. CD44 is a pivotal component involved in phagocytosis and inflammation, and monoclonal antibodies (mAbs) against CD44 have been shown to be beneficial in several autoimmune diseases. In the present study, we investigated the correlation between CD44 levels and disease severity in patients with ITP and explored the immunomodulatory mechanisms of the antihuman CD44 mAb BJ18 on platelet phagocytosis mediated by monocytes/macrophages. METHODS Plasma was collected from 45 participants to measure the circulating concentration of CD44 using ELISA. Peripheral blood mononuclear cells from patients and controls were isolated and induced to differentiate into monocytes/macrophages utilizing cytokines and drugs. CD44 expression on circulating cells and the effects of BJ18 on platelet phagocytosis, Fcɣ receptor (FcɣR) expression and M1/M2 polarization of macrophages were evaluated using flow cytometry and qPCR. RESULTS CD44 levels of both the soluble form found in plasma and the form expressed on the surface of circulating monocytes/macrophages were significantly elevated in ITP patients. Linear correlations were verified between the CD44 levels and major clinical characteristics. In an in vitro study, BJ18 successfully inhibited platelet phagocytosis by monocytes/macrophages obtained from ITP patients. Further studies indicated that BJ18 corrected abnormal FcγR expression on monocytes/macrophages. Moreover, the polarization of proinflammatory M1 macrophages could also be regulated by BJ18. CONCLUSIONS Our data indicated that the CD44 level has potential predictive value for disease severity and that the antihuman CD44 mAb BJ18 may be a promising therapy for ITP patients.
Collapse
|
30
|
Mei H, Liu X, Li Y, Zhou H, Feng Y, Gao G, Cheng P, Huang R, Yang L, Hu J, Hou M, Yao Y, Liu L, Wang Y, Wu D, Zhang L, Zheng C, Shen X, Hu Q, Liu J, Jin J, Luo J, Zeng Y, Gao S, Zhang X, Zhou X, Shi Q, Xia R, Xie X, Jiang Z, Gao L, Bai Y, Li Y, Xiong J, Li R, Zou J, Niu T, Yang R, Hu Y. A multicenter, randomized phase III trial of hetrombopag: a novel thrombopoietin receptor agonist for the treatment of immune thrombocytopenia. J Hematol Oncol 2021; 14:37. [PMID: 33632264 PMCID: PMC7905908 DOI: 10.1186/s13045-021-01047-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Background Hetrombopag, a novel thrombopoietin receptor agonist, has been found in phase I studies to increase platelet counts and reduce bleeding risks in adults with immune thrombocytopenia (ITP). This phase III study aimed to evaluate the efficacy and safety of hetrombopag in ITP patients. Methods Patients who had not responded to or had relapsed after previous treatment were treated with an initial dosage of once-daily 2.5 or 5 mg hetrombopag (defined as the HETROM-2.5 or HETROM-5 group) or with matching placebo in a randomized, double-blind, 10-week treatment period. Patients who received placebo and completed 10 weeks of treatment switched to receive eltrombopag, and patients treated with hetrombopag in the double-blind period continued hetrombopag during the following open-label 14-week treatment. The primary endpoint was the proportion of responders (defined as those achieving a platelet count of ≥ 50 × 109/L) after 8 weeks of treatment. Results The primary endpoint was achieved by significantly more patients in the HETROM-2.5 (58.9%; odds ratio [OR] 25.97, 95% confidence interval [CI] 9.83–68.63; p < 0.0001) and HETROM-5 (64.3%; OR 32.81, 95% CI 12.39–86.87; p < 0.0001) group than in the Placebo group (5.9%). Hetrombopag was also superior to placebo in achieving a platelet response and in reducing the bleeding risk and use of rescue therapy throughout 8 weeks of treatment. The durable platelet response to hetrombopag was maintained throughout 24 weeks. The most common adverse events were upper respiratory tract infection (42.2%), urinary tract infection (17.1%), immune thrombocytopenic purpura (17.1%) and hematuria (15%) with 24-week hetrombopag treatment. Conclusions In ITP patients, hetrombopag is efficacious and well tolerated with a manageable safety profile.
Trial registration Clinical trials.gov NCT03222843, registered July 19, 2017, retrospectively registered.
Collapse
Affiliation(s)
- Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xiaofan Liu
- Thrombosis and Hemostasis Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Laboratory of Blood Disease Gene Therapy, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Yan Li
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hu Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Feng
- Department of Hematopathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guangxun Gao
- The Blood Internal Medicine, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Peng Cheng
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ruibin Huang
- Hematology Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linhua Yang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianda Hu
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yazhou Yao
- Hematology Department, Baoji Central Hospital, Baoji, China
| | - Li Liu
- Department of Hematopathology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yi Wang
- Department of Hematopathology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Depei Wu
- Hematology Department, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liansheng Zhang
- Hematology Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Changcheng Zheng
- Hematology Department, The First Affiliated Hospital of USTC, Hefei, China
| | - Xuliang Shen
- Department of Hematology, Heping Hospital Affiliated To Changzhi Medical College, Changzhi, China
| | - Qi Hu
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Jing Liu
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Jianmin Luo
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yun Zeng
- Department of Hematology, First Affiliated Hospital of Kunming Medical University, KunMing, China
| | - Sujun Gao
- The First Hospital of Jilin University, Changchun, China
| | - Xiaohui Zhang
- Department of Hematology, Peking University People's Hospital, Beijing, China
| | - Xin Zhou
- Hematology Department, Wuxi People's Hospital, Wuxi, China
| | - Qingzhi Shi
- Hematology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ruixiang Xia
- Hematology Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaobao Xie
- Hematology Department, The First People's Hospital of Changzhou, Changzhou, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Gao
- Department of Hematology, The Second Affiliated Hospital of Military Medical University PLA, Chongqing, China
| | - Yuansong Bai
- Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Li
- Hematology Department, The First Hospital of China Medical University, Shenyang, China
| | - Junye Xiong
- Clinical Research & Development, Jiangsu Hengrui Medicine Co., Ltd, Shanghai, China
| | - Runzi Li
- Clinical Research & Development, Jiangsu Hengrui Medicine Co., Ltd, Shanghai, China
| | - Jianjun Zou
- Clinical Research & Development, Jiangsu Hengrui Medicine Co., Ltd, Shanghai, China
| | - Ting Niu
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Renchi Yang
- Thrombosis and Hemostasis Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Laboratory of Blood Disease Gene Therapy, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
31
|
Lucchini E, Palandri F, Volpetti S, Vianelli N, Auteri G, Rossi E, Patriarca A, Carli G, Barcellini W, Celli M, Consoli U, Valeri F, Santoro C, Crea E, Vignetti M, Paoloni F, Gigliotti CL, Boggio E, Dianzani U, Giardini I, Carpenedo M, Rodeghiero F, Fanin R, Zaja F. Eltrombopag second-line therapy in adult patients with primary immune thrombocytopenia in an attempt to achieve sustained remission off-treatment: results of a phase II, multicentre, prospective study. Br J Haematol 2021; 193:386-396. [PMID: 33618438 DOI: 10.1111/bjh.17334] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/17/2020] [Indexed: 01/09/2023]
Abstract
Up to 30% immune thrombocytopenia (ITP) patients achieve a sustained remission off-treatment (SROT) after discontinuation of thrombopoietin receptor agonists (TPO-RAs). Factors predictive of response are lacking. Patients aged ≥18 years with newly diagnosed or persistent ITP were treated with eltrombopag for 24 weeks. Primary end-point was SROT: the proportion of responders that were able to taper and discontinue eltrombopag maintaining the response during a period of observation (PO) of six months. Secondary end-points included the association between some immunological parameters (TPO serum levels, cytokines and lymphocyte subsets) and response. Fifty-one patients were evaluable. Primary end-point was achieved in 13/51 (25%) treated patients and 13/34 (38%) patients who started the tapering. Baseline TPO levels were not associated with response at week 24 nor with SROT. Higher baseline levels of IL-10, IL-4, TNF-α and osteopontin were negative factors predictive of response (P = 0·001, 0·008, 0·02 and 0·03 respectively). This study confirms that SROT is feasible for a proportion of ITP patients treated with eltrombopag. Some biological parameters were predictive of response.
Collapse
Affiliation(s)
- Elisa Lucchini
- S.C. Ematologia, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Francesca Palandri
- Azienda Ospedaliero-Universitaria di Bologna, IRCCS Policlinico S.Orsola-Malpighi, DAI, Dipartimento di Oncologia e di Ematologia, Bologna, Italy
| | - Stefano Volpetti
- Clinica Ematologica, Centro Trapianti e Terapie Cellulari "C. Melzi", DAME, Università degli Studi, Udine, Italy
| | - Nicola Vianelli
- Azienda Ospedaliero-Universitaria di Bologna, IRCCS Policlinico S.Orsola-Malpighi, DAI, Dipartimento di Oncologia e di Ematologia, Bologna, Italy
| | - Giuseppe Auteri
- Azienda Ospedaliero-Universitaria di Bologna, IRCCS Policlinico S.Orsola-Malpighi, DAI, Dipartimento di Oncologia e di Ematologia, Bologna, Italy
| | - Elena Rossi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy.,Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | - Giuseppe Carli
- Hematology Department, Ospedale San Bortolo, Vicenza, Italy
| | - Wilma Barcellini
- UOC Ematologia, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Ugo Consoli
- UOC Ematologia ARNAS Garibaldi, Catania, Italy
| | - Federica Valeri
- Regional Center for Hemorrhagic and Thrombotic Diseases, Haematology Unit, City of Health and Science University Hospital of Molinette, Turin, Italy
| | - Cristina Santoro
- Hematology, University Hospital Policlinico Umberto I, Rome, Italy
| | | | | | | | - Casimiro Luca Gigliotti
- Laboratory of Immunology, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Elena Boggio
- Laboratory of Immunology, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Umberto Dianzani
- Laboratory of Immunology, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Ilaria Giardini
- Clinical and Experimental Pharmacokinetics Lab, Diagnostic Medicine Dep, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Monica Carpenedo
- Hematology and Transplant Dept, ASST Ospedale San Gerardo di Monza, Monza, Italy
| | - Francesco Rodeghiero
- Hematology Project Foundation, Vicenza, Italy - affiliated to the Dept. of Hematology of the San Bortolo Hospital, Vicenza, Italy
| | - Renato Fanin
- Clinica Ematologica, Centro Trapianti e Terapie Cellulari "C. Melzi", DAME, Università degli Studi, Udine, Italy
| | - Francesco Zaja
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | | |
Collapse
|
32
|
Eltrombopag inhibits Type I interferon-mediated antiviral signaling by decreasing cellular iron. Biochem Pharmacol 2021; 186:114436. [PMID: 33539815 DOI: 10.1016/j.bcp.2021.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 11/21/2022]
Abstract
Thrombocytopenia is common among patients with viral hepatitis, limiting the use of antiviral therapy. Eltrombopag (EP) is a thrombopoietin receptor (TPO-R) agonist that has been approved for treatment of immune thrombocytopenia patients with hepatitis virus infection. Interferon-α (IFN-α) plays a crucial role in the antiviral response, and is recommended as the first-line agent for chronic hepatitis B patients. Here, we investigated whether EP inhibits the production of IFN-stimulated genes (ISGs) induced by IFN-α through the TPO-R-independent pathway by mediating reactive oxygen species production by iron chelation. Our results assessed the inhibitory effect of EP on IFN-α signaling, which contributes to the downregulation of ISGs produced by monocytes and sheds light on the underlying mechanisms using iron chelation to treat patients with hepatitis-related immunological thrombocytopenia.
Collapse
|
33
|
Du SH, Xiang YJ, Liu L, Nie M, Hou Y, Wang L, Li BB, Xu M, Teng QL, Peng J, Hou M, Shi Y. Co-Inhibition of the Immunoproteasome Subunits LMP2 and LMP7 Ameliorates Immune Thrombocytopenia. Front Immunol 2021; 11:603278. [PMID: 33552061 PMCID: PMC7855704 DOI: 10.3389/fimmu.2020.603278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022] Open
Abstract
The immunoproteasome, a special isoform of the 20S proteasome, is expressed when the cells receive an inflammatory signal. Immunoproteasome inhibition proved efficacy in the treatment of autoimmune diseases. However, the role of the immunoproteasome in the pathogenesis of immune thrombocytopenia (ITP) remains unknown. We found that the expression of the immunoproteasome catalytic subunit, large multifunctional protease 2 (LMP2), was significantly upregulated in peripheral blood mononuclear cells of active ITP patients compared to those of healthy controls. No significant differences in LMP7 expression were observed between patients and controls. ML604440, an specific LMP2 inhibitor, had no significant impact on the platelet count of ITP mice, while ONX-0914 (an inhibitor of both LMP2 and LMP7) increased the number of platelets. In vitro assays revealed that ONX-0914 decreased the expression of FcγRI in ITP mice and decreased that of FcγRIII in ITP patients, inhibited the activation of CD4+ T cells, and affected the differentiation of Th1 cells in patients with ITP. These results suggest that the inhibition of immunoproteasome is a potential therapeutic approach for ITP patients.
Collapse
Affiliation(s)
- Sheng-hong Du
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Hematology, Taian Central Hospital, Taian, China
| | - Yu-jiao Xiang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lu Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mu Nie
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ling Wang
- Department of Hematology, Taian Central Hospital, Taian, China
| | - Ban-ban Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Hematology, Taian Central Hospital, Taian, China
| | - Miao Xu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qing-liang Teng
- Department of Hematology, Taian Central Hospital, Taian, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center in Hematological Diseases, Jinan, China
- Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Shi
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
34
|
Wang S, Zhang X, Leng S, Xu Q, Sheng Z, Zhang Y, Yu J, Feng Q, Hou M, Peng J, Hu X. Immune Checkpoint-Related Gene Polymorphisms Are Associated With Primary Immune Thrombocytopenia. Front Immunol 2021; 11:615941. [PMID: 33584705 PMCID: PMC7874092 DOI: 10.3389/fimmu.2020.615941] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy by immune checkpoint blockade has been effective in the treatment of certain tumors. However, the association between immune checkpoints and autoimmune diseases remains elusive and requires urgent investigation. Primary immune thrombocytopenia (ITP), characterized by reduced platelet count and a consequent increased risk of bleeding, is an autoimmune disorder with a hyper-activated T cell response. Here, we investigated the contribution of immune checkpoint-related single-nucleotide polymorphisms (SNPs), including CD28, ICOS, PD1, TNFSF4, DNAM1, TIM3, CTLA4, and LAG3 to the susceptibility and therapeutic effects of ITP. In this case-control study, 307 ITP patients and 295 age-matched healthy participants were recruited. We used the MassARRAY system for genotyping immune checkpoint-related SNPs. Our results revealed that rs1980422 in CD28 was associated with an increased risk of ITP after false discovery rate correction (codominant, CT vs. TT, OR = 1.788, 95% CI = 1.178-2.713, p = 0.006). In addition, CD28 expression at both the mRNA and protein levels was significantly higher in patients with CT than in those with the TT genotype (p = 0.028 and p = 0.001, respectively). Furthermore, the T allele of PD1 rs36084323 was a risk factor for ITP severity and the T allele of DNAM1 rs763361 for corticosteroid-resistance. In contrast, the T allele of LAG3 rs870849 was a protective factor for ITP severity, and the T allele of ICOS rs6726035 was protective against corticosteroid-resistance. The TT/CT genotypes of PD1 rs36084323 also showed an 8.889-fold increase in the risk of developing refractory ITP. This study indicates that immune checkpoint-related SNPs, especially CD28 rs1980422, may be genetic factors associated with the development and treatment of ITP patients. Our results shed new light on prognosis prediction, disease severity, and discovering new therapeutic targets.
Collapse
Affiliation(s)
- Shuwen Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoyu Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaoqiu Leng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qirui Xu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zi Sheng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanqi Zhang
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Yu
- Department of Hematology, Weihai Municipal Hospital, Weihai, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiang Hu
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
35
|
Di Paola A, Palumbo G, Merli P, Argenziano M, Tortora C, Strocchio L, Roberti D, Santoro C, Perrotta S, Rossi F. Effects of Eltrombopag on In Vitro Macrophage Polarization in Pediatric Immune Thrombocytopenia. Int J Mol Sci 2020; 22:ijms22010097. [PMID: 33374151 PMCID: PMC7796119 DOI: 10.3390/ijms22010097] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 01/12/2023] Open
Abstract
Immune Thrombocytopenia (ITP) is an autoimmune disease characterized by autoantibodies-mediated platelet destruction, a prevalence of M1 pro-inflammatory macrophage phenotype and an elevated T helper 1 and T helper 2 lymphocytes (Th1/Th2) ratio, resulting in impairment of inflammatory profile and immune response. Macrophages are immune cells, present as pro-inflammatory classically activated macrophages (M1) or as anti-inflammatory alternatively activated macrophages (M2). They have a key role in ITP, acting both as effector cells, phagocytizing platelets, and, as antigen presenting cells, stimulating auto-antibodies against platelets production. Eltrombopag (ELT) is a thrombopoietin receptor agonist licensed for chronic ITP to stimulate platelet production. Moreover, it improves T and B regulatory cells functions, suppresses T-cells activity, and inhibits monocytes activation. We analyzed the effect of ELT on macrophage phenotype polarization, proposing a new possible mechanism of action. We suggest it as a mediator of macrophage phenotype switch from the M1 pro-inflammatory type to the M2 anti-inflammatory one in paediatric patients with ITP, in order to reduce inflammatory state and restore the immune system function. Our results provide new insights into the therapy and the management of ITP, suggesting ELT also as immune-modulating drug.
Collapse
MESH Headings
- B-Lymphocytes, Regulatory/immunology
- B-Lymphocytes, Regulatory/pathology
- Benzoates/pharmacology
- Child
- Child, Preschool
- Female
- Humans
- Hydrazines/pharmacology
- Macrophage Activation/drug effects
- Macrophages/immunology
- Macrophages/pathology
- Male
- Purpura, Thrombocytopenic, Idiopathic/drug therapy
- Purpura, Thrombocytopenic, Idiopathic/immunology
- Purpura, Thrombocytopenic, Idiopathic/pathology
- Pyrazoles/pharmacology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Th1 Cells/immunology
- Th1 Cells/pathology
- Th2 Cells/immunology
- Th2 Cells/pathology
Collapse
Affiliation(s)
- Alessandra Di Paola
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.P.); (M.A.)
| | - Giuseppe Palumbo
- Department of Haematology, Bambino Gesù Hospital, 00165 Rome, Italy; (G.P.); (P.M.); (L.S.)
| | - Pietro Merli
- Department of Haematology, Bambino Gesù Hospital, 00165 Rome, Italy; (G.P.); (P.M.); (L.S.)
| | - Maura Argenziano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.P.); (M.A.)
| | - Chiara Tortora
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.T.); (D.R.); (S.P.)
| | - Luisa Strocchio
- Department of Haematology, Bambino Gesù Hospital, 00165 Rome, Italy; (G.P.); (P.M.); (L.S.)
| | - Domenico Roberti
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.T.); (D.R.); (S.P.)
| | - Claudia Santoro
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Silverio Perrotta
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.T.); (D.R.); (S.P.)
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.T.); (D.R.); (S.P.)
- Correspondence: ; Tel.: +39-081-566-5342
| |
Collapse
|
36
|
Yu Y, Wang M, Hou Y, Qin P, Zeng Q, Yu W, Guo X, Wang J, Wang X, Liu G, Chu X, Yang L, Feng Y, Zhou F, Sun Z, Zhang M, Wang X, Wang Z, Ran X, Zhao H, Wang L, Zhang H, Bi K, Li D, Yuan C, Xu R, Wang Y, Zhou Y, Peng J, Liu X, Hou M. High-dose dexamethasone plus recombinant human thrombopoietin vs high-dose dexamethasone alone as frontline treatment for newly diagnosed adult primary immune thrombocytopenia: A prospective, multicenter, randomized trial. Am J Hematol 2020; 95:1542-1552. [PMID: 32871029 DOI: 10.1002/ajh.25989] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/19/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022]
Abstract
We conducted a prospective, multicenter, randomized, controlled clinical trial to compare the efficacy and safety of high-dose dexamethasone (HD-DXM) plus recombinant human thrombopoietin (rhTPO), vs HD-DXM alone in newly diagnosed adult immune thrombocytopenia (ITP) patients. Enrolled patients were randomly assigned to receive DXM plus rhTPO or DXM monotherapy. Another 4-day course of DXM was repeated if response was not achieved by day 10 in both arms. One hundred patients in the HD-DXM plus rhTPO arm and 96 patients in the HD-DXM monotherapy arm were included in the full analysis set. So, HD-DXM plus rhTPO resulted in a higher incidence of initial response (89.0% vs 66.7%, P < .001) and complete response (CR, 75.0% vs 42.7%, P < .001) compared with HD-DXM monotherapy. Response rate at 6 months was also higher in the HD-DXM plus rhTPO arm than that in the HD-DXM monotherapy arm (51.0% vs 36.5%, P = .02; sustained CR: 46.0% vs 32.3%, P = .043). Throughout the follow-up period, the overall duration of response was greater in the HD-DXM plus rhTPO arm compared to the HD-DXM monotherapy arm (P = .04), as estimated by the Kaplan-Meier analysis. The study drugs were generally well tolerated. In conclusion, the combination of HD-DXM with rhTPO significantly improved the initial response and yielded favorable SR in newly diagnosed ITP patients, thus could be further validated as a frontline treatment for ITP. This study is registered as clinicaltrials.gov identifier: NCT01734044.
Collapse
Affiliation(s)
- Yafei Yu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine Shandong University Jinan Shandong China
| | - Miaomiao Wang
- Department of Pediatrics The Second Hospital, Cheeloo College of Medicine, Shandong University Jinan China
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine Shandong University Jinan Shandong China
| | - Ping Qin
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine Shandong University Jinan Shandong China
| | - Qingshu Zeng
- Department of Hematology The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Wenzheng Yu
- Department of Hematology Binzhou Medical University Hospital Binzhou China
| | - Xinhong Guo
- Department of Hematology The First Affiliated Hospital of Xinjiang Medical University Urumqi China
| | - Jingxia Wang
- Department of Hematology Liaocheng People’s Hospital Liaocheng China
| | - Xiaomin Wang
- Department of Hematology Xinjiang Uiger Municipal People’s Hospital Urumqi China
| | - Guoqiang Liu
- Department of Hematology Shengli Oilfield Central Hospital Dongying China
| | - Xiaoxia Chu
- Department of Hematology Yantai Yuhuangding Hospital Yantai China
| | - Lan Yang
- Department of Hematology Xijing Hospital, Fourth Military Medical University Xi’an China
| | - Ying Feng
- Department of Hematology The Second Affiliated Hospital of Guangzhou Medical University Guangdong China
| | - Fang Zhou
- Department of Hematology Military General Hospital Jinan China
| | - Zhaogang Sun
- Department of Hematology Taian City Central Hospital Taian China
| | - Mei Zhang
- Department of Hematology The First Affiliated Hospital of Xi’an Jiaotong University Xi’an China
| | - Xin Wang
- Department of Hematology Shandong Provincial Hospital Affiliated to Shandong University Jinan China
| | - Zhencheng Wang
- Department of Hematology Zibo Central Hospital Zibo China
| | - Xuehong Ran
- Department of Hematology Weifang People’s Hospital Weifang China
| | - Hongguo Zhao
- Department of Hematology The Affiliated Hospital of Qingdao University Qingdao China
| | - Lei Wang
- Department of Hematology Qingdao Municipal Hospital Qingdao China
| | - Haiyan Zhang
- Department of Hematology Linyi People’s Hospital Linyi China
| | - Kehong Bi
- Department of Hematology Shandong Provincial Qianfoshan Hospital Jinan China
| | - Daqi Li
- Department of Hematology Jinan Central Hospital Jinan China
| | - Chenglu Yuan
- Department of Hematology Qilu Hospital (Qingdao), Shandong University Qingdao China
| | - Ruirong Xu
- Department of Hematology Shandong Provincial Hospital of Traditional Chinese Medicine Jinan China
| | - Yili Wang
- Department of Hematology Weihai Municipal Hospital Weihai China
| | - Yuhong Zhou
- Department of Hematology Zhejiang Provincial Hospital of TCM Hangzhou China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine Shandong University Jinan Shandong China
| | - Xin‐guang Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine Shandong University Jinan Shandong China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine Shandong University Jinan Shandong China
- Shandong Province Key Laboratory of Hematology/Immunology, Creative Studio of Scientific and Technologic Leading Talents Qilu Hospital, Shandong University Jinan China
| |
Collapse
|
37
|
Vicente A, Patel BA, Gutierrez-Rodrigues F, Groarke E, Giudice V, Lotter J, Feng X, Kajigaya S, Weinstein B, Barranta E, Olnes MJ, Parikh AR, Albitar M, Wu CO, Shalhoub R, Calvo KR, Townsley DM, Scheinberg P, Dunbar CE, Young NS, Winkler T. Eltrombopag monotherapy can improve hematopoiesis in patients with low to intermediate risk-1 myelodysplastic syndrome. Haematologica 2020; 105:2785-2794. [PMID: 33256377 PMCID: PMC7716353 DOI: 10.3324/haematol.2020.249995] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of clonal myeloid disorders characterized by low blood counts and a propensity to develop acute myeloid leukemia. The management of lowerrisk (LR) MDS with persistent cytopenias remains suboptimal. Eltrombopag, a thrombopoietin-receptor agonist, can improve platelet counts in LR-MDS and trilineage hematopoiesis in aplastic anemia. We conducted a phase II dose modification study to investigate the safety and efficacy of eltrombopag in LR-MDS. The eltrombopag dose was escalated from 50 mg/day to a maximum of 150 mg/day over a period of 16 weeks. The primary efficacy endpoint was hematologic response at 16-20 weeks. Eleven of 25 (44%) patients responded; five and six patients had uni- or bi-lineage hematologic responses, respectively. The predictors of response were presence of a paroxysmal nocturnal hemoglobinuria clone, marrow hypocellularity, thrombocytopenia, and elevated plasma thrombopoietin levels at study entry. The safety profile was consistent with that found in previous eltrombopag studies in aplastic anemia; no patients discontinued the drug due to adverse events. Three patients developed reversible grade 3 liver toxicity and one patient had increased reticulin fibrosis. Ten patients discontinued eltrombopag after achieving a robust response (median time 16 months); four of them reinitiated eltrombopag because of declining blood counts, and all attained a second robust response. Six patients had disease progression not associated with expansion of mutated clones and no patient progressed to develop acute myeloid leukemia on study. In conclusion, eltrombopag was well-tolerated and effective in restoring hematopoiesis in some patients with low or intermediate-1 risk MDS. This study was registered at clinicaltrials.gov as #NCT00932156.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Colin O Wu
- Office of Biostatistics Research, National Institutes of Health
| | - Ruba Shalhoub
- Office of Biostatistics Research, National Institutes of Health
| | | | | | | | | | | | | |
Collapse
|
38
|
Yucesan E, Hatirnaz Ng O, Yalniz FF, Yilmaz H, Salihoglu A, Sudutan T, Eskazan AE, Ongoren S, Baslar Z, Soysal T, Ozbek U, Sayitoglu M, Ar MC. Copy-number variations in adult patients with chronic immune thrombocytopenia. Expert Rev Hematol 2020; 13:1277-1287. [PMID: 32885695 DOI: 10.1080/17474086.2020.1819786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Immune thrombocytopenia (ITP) is an autoimmune disease with heterogeneous background. FCGR2C mutations were defined in one third of the patients but genetic players have not been fully elucidated yet. Although childhood ITP present as benign, ITP in adulthood is chronic disease with treatment challenges. This study aimed to focus on adult ITP patients using a whole genome genotyping that is valuable approach to identify the responsible genomic regions for the disease. METHODS Herein 24 adult primary-refractory for ITP patients were evaluated using HumanCytoSNP12BeadChip,Illumina. Forty-six age and sex matched healthy individuals, and ptients awith nonhematological conditions were analyzed as controls. Identified CNV regions were verified by qRTPCR. T-cell receptor beta and delta (TCRB/TCRG) clonality were assessed by heteroduplex analysis in mosaic cases. RESULTS Several CNV losses and gains were defined (losses:2q,7q,17q,19p, and gains: 1q,2p,3q,4q,7q,10q,12p,13q,14q,15q,17p,20q,21p,22q,Xp). Mosaic changes of different sizes (0.2-17.77Mb) were identified in five patients and three of them showed clonality. CNV regions that were unique to ITP patients were identified for the first time and among these genes, those related to immune regulation, and cellular trafficking were noteworthy. Conclusion: Identified CNV regions harbor several candidate genes, the functions of which might shed light on the pathogenesis of chronic ITP.
Collapse
Affiliation(s)
- Emrah Yucesan
- Faculty of Medicine, Department of Medical Biology, Bezmialem Vakif University , Istanbul, Turkey
| | - Ozden Hatirnaz Ng
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University , Istanbul, Turkey
| | - Fevzi Firat Yalniz
- Cerrahpasa Faculty of Medicine, Division of Haematology, Department of Internal Medicine, Istanbul University-Cerrahpasa , Istanbul, Turkey
| | - Hulya Yilmaz
- Cerrahpasa Faculty of Medicine, Division of Haematology, Department of Internal Medicine, Istanbul University-Cerrahpasa , Istanbul, Turkey
| | - Ayse Salihoglu
- Cerrahpasa Faculty of Medicine, Division of Haematology, Department of Internal Medicine, Istanbul University-Cerrahpasa , Istanbul, Turkey
| | - Tugce Sudutan
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University , Istanbul, Turkey
| | - Ahmet Emre Eskazan
- Cerrahpasa Faculty of Medicine, Division of Haematology, Department of Internal Medicine, Istanbul University-Cerrahpasa , Istanbul, Turkey
| | - Seniz Ongoren
- Cerrahpasa Faculty of Medicine, Division of Haematology, Department of Internal Medicine, Istanbul University-Cerrahpasa , Istanbul, Turkey
| | - Zafer Baslar
- Cerrahpasa Faculty of Medicine, Division of Haematology, Department of Internal Medicine, Istanbul University-Cerrahpasa , Istanbul, Turkey
| | - Teoman Soysal
- Cerrahpasa Faculty of Medicine, Division of Haematology, Department of Internal Medicine, Istanbul University-Cerrahpasa , Istanbul, Turkey
| | - Ugur Ozbek
- Department of Medical Genetics, Acibadem Mehmet Ali Aydinlar University, School of Medicine , Istanbul, Turkey
| | - Muge Sayitoglu
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University , Istanbul, Turkey
| | - M Cem Ar
- Cerrahpasa Faculty of Medicine, Division of Haematology, Department of Internal Medicine, Istanbul University-Cerrahpasa , Istanbul, Turkey
| |
Collapse
|
39
|
Turgutkaya A, Yavaşoğlu İ. The Dilemma Between Autoimmune Trombocytopenia and Celiac Disease. Indian J Hematol Blood Transfus 2020; 36:590-591. [PMID: 32647444 PMCID: PMC7326855 DOI: 10.1007/s12288-020-01267-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/19/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Atakan Turgutkaya
- Division of Hematology, Medical Faculty, Adnan Menderes University, 09100 Aydın, Turkey
| | - İrfan Yavaşoğlu
- Division of Hematology, Medical Faculty, Adnan Menderes University, 09100 Aydın, Turkey
| |
Collapse
|
40
|
Gao F, Zhou X, Shi J, Luo Y, Tan Y, Fu H, Lai X, Yu J, Huang H, Zhao Y. Eltrombopag treatment promotes platelet recovery and reduces platelet transfusion for patients with post-transplantation thrombocytopenia. Ann Hematol 2020; 99:2679-2687. [PMID: 32519094 DOI: 10.1007/s00277-020-04106-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
Abstract
Post-transplantation thrombocytopenia (PT) is a common and severe complication which usually leads to poor prognosis. Eltrombopag (EPAG), a novel oral thrombopoietin (TPO) receptor agonist, has shown promising effects in thrombocytopenia due to immune thrombocytopenic purpura (ITP) and refractory severe aplastic anemia (rSAA), while the effectiveness of EPAG for PT patients still needs to be evaluated. A total of 32 PT patients receiving EPAG were retrospectively analyzed between September 2017 and July 2019, including 15 patients with poor graft function (PGF) and 17 patients with secondary failure of platelet recovery (SFPR). To date, 21 (65.6%) patients achieved overall recovery (OR) and 14 (43.8%) patients achieved complete recovery (CR). Among responders, 18 (85.7%) patients discontinued or tapered the drug and 16 (76.2%) patients successfully maintained their best response. During the EPAG treatment, responders received much lower median platelet transfusion units than non-responders (11 vs. 95, P < 0.001). After a median follow-up time of 364 days (range, 24-842), the overall survival in these patients was 78.1% (100% for responders and 36.4% for non-responders, P < 0.001). In the univariate and multivariate analysis, PGF was identified as the independent risk factor for OR (P = 0.041, HR = 5.333). Megakaryocyte (Megk) amounts (P = 0.025, HR = 14.638) and splenomegaly (P = 0.042, HR = 11.278) were identified as independent risk factors for CR. Besides, PGF patients tended to take a longer time to achieve PR and CR than SFPR patients. In conclusion, our data suggest that EPAG can promote platelet recovery and reduce platelet transfusion in PT patients.
Collapse
Affiliation(s)
- Fei Gao
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoyu Zhou
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Jimin Shi
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Yi Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Yamin Tan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Huarui Fu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Jian Yu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China.
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
41
|
Zaja F, Carpenedo M, Baratè C, Borchiellini A, Chiurazzi F, Finazzi G, Lucchesi A, Palandri F, Ricco A, Santoro C, Scalzulli P. Tapering and discontinuation of thrombopoietin receptor agonists in immune thrombocytopenia: Real-world recommendations. Blood Rev 2020; 41:100647. [DOI: 10.1016/j.blre.2019.100647] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 01/23/2023]
|
42
|
CD4 + T cell phenotypes in the pathogenesis of immune thrombocytopenia. Cell Immunol 2020; 351:104096. [PMID: 32199587 DOI: 10.1016/j.cellimm.2020.104096] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by low platelet counts due to enhanced platelet clearance and compromised production. Traditionally, ITP was regarded a B cell mediated disorder as anti-platelet antibodies are detected in most patients. The very nature of self-antigens, evident processes of isotype switching and the affinity maturation of anti-platelet antibodies indicate that B cells in order to mount anti-platelet immune response require assistance of auto-reactive CD4+ T cells. For a long time, ITP pathogenesis has been exclusively reviewed through the prism of the disturbed balance between Th1 and Th2 subsets of CD4+ T cells, however, more recently new subsets of these cells have been described including Th17, Th9, Th22, T follicular helper and regulatory T cells. In this paper, we review the current understanding of the role and immunological mechanisms by which CD4+ T cells contribute to the pathogenesis of ITP.
Collapse
|
43
|
Monzón Manzano E, Álvarez Román MT, Justo Sanz R, Fernández Bello I, Hernández D, Martín Salces M, Valor L, Rivas Pollmar I, Butta NV, Jiménez Yuste V. Platelet and immune characteristics of immune thrombocytopaenia patients non-responsive to therapy reveal severe immune dysregulation. Br J Haematol 2020; 189:943-953. [PMID: 31945798 DOI: 10.1111/bjh.16459] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/04/2019] [Indexed: 01/09/2023]
Abstract
Multifactorial mechanisms leading to diminished platelet counts in immune thrombocytopaenia (ITP) might condition the ability of patients with ITP to respond to treatments. Examining their platelet and immune features, we aimed to detect singular characteristics of patients with ITP who do not respond to any treatment. We studied patients with chronic primary ITP who had been without treatment, or untreated (UT-ITP), for at least six months; included were responders to agonists of thrombopoietin receptors (TPO-RA), patients who showed no response to first- and second-line treatments (NR-ITP), and healthy controls. Platelets from NR-ITP patients exposed a reduced amount of sialic acid residues. Increased loss of platelet surface sialic acid residues was associated with increased platelet apoptosis. NR-ITP patients had an increased fraction of naive lymphocyte (L) B cells and a reduced LTreg (Lymphocyte T-regulator) subset. They also presented an anomalous monocyte and NK (Natural Killer) cells distribution. TPO-RA-treated patients seemed to recover an immune homeostasis similar to healthy controls. In conclusion, our results indicate a severe deregulation of the immune system of NR-ITP. The inverse correlation between loss of sialic acid and LTreg count suggests a potential relationship between glycan composition on the platelet surface and immune response, positing terminal sugar moieties of the glycan chains as aetiopathogenic agents in ITP.
Collapse
Affiliation(s)
| | | | | | | | - Diana Hernández
- Hospital Universitario Gregorio Marañón-IiSGM, Madrid, Spain
| | | | - Larissa Valor
- Hospital Universitario Gregorio Marañón-IiSGM, Madrid, Spain
| | | | - Nora V Butta
- Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | - Víctor Jiménez Yuste
- Hospital Universitario La Paz-IdiPaz, Madrid, Spain.,Facultad de Medicina, Hospital Universitario La Paz-IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
44
|
Bussel J, Kulasekararaj A, Cooper N, Verma A, Steidl U, Semple JW, Will B. Mechanisms and therapeutic prospects of thrombopoietin receptor agonists. Semin Hematol 2019; 56:262-278. [PMID: 31836033 DOI: 10.1053/j.seminhematol.2019.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 07/30/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Abstract
The second-generation thrombopoietin (TPO) receptor agonists eltrombopag and romiplostim are potent activators of megakaryopoiesis and represent a growing treatment option for patients with thrombocytopenic hematological disorders. Both TPO receptor agonists have been approved worldwide for the treatment of children and adults with chronic immune thrombocytopenia. In the EU and USA, eltrombopag is approved for the treatment of patients with severe aplastic anemia who have had an insufficient response to immunosuppressive therapy and in the USA for the first-line treatment of severe aplastic anemia in combination with immunosuppressive therapy. Eltrombopag has also shown efficacy in several other disease settings, for example, chemotherapy-induced thrombocytopenia, selected inherited thrombocytopenias, and myelodysplastic syndromes. While both TPO receptor agonists stimulate TPO receptor signaling and enhance megakaryopoiesis, their vastly different biochemical structures bestow upon them markedly different molecular and functional properties. Here, we review and discuss results from preclinical and clinical studies on the functional and molecular mechanisms of action of this new class of drug.
Collapse
Affiliation(s)
- James Bussel
- Pediatric Hematology/Oncology, Weill Cornell Medicine, New York, NY.
| | | | | | - Amit Verma
- Albert Einstein College of Medicine, New York, NY
| | | | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Britta Will
- Albert Einstein College of Medicine, New York, NY.
| |
Collapse
|
45
|
Fattizzo B, Levati G, Cassin R, Barcellini W. Eltrombopag in Immune Thrombocytopenia, Aplastic Anemia, and Myelodysplastic Syndrome: From Megakaryopoiesis to Immunomodulation. Drugs 2019; 79:1305-1319. [PMID: 31292909 DOI: 10.1007/s40265-019-01159-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eltrombopag is an orally available thrombopoietin receptor agonist indicated for the treatment of immune thrombocytopenia (ITP). Beyond the effect on megakaryopoiesis, the drug also showed a stimulating effect on the hematopoietic stem cell with consistent clinical efficacy in aplastic anemia (AA) and myelodysplastic syndromes (MDS). Eltrombopag is highly effective in ITP and less so in AA and MDS. This observation underlines the importance of residual normal hematopoiesis, which is maximal in ITP, minimal/absent in AA, and dysregulated in MDS. In ITP, the drug at 50-75 mg daily induced up to 85% responses both in clinical trials and real-life studies, with the possibility of tapering and discontinuation. In AA, eltrombopag at 150 mg daily was effective in about 40% of cases relapsed/refractory to standard immunosuppression or ineligible for bone marrow transplant. In MDS, the drug seems less effective, with responses in about a quarter of patients at various schedules. The efficacy of eltrombopag in ITP, AA, and MDS suggests the existence of common immune-pathological mechanisms in these diseases, including autoimmunity against peripheral blood cells and bone marrow precursors, as well as a possible evolution of one condition into the other. Additional mechanisms of action emerging from the clinical use of eltrombopag include modulation of T-regulatory cells, restoration of Fc-γ receptor balance in phagocytes, and an iron-mobilizing effect. In this review, we analyzed the most recent literature on eltrombopag use and efficacy in patients with ITP, AA, and MDS, exploring the basis for different dosing, combined treatments, and discontinuation in each context.
Collapse
Affiliation(s)
- Bruno Fattizzo
- UO Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Giorgia Levati
- UO Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,University of Milan, Milan, Italy
| | - Ramona Cassin
- UO Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Wilma Barcellini
- UO Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
46
|
Zhao Y, Ni X, Xu P, Liu Q, Sun T, Liu X, Ji X, Qiu J, Li J, Wang S, Han P, Peng J, Hou M, Li G. Interleukin-37 reduces inflammation and impairs phagocytosis of platelets in immune thrombocytopenia (ITP). Cytokine 2019; 125:154853. [PMID: 31557634 DOI: 10.1016/j.cyto.2019.154853] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/31/2019] [Accepted: 09/08/2019] [Indexed: 02/07/2023]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by low platelet count with heterogeneous bleeding manifestations. Severe bleeding in ITP is not completely related with low platelet count. Fcγ receptor (FcγR)-mediated platelet destruction is one of the major mechanisms of ITP. Interleukin-37 (IL-37) is a fundamental natural suppressor of innate immunity and inflammatory responses in several autoimmune diseases. However, the role of IL-37 in the pathogenesis of ITP is unknown. In the present study, we identified that IL-37 expression was elevated in ITP patients, which was correlated with platelet count and the severity of bleeding in ITP, indicating that IL-37 could be a candidate in evaluating disease severity of ITP. In the in vitro study, IL-37 initiated an anti-inflammatory effect on monocytes/macrophages from ITP patients by down-regulating the phosphorylation of MAPK, AKT, and NF-κB signaling pathways. Moreover, IL-37 restored the balance of activating and inhibitory FcγRs and decreased antibody-mediated platelet phagocytosis by monocytes/macrophages. Our findings suggest that IL-37 may be a promising indicator of the disease severity and supplementation of IL-37 may be therapeutically beneficial for ITP patients.
Collapse
Affiliation(s)
- Yajing Zhao
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaofei Ni
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Pengcheng Xu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Qiang Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Xinguang Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Xuebin Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Jihua Qiu
- Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Ju Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Shuang Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Panpan Han
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China; Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
47
|
Zhang H, Zhang BM, Guo X, Xu L, You X, West RB, Bussel JB, Zehnder JL. Blood transcriptome and clonal T-cell correlates of response and non-response to eltrombopag therapy in a cohort of patients with chronic immune thrombocytopenia. Haematologica 2019; 105:e129-e132. [PMID: 31296576 DOI: 10.3324/haematol.2019.226688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Haiyu Zhang
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Bing M Zhang
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Xiangqian Guo
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.,Department of Preventive Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Liwen Xu
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Xiaoqing You
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Robert B West
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - James B Bussel
- Platelet Disorders Center, Department of Pediatrics, Weill-Cornell Medicine, New York, NY, USA
| | - James L Zehnder
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
48
|
Schifferli A, Nimmerjahn F, Kühne T. Immunomodulation in Primary Immune Thrombocytopenia: A Possible Role of the Fc Fragment of Romiplostim? Front Immunol 2019; 10:1196. [PMID: 31214173 PMCID: PMC6557984 DOI: 10.3389/fimmu.2019.01196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Fc fusion proteins and Fc fusion peptides or peptibodies are chimeric molecules composed of an active pharmacological protein or peptide and the Fc fragment of an immunoglobulin. The primary aim of this drug construct is to prolong the half-life of the active component. This molecular architecture is seen in drugs, such as etanercept, romiplostim, and the recombinant factor VIII (efmoroctocog alfa). A considerable number of Fc fusion proteins and peptibodies are currently in pre-clinical and clinical development. The isolated effect of the Fc fragment has been studied intensively during last years, but is still poorly understood in the clinical setting and in relation with the active drug and underlying disease. In this short review, we will propose new hypotheses of possible immunomodulatory functions of the Fc fragment of romiplostim in patients with primary immune thrombocytopenia.
Collapse
Affiliation(s)
- Alexandra Schifferli
- Department of Hematology/Oncology, University Children's Hospital Basel, Basel, Switzerland
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Kühne
- Department of Hematology/Oncology, University Children's Hospital Basel, Basel, Switzerland
| |
Collapse
|
49
|
Kapur R, Aslam R, Speck ER, Rebetz JM, Semple JW. Thrombopoietin receptor agonist (TPO-RA) treatment raises platelet counts and reduces anti-platelet antibody levels in mice with immune thrombocytopenia (ITP). Platelets 2019; 31:399-402. [DOI: 10.1080/09537104.2019.1624709] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rick Kapur
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rukhsana Aslam
- Keenan Research Center, St. Michael’s Hospital, Toronto, ON, Canada
| | - Edwin R. Speck
- Keenan Research Center, St. Michael’s Hospital, Toronto, ON, Canada
| | - Johan M. Rebetz
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - John W. Semple
- Keenan Research Center, St. Michael’s Hospital, Toronto, ON, Canada
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
50
|
Ecsedi M, Lengline É, Knol-Bout C, Bosman P, Eikema DJ, Afanasyev B, Maschan A, Dreger P, Halkes CJM, Drexler B, Cortelezzi A, Drénou B, Patriarca A, Bruno B, Onofrillo D, Lanino E, Pulanic D, Serventi-Seiwerth R, Garnier A, Ljungman P, Bonifazi F, Giammarco S, Tournilhac O, Pioltelli P, Rovó A, Risitano AM, de Latour RP, Dufour C, Passweg J. Use of eltrombopag in aplastic anemia in Europe. Ann Hematol 2019; 98:1341-1350. [PMID: 30915499 DOI: 10.1007/s00277-019-03652-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/02/2019] [Indexed: 11/30/2022]
Abstract
Eltrombopag (ELT), an oral thrombopoietin receptor agonist, has recently emerged as a promising new drug for the treatment of aplastic anemia (AA). How ELT is used outside of clinical trials in the real-world setting and results of this treatment are not known. We conducted therefore a retrospective survey on the use of ELT in AA among EBMT member centers. We analyzed the 134 patients reported in our survey together with 46 patients recently published by Lengline et al. The median follow-up from start of ELT treatment was 15.3 months, with 85.6% patients alive at last follow-up. Importantly, only 28.9% of our patients received ELT according to the FDA/EMA label as monotherapy in the relapsed/refractory setting, whereas 16.7% received ELT upfront. The overall response rate in our cohort was 62%, very similar to the results of the pivotal ELT trial. In multivariate analysis, combination therapy with ELT/cyclosporine/ATG and response to previous therapy were associated with response. Overall survival was favorable with a 1-year survival from ELT start of 87.4%. We identified age, AA severity before ELT start and response to ELT as variables significantly associated with OS. Two patients transformed to MDS; other adverse events were mostly benign. In sum, ELT is used widely in Europe to treat AA patients, mostly in the relapsed/refractory setting. Response to ELT is similar to the clinical trial data across different age groups, treatment lines, and treatment combinations and results in favorable survival.
Collapse
Affiliation(s)
- Matyas Ecsedi
- Department of Hematology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | | | | | | | | | - Boris Afanasyev
- First State Pavlov Medical University of St. Petersburg, St. Petersburg, Russia
| | - Alexei Maschan
- Dimitri Rogachev Federal Research Center for Pediatric Hematology, Oncology and Immunology of Russian Federation, Moscow, Russia
| | | | | | - Beatrice Drexler
- Department of Hematology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Agostino Cortelezzi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, and University of Milan, Milan, Italy
| | | | - Andrea Patriarca
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | | | | | | | - Drazen Pulanic
- University Hospital Center and Medical School, University of Zagreb, Zagreb, Croatia
| | | | | | - Per Ljungman
- Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | - Alicia Rovó
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Antonio M Risitano
- Hematology, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | | | | | - Jakob Passweg
- Department of Hematology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
| | | |
Collapse
|