1
|
Kovács ZJ, Harami GM, Pálinkás J, Kuljanishvili N, Hegedüs J, Harami‐Papp H, Mahmudova L, Khamisi L, Szakács G, Kovács M. DNA-dependent phase separation by human SSB2 (NABP1/OBFC2A) protein points to adaptations to eukaryotic genome repair processes. Protein Sci 2024; 33:e4959. [PMID: 38511671 PMCID: PMC10955726 DOI: 10.1002/pro.4959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
Single-stranded DNA binding proteins (SSBs) are ubiquitous across all domains of life and play essential roles via stabilizing and protecting single-stranded (ss) DNA as well as organizing multiprotein complexes during DNA replication, recombination, and repair. Two mammalian SSB paralogs (hSSB1 and hSSB2 in humans) were recently identified and shown to be involved in various genome maintenance processes. Following our recent discovery of the liquid-liquid phase separation (LLPS) propensity of Escherichia coli (Ec) SSB, here we show that hSSB2 also forms LLPS condensates under physiologically relevant ionic conditions. Similar to that seen for EcSSB, we demonstrate the essential contribution of hSSB2's C-terminal intrinsically disordered region (IDR) to condensate formation, and the selective enrichment of various genome metabolic proteins in hSSB2 condensates. However, in contrast to EcSSB-driven LLPS that is inhibited by ssDNA binding, hSSB2 phase separation requires single-stranded nucleic acid binding, and is especially facilitated by ssDNA. Our results reveal an evolutionarily conserved role for SSB-mediated LLPS in the spatiotemporal organization of genome maintenance complexes. At the same time, differential LLPS features of EcSSB and hSSB2 point to functional adaptations to prokaryotic versus eukaryotic genome metabolic contexts.
Collapse
Affiliation(s)
- Zoltán J. Kovács
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
- HUN‐REN–ELTE Motor Pharmacology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Gábor M. Harami
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - János Pálinkás
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Natalie Kuljanishvili
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - József Hegedüs
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Hajnalka Harami‐Papp
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Lamiya Mahmudova
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Lana Khamisi
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Gergely Szakács
- HUN‐REN Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Hungarian Academy of SciencesBudapestHungary
- Center for Cancer ResearchMedical University of ViennaWienAustria
| | - Mihály Kovács
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
- HUN‐REN–ELTE Motor Pharmacology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| |
Collapse
|
2
|
Xu C, Li C, Chen J, Xiong Y, Qiao Z, Fan P, Li C, Ma S, Liu J, Song A, Tao B, Xu T, Xu W, Chi Y, Xue J, Wang P, Ye D, Gu H, Zhang P, Wang Q, Xiao R, Cheng J, Zheng H, Yu X, Zhang Z, Wu J, Liang K, Liu YJ, Lu H, Chen FX. R-loop-dependent promoter-proximal termination ensures genome stability. Nature 2023; 621:610-619. [PMID: 37557913 PMCID: PMC10511320 DOI: 10.1038/s41586-023-06515-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
The proper regulation of transcription is essential for maintaining genome integrity and executing other downstream cellular functions1,2. Here we identify a stable association between the genome-stability regulator sensor of single-stranded DNA (SOSS)3 and the transcription regulator Integrator-PP2A (INTAC)4-6. Through SSB1-mediated recognition of single-stranded DNA, SOSS-INTAC stimulates promoter-proximal termination of transcription and attenuates R-loops associated with paused RNA polymerase II to prevent R-loop-induced genome instability. SOSS-INTAC-dependent attenuation of R-loops is enhanced by the ability of SSB1 to form liquid-like condensates. Deletion of NABP2 (encoding SSB1) or introduction of cancer-associated mutations into its intrinsically disordered region leads to a pervasive accumulation of R-loops, highlighting a genome surveillance function of SOSS-INTAC that enables timely termination of transcription at promoters to constrain R-loop accumulation and ensure genome stability.
Collapse
Affiliation(s)
- Congling Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Chengyu Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jiwei Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yan Xiong
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zhibin Qiao
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Pengyu Fan
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Conghui Li
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Shuangyu Ma
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Aixia Song
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Bolin Tao
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wei Xu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yayun Chi
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jingyan Xue
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Pu Wang
- Huashan Hospital, Fudan University, Shanghai Key Laboratory of Medical Epigenetics, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Dan Ye
- Huashan Hospital, Fudan University, Shanghai Key Laboratory of Medical Epigenetics, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiong Wang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruijing Xiao
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jingdong Cheng
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Hai Zheng
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiaoli Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jiong Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Kaiwei Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yan-Jun Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Huasong Lu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China.
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
hSSB2 (NABP1) is required for the recruitment of RPA during the cellular response to DNA UV damage. Sci Rep 2021; 11:20256. [PMID: 34642383 PMCID: PMC8511049 DOI: 10.1038/s41598-021-99355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Maintenance of genomic stability is critical to prevent diseases such as cancer. As such, eukaryotic cells have multiple pathways to efficiently detect, signal and repair DNA damage. One common form of exogenous DNA damage comes from ultraviolet B (UVB) radiation. UVB generates cyclobutane pyrimidine dimers (CPD) that must be rapidly detected and repaired to maintain the genetic code. The nucleotide excision repair (NER) pathway is the main repair system for this type of DNA damage. Here, we determined the role of the human Single-Stranded DNA Binding protein 2, hSSB2, in the response to UVB exposure. We demonstrate that hSSB2 levels increase in vitro and in vivo after UVB irradiation and that hSSB2 rapidly binds to chromatin. Depletion of hSSB2 results in significantly decreased Replication Protein A (RPA32) phosphorylation and impaired RPA32 localisation to the site of UV-induced DNA damage. Delayed recruitment of NER protein Xeroderma Pigmentosum group C (XPC) was also observed, leading to increased cellular sensitivity to UVB. Finally, hSSB2 was shown to have affinity for single-strand DNA containing a single CPD and for duplex DNA with a two-base mismatch mimicking a CPD moiety. Altogether our data demonstrate that hSSB2 is involved in the cellular response to UV exposure.
Collapse
|
4
|
Caiado F, Pietras EM, Manz MG. Inflammation as a regulator of hematopoietic stem cell function in disease, aging, and clonal selection. J Exp Med 2021; 218:212381. [PMID: 34129016 PMCID: PMC8210622 DOI: 10.1084/jem.20201541] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammation is an evolutionarily selected defense response to infection or tissue damage that involves activation and consumption of immune cells in order to reestablish and maintain organismal integrity. In this process, hematopoietic stem cells (HSCs) are themselves exposed to inflammatory cues and via proliferation and differentiation, replace mature immune cells in a demand-adapted fashion. Here, we review how major sources of systemic inflammation act on and subsequently shape HSC fate and function. We highlight how lifelong inflammatory exposure contributes to HSC inflamm-aging and selection of premalignant HSC clones. Finally, we explore emerging areas of interest and open questions remaining in the field.
Collapse
Affiliation(s)
- Francisco Caiado
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland.,University of Zürich, Comprehensive Cancer Center Zürich, Zürich, Switzerland
| | - Eric M Pietras
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland.,University of Zürich, Comprehensive Cancer Center Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Biernacka A, Skrzypczak M, Zhu Y, Pasero P, Rowicka M, Ginalski K. High-resolution, ultrasensitive and quantitative DNA double-strand break labeling in eukaryotic cells using i-BLESS. Nat Protoc 2021; 16:1034-1061. [PMID: 33349705 PMCID: PMC8088906 DOI: 10.1038/s41596-020-00448-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/09/2020] [Indexed: 11/09/2022]
Abstract
DNA double-strand breaks (DSBs) are implicated in various physiological processes, such as class-switch recombination or crossing-over during meiosis, but also present a threat to genome stability. Extensive evidence shows that DSBs are a primary source of chromosome translocations or deletions, making them a major cause of genomic instability, a driving force of many diseases of civilization, such as cancer. Therefore, there is a great need for a precise, sensitive, and universal method for DSB detection, to enable both the study of their mechanisms of formation and repair as well as to explore their therapeutic potential. We provide a detailed protocol for our recently developed ultrasensitive and genome-wide DSB detection method: immobilized direct in situ breaks labeling, enrichment on streptavidin and next-generation sequencing (i-BLESS), which relies on the encapsulation of cells in agarose beads and labeling breaks directly and specifically with biotinylated linkers. i-BLESS labels DSBs with single-nucleotide resolution, allows detection of ultrarare breaks, takes 5 d to complete, and can be applied to samples from any organism, as long as a sufficient amount of starting material can be obtained. We also describe how to combine i-BLESS with our qDSB-Seq approach to enable the measurement of absolute DSB frequencies per cell and their precise genomic coordinates at the same time. Such normalization using qDSB-Seq is especially useful for the evaluation of spontaneous DSB levels and the estimation of DNA damage induced rather uniformly in the genome (e.g., by irradiation or radiomimetic chemotherapeutics).
Collapse
Affiliation(s)
- Anna Biernacka
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Magdalena Skrzypczak
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Yingjie Zhu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Montpellier, France
| | - Maga Rowicka
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Institute for Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
6
|
Liu Y, Dahl M, Debnath S, Rothe M, Smith EM, Grahn THM, Warsi S, Chen J, Flygare J, Schambach A, Karlsson S. Successful gene therapy of Diamond-Blackfan anemia in a mouse model and human CD34+ cord blood hematopoietic stem cells using a clinically applicable lentiviral vector. Haematologica 2021; 107:446-456. [PMID: 33440921 PMCID: PMC8804567 DOI: 10.3324/haematol.2020.269142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 11/22/2022] Open
Abstract
Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure disorder in which pure red blood cell aplasia is associated with physical malformations and a predisposition to cancer. Twentyfive percent of patients with DBA have mutations in a gene encoding ribosomal protein S19 (RPS19). Our previous proof-of-concept studies demonstrated that DBA phenotype could be successfully treated using lentiviral vectors in Rps19-deficient DBA mice. In our present study, we developed a clinically applicable single gene, self-inactivating lentiviral vector, containing the human RPS19 cDNA driven by the human elongation factor 1αshort promoter, which can be used for clinical gene therapy development for RPS19-deficient DBA. We examined the efficacy and safety of the vector in a Rps19-deficient DBA mouse model and in human primary RPS19- deficient CD34+ cord blood cells. We observed that transduced Rps19-deficient bone marrow cells could reconstitute mice long-term and rescue the bone marrow failure and severe anemia observed in Rps19-deficient mice, with a low risk of mutagenesis and a highly polyclonal insertion site pattern. More importantly, the vector can also rescue impaired erythroid differentiation in human primary RPS19-deficient CD34+ cord blood hematopoietic stem cells. Collectively, our results demonstrate the efficacy and safety of using a clinically applicable lentiviral vector for the successful treatment of Rps19-deficient DBA in a mouse model and in human primary CD34+ cord blood cells. These findings show that this vector can be used to develop clinical gene therapy for RPS19-deficient DBA patients.
Collapse
Affiliation(s)
- Yang Liu
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund 22184.
| | - Maria Dahl
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund 22184
| | - Shubhranshu Debnath
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund 22184
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625
| | - Emma M Smith
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund 22184
| | - Tan Hooi Min Grahn
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund 22184
| | - Sarah Warsi
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund 22184
| | - Jun Chen
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund 22184
| | - Johan Flygare
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund 22184
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston
| | - Stefan Karlsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund 22184.
| |
Collapse
|
7
|
Bouwman BAM, Agostini F, Garnerone S, Petrosino G, Gothe HJ, Sayols S, Moor AE, Itzkovitz S, Bienko M, Roukos V, Crosetto N. Genome-wide detection of DNA double-strand breaks by in-suspension BLISS. Nat Protoc 2020; 15:3894-3941. [PMID: 33139954 DOI: 10.1038/s41596-020-0397-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
sBLISS (in-suspension breaks labeling in situ and sequencing) is a versatile and widely applicable method for identification of endogenous and induced DNA double-strand breaks (DSBs) in any cell type that can be brought into suspension. sBLISS provides genome-wide profiles of the most consequential DNA lesion implicated in a variety of pathological, but also physiological, processes. In sBLISS, after in situ labeling, DSB ends are linearly amplified, followed by next-generation sequencing and DSB landscape analysis. Here, we present a step-by-step experimental protocol for sBLISS, as well as a basic computational analysis. The main advantages of sBLISS are (i) the suspension setup, which renders the protocol user-friendly and easily scalable; (ii) the possibility of adapting it to a high-throughput or single-cell workflow; and (iii) its flexibility and its applicability to virtually every cell type, including patient-derived cells, organoids, and isolated nuclei. The wet-lab protocol can be completed in 1.5 weeks and is suitable for researchers with intermediate expertise in molecular biology and genomics. For the computational analyses, basic-to-intermediate bioinformatics expertise is required.
Collapse
Affiliation(s)
- Britta A M Bouwman
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Federico Agostini
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Silvano Garnerone
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Sergi Sayols
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Magda Bienko
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Nicola Crosetto
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Awate S, Sommers JA, Datta A, Nayak S, Bellani MA, Yang O, Dunn CA, Nicolae CM, Moldovan GL, Seidman MM, Cantor SB, Brosh RM. FANCJ compensates for RAP80 deficiency and suppresses genomic instability induced by interstrand cross-links. Nucleic Acids Res 2020; 48:9161-9180. [PMID: 32797166 DOI: 10.1093/nar/gkaa660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
FANCJ, a DNA helicase and interacting partner of the tumor suppressor BRCA1, is crucial for the repair of DNA interstrand crosslinks (ICL), a highly toxic lesion that leads to chromosomal instability and perturbs normal transcription. In diploid cells, FANCJ is believed to operate in homologous recombination (HR) repair of DNA double-strand breaks (DSB); however, its precise role and molecular mechanism is poorly understood. Moreover, compensatory mechanisms of ICL resistance when FANCJ is deficient have not been explored. In this work, we conducted a siRNA screen to identify genes of the DNA damage response/DNA repair regime that when acutely depleted sensitize FANCJ CRISPR knockout cells to a low concentration of the DNA cross-linking agent mitomycin C (MMC). One of the top hits from the screen was RAP80, a protein that recruits repair machinery to broken DNA ends and regulates DNA end-processing. Concomitant loss of FANCJ and RAP80 not only accentuates DNA damage levels in human cells but also adversely affects the cell cycle checkpoint, resulting in profound chromosomal instability. Genetic complementation experiments demonstrated that both FANCJ's catalytic activity and interaction with BRCA1 are important for ICL resistance when RAP80 is deficient. The elevated RPA and RAD51 foci in cells co-deficient of FANCJ and RAP80 exposed to MMC are attributed to single-stranded DNA created by Mre11 and CtIP nucleases. Altogether, our cell-based findings together with biochemical studies suggest a critical function of FANCJ to suppress incompletely processed and toxic joint DNA molecules during repair of ICL-induced DNA damage.
Collapse
Affiliation(s)
- Sanket Awate
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Sumeet Nayak
- Department of Cancer Biology, University of Massachusetts Medical School - UMASS Memorial Cancer Center, Worcester, MA, USA
| | - Marina A Bellani
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Olivia Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher A Dunn
- Flow Cytometry Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Sharon B Cantor
- Department of Cancer Biology, University of Massachusetts Medical School - UMASS Memorial Cancer Center, Worcester, MA, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| |
Collapse
|
9
|
Pfeifer M, Brem R, Lippert TP, Boulianne B, Ho HN, Robinson ME, Stebbing J, Feldhahn N. SSB1/SSB2 Proteins Safeguard B Cell Development by Protecting the Genomes of B Cell Precursors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:3423-3433. [PMID: 31085591 PMCID: PMC6545462 DOI: 10.4049/jimmunol.1801618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/12/2019] [Indexed: 12/22/2022]
Abstract
Induction of programmed DNA damage and its recognition and repair are fundamental for B cell development. The ssDNA-binding protein SSB1 has been described in human cells as essential for the recognition and repair of DNA damage. To study its relevance for B cells, we recently developed Ssb1 -/- and conditional Ssb1 -/- mice. Although SSB1 loss did not affect B cell development, Ssb1 -/- cells exhibited compensatory expression of its homolog SSB2. We have now generated Ssb2 -/- mice and show in this study that SSB2 is also dispensable for B cell development and DNA damage response activation. In contrast to the single loss of Ssb1 or Ssb2, however, combined SSB1/2 deficiency caused a defect in early B cell development. We relate this to the sensitivity of B cell precursors as mature B cells largely tolerated their loss. Toxicity of combined genetic SSB1/2 loss can be rescued by ectopic expression of either SSB1 or SSB2, mimicked by expression of SSB1 ssDNA-binding mutants, and attenuated by BCL2-mediated suppression of apoptosis. SSB1/2 loss in B cell precursors further caused increased exposure of ssDNA associated with disruption of genome fragile sites, inefficient cell cycle progression, and increased DNA damage if apoptosis is suppressed. As such, our results establish SSB1/2 as safeguards of B cell development and unveil their differential requirement in immature and mature B lymphocytes.
Collapse
Affiliation(s)
- Matthias Pfeifer
- Centre for Hematology, Department of Medicine, Imperial College London, W12 0NN London, United Kingdom; and
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, W12 0NN London, United Kingdom
| | - Reto Brem
- Centre for Hematology, Department of Medicine, Imperial College London, W12 0NN London, United Kingdom; and
| | - Timothy P Lippert
- Centre for Hematology, Department of Medicine, Imperial College London, W12 0NN London, United Kingdom; and
| | - Bryant Boulianne
- Centre for Hematology, Department of Medicine, Imperial College London, W12 0NN London, United Kingdom; and
| | - Howin Ng Ho
- Centre for Hematology, Department of Medicine, Imperial College London, W12 0NN London, United Kingdom; and
| | - Mark E Robinson
- Centre for Hematology, Department of Medicine, Imperial College London, W12 0NN London, United Kingdom; and
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, W12 0NN London, United Kingdom
| | - Justin Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, W12 0NN London, United Kingdom
| | - Niklas Feldhahn
- Centre for Hematology, Department of Medicine, Imperial College London, W12 0NN London, United Kingdom; and
| |
Collapse
|
10
|
Lawson T, El-Kamand S, Kariawasam R, Richard DJ, Cubeddu L, Gamsjaeger R. A Structural Perspective on the Regulation of Human Single-Stranded DNA Binding Protein 1 (hSSB1, OBFC2B) Function in DNA Repair. Comput Struct Biotechnol J 2019; 17:441-446. [PMID: 30996823 PMCID: PMC6451162 DOI: 10.1016/j.csbj.2019.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Single-stranded DNA binding (SSB) proteins are essential to protect singe-stranded DNA (ssDNA) that exists as a result of several important DNA repair pathways in living cells. In humans, besides the well-characterised Replication Protein A (RPA) we have described another SSB termed human SSB1 (hSSB1, OBFC2B) and have shown that this protein is an important player in the maintenance of the genome. In this review we define the structural and biophysical details of how hSSB1 interacts with both DNA and other essential proteins. While the presence of the oligonucleotide/oligosaccharide (OB) domain ensures ssDNA binding by hSSB1, it has also been shown to self-oligomerise as well as interact with and being modified by several proteins highlighting the versatility that hSSB1 displays in the context of DNA repair. A detailed structural understanding of these processes will likely lead to the designs of tailored hSSB1 inhibitors as anti-cancer drugs in the near future.
Collapse
Affiliation(s)
- Teegan Lawson
- School of Science and Health, Western Sydney University, Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Serene El-Kamand
- School of Science and Health, Western Sydney University, Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Ruvini Kariawasam
- School of Science and Health, Western Sydney University, Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Derek J Richard
- Genome Stability Laboratory, Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland 4102, Australia
| | - Liza Cubeddu
- School of Science and Health, Western Sydney University, Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Roland Gamsjaeger
- School of Science and Health, Western Sydney University, Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| |
Collapse
|
11
|
Croft LV, Bolderson E, Adams MN, El-Kamand S, Kariawasam R, Cubeddu L, Gamsjaeger R, Richard DJ. Human single-stranded DNA binding protein 1 (hSSB1, OBFC2B), a critical component of the DNA damage response. Semin Cell Dev Biol 2019; 86:121-128. [DOI: 10.1016/j.semcdb.2018.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022]
|
12
|
Kariawasam R, Knight M, Gamsjaeger R, Cubeddu L. Backbone 1H, 13C and 15N resonance assignments of the OB domain of the single stranded DNA-binding protein hSSB2 (NABP1/OBFC2A) and chemical shift mapping of the DNA-binding interface. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:107-111. [PMID: 29063999 DOI: 10.1007/s12104-017-9789-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Single stranded DNA-binding proteins (SSBs) are essential for the maintenance of genome integrity and are required in in all known cellular organisms. Over the last 10 years, the role of two new human SSBs, hSSB1 (NABP2/OBFC2B) and hSSB2 (NABP1/OBFC2A), has been described and characterised in various important DNA repair processes. Both these proteins are made up of a conserved oligonucleotide-binding (OB) fold that is responsible for ssDNA recognition as well a unique flexible carboxy-terminal extension involved in protein-protein interactions. Due to their similar domain organisation, hSSB1 and hSSB2 have been found to display some overlapping functions. However, several studies have also revealed cell- and tissue-specific roles for these two proteins, most likely due to small but significant differences in the protein sequence of the OB domains. While the molecular details of ssDNA binding by hSSB1 has been studied extensively, comparatively little is known about hSSB2. In this study, we use NMR solution-state backbone resonance assignments of the OB domain of hSSB2 to map the ssDNA interaction interface. Our data reveal that ssDNA binding by hSSB2 is driven by four key aromatic residues in analogy to hSSB1, however, some significant differences in the chemical shift perturbations are observed, reflecting differences in ssDNA recognition. Future studies will aim at determining the structural basis of these differences and thus help to gain a more comprehensive understanding of the functional divergences that these novel hSSBs display in the context of genome maintenance.
Collapse
Affiliation(s)
- Ruvini Kariawasam
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Maddison Knight
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Roland Gamsjaeger
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia.
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Liza Cubeddu
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia.
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
13
|
Danilova N, Wilkes M, Bibikova E, Youn MY, Sakamoto KM, Lin S. Innate immune system activation in zebrafish and cellular models of Diamond Blackfan Anemia. Sci Rep 2018; 8:5165. [PMID: 29581525 PMCID: PMC5980095 DOI: 10.1038/s41598-018-23561-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/14/2018] [Indexed: 12/12/2022] Open
Abstract
Deficiency of ribosomal proteins (RPs) leads to Diamond Blackfan Anemia (DBA) associated with anemia, congenital defects, and cancer. While p53 activation is responsible for many features of DBA, the role of immune system is less defined. The Innate immune system can be activated by endogenous nucleic acids from non-processed pre-rRNAs, DNA damage, and apoptosis that occurs in DBA. Recognition by toll like receptors (TLRs) and Mda5-like sensors induces interferons (IFNs) and inflammation. Dying cells can also activate complement system. Therefore we analyzed the status of these pathways in RP-deficient zebrafish and found upregulation of interferon, inflammatory cytokines and mediators, and complement. We also found upregulation of receptors signaling to IFNs including Mda5, Tlr3, and Tlr9. TGFb family member activin was also upregulated in RP-deficient zebrafish and in RPS19-deficient human cells, which include a lymphoid cell line from a DBA patient, and fetal liver cells and K562 cells transduced with RPS19 shRNA. Treatment of RP-deficient zebrafish with a TLR3 inhibitor decreased IFNs activation, acute phase response, and apoptosis and improved their hematopoiesis and morphology. Inhibitors of complement and activin also had beneficial effects. Our studies suggest that innate immune system contributes to the phenotype of RPS19-deficient zebrafish and human cells.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, USA
| | - Mark Wilkes
- Department of Pediatrics Stanford University School of Medicine, Stanford, CA, USA
| | - Elena Bibikova
- Department of Pediatrics Stanford University School of Medicine, Stanford, CA, USA
| | - Min-Young Youn
- Department of Pediatrics Stanford University School of Medicine, Stanford, CA, USA
| | - Kathleen M Sakamoto
- Department of Pediatrics Stanford University School of Medicine, Stanford, CA, USA.
| | - Shuo Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
The role of telomere binding molecules for normal and abnormal hematopoiesis. Int J Hematol 2018; 107:646-655. [DOI: 10.1007/s12185-018-2432-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 11/26/2022]
|
15
|
Inflammation: a key regulator of hematopoietic stem cell fate in health and disease. Blood 2017; 130:1693-1698. [PMID: 28874349 DOI: 10.1182/blood-2017-06-780882] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/04/2017] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are responsible for lifelong production of blood cells. At the same time, they must respond rapidly to acute needs such as infection or injury. Significant interest has emerged in how inflammation regulates HSC fate and how it affects the long-term functionality of HSCs and the blood system as a whole. Here we detail recent advances and unanswered questions at the intersection between inflammation and HSC biology in the contexts of development, aging, and hematological malignancy.
Collapse
|