1
|
Hesius EAM, Stevens WBC, Stewart JP, Kroeze LI, Spek EVD, Issa D, Nooijen P, Luijks J, Gonzalez D, Groenen PJTA, Blijlevens NMA, Spriel ABV, Brand MVD. Mutational profile dynamics in follicular lymphoma and large cell transformation. J Clin Pathol 2025:jcp-2024-209880. [PMID: 39890445 DOI: 10.1136/jcp-2024-209880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
AIMS Follicular lymphoma (FL) is characterised by significant heterogeneity in both the clinical trajectories and the molecular profiles. This study aimed to investigate clonal dynamics in FL by analysing mutation profiles at various time points during the disease course including at histological transformation (HT), to gain insight into the mutational changes over time. METHODS We retrospectively analysed 76 biopsies from 25 patients, including 13 cases with three or more FL biopsies and 12 cases with subsequent HT. Hybrid capture-based Next-Generation Sequencing (NGS) with the EuroClonality-NGS DNA capture (EuroClonality-NDC) assay was used to examine clonal rearrangements and mutations. RESULTS A total of 204 (potentially) pathogenic mutations were identified. Only 40% of mutations remained stably present during a median follow-up period of 139 months (range 9-198). KMT2D and CREBBP were the most frequently mutated genes at diagnosis, exhibiting relative stability in follow-up biopsies. Conversely, EZH2 displayed a dynamic pattern of mutations gained and lost during the disease course. At HT, pathogenic mutations affecting B2M, MYC and TP53 emerged. Changes in mutational burden were observed in both FL-sequential and diagnosis-transformation cohorts, with more pronounced changes in the latter. CONCLUSIONS This real-world study provides insights into the complex molecular pathogenesis of FL and HT. As targeted therapies emerge as treatment modalities, mutational profiles could influence treatment decisions in the future. Therefore, recognising the significant changes occurring in the mutational landscape of FL throughout the disease course is crucial.
Collapse
Affiliation(s)
- Eva A M Hesius
- Department of Hematology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Wendy B C Stevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, Netherlands
| | - James P Stewart
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Leonie I Kroeze
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ellen van der Spek
- Department of Internal Medicine, Rijnstate Hospital, Arnhem, Netherlands
| | - Djamila Issa
- Department of Internal Medicine, Jeroen Bosch Hospital, 's-Hertogenbosch, Netherlands
| | - Peet Nooijen
- Pathology-DNA, Jeroen Bosch Hospital, 's-Hertogenbosch, Netherlands
| | - Jeroen Luijks
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
| | - David Gonzalez
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | | | | - Annemiek B van Spriel
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Michiel van den Brand
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
- Pathology-DNA, Rijnstate Hospital, Arnhem, Netherlands
| |
Collapse
|
2
|
Kopmar NE, Qu X, Liu Y, Gooley TA, Ghiuzeli CM, Mawad R, Percival MEM, Fang M, Cassaday RD. Prognostic significance of chromosomal genomic array testing in adults with newly-diagnosed acute lymphoblastic leukemia. Leuk Lymphoma 2025; 66:155-158. [PMID: 39297750 DOI: 10.1080/10428194.2024.2404959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 01/03/2025]
Affiliation(s)
- Noam E Kopmar
- Division of Hematology & Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Xiaoyu Qu
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yajuan Liu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Ted A Gooley
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Cristina M Ghiuzeli
- Division of Hematology & Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Raya Mawad
- Division of Hematology & Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mary-Elizabeth M Percival
- Division of Hematology & Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Min Fang
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Ryan D Cassaday
- Division of Hematology & Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Enemark MH, Hemmingsen JK, Jensen ML, Kridel R, Ludvigsen M. Molecular Biomarkers in Prediction of High-Grade Transformation and Outcome in Patients with Follicular Lymphoma: A Comprehensive Systemic Review. Int J Mol Sci 2024; 25:11179. [PMID: 39456961 PMCID: PMC11508793 DOI: 10.3390/ijms252011179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Follicular lymphoma (FL) is the most prevalent indolent B-cell lymphoma entity, often characterized by the t(14;18) BCL2-IGH translocation. The malignancy represents a clinically and biologically highly heterogeneous disease. Most patients have favorable prognoses; however, despite therapeutic advancements, the disease remains incurable, with recurrent relapses or early disease progression. Moreover, transformation to an aggressive histology, most often diffuse large-B-cell lymphoma, remains a critical event in the disease course, which is associated with poor outcomes. Understanding the individual patient's risk of transformation remains challenging, which has motivated much research on novel biomarkers within the past four decades. This review systematically assessed the research on molecular biomarkers in FL transformation and outcome. Following the PRISMA guidelines for systemic reviews, the PubMed database was searched for English articles published from January 1984 through September 2024, yielding 6769 results. The identified publications were carefully screened and reviewed, of which 283 original papers met the inclusion criteria. The included studies focused on investigating molecular biomarkers as predictors of transformation or as prognostic markers of time-related endpoints (survival, progression, etc.). The effects of each biomarker were categorized based on their impact on prognosis or risk of transformation as none, favorable, or inferior. The biomarkers included genetic abnormalities, gene expression, microRNAs, markers of B cells/FL tumor cells, markers of the tumor microenvironment, and soluble biomarkers. This comprehensive review provides an overview of the research conducted in the past four decades, underscoring the persistent challenge in risk anticipation of FL patients.
Collapse
Affiliation(s)
- Marie Hairing Enemark
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.H.E.); (J.K.H.); (M.L.J.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Jonas Klejs Hemmingsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.H.E.); (J.K.H.); (M.L.J.)
| | - Maja Lund Jensen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.H.E.); (J.K.H.); (M.L.J.)
| | - Robert Kridel
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C4, Canada;
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.H.E.); (J.K.H.); (M.L.J.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Hori Y, Hosoi H, Hiroi T, Wan K, Murata S, Morimoto M, Mushino T, Nishikawa A, Sonoki T. Utilizing Clinical Transformation Criteria for Prognostic Stratification in Follicular Lymphoma Prior to Initial Immunochemotherapy. Hematol Rep 2024; 16:612-623. [PMID: 39449303 PMCID: PMC11503408 DOI: 10.3390/hematolrep16040060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Although the prognosis of follicular lymphoma (FL) has improved, some patients experience early disease progression, including progression of disease within 24 months (POD24). Histological transformation is a critical event in FL. However, the heterogeneity of FL tumors makes it challenging to diagnose transformation accurately. We retrospectively applied the clinical transformation criteria used for FL transformation assessments at relapse or disease progression to conduct transformation assessments before the initial immunochemotherapy. METHODS Sixty-six FL patients who first received immunochemotherapy between January 2009 and February 2023 at our institution were selected. Twenty-three were clinical-transformation-positive (CLT+). RESULTS The progression-free survival (PFS) rate of the CLT+ patients was significantly lower than that of the clinical-transformation-negative (CLT-) patients. In the POD24 assessment subgroup, the CLT+ patients had a higher incidence of POD24 than the CLT- patients. There was no significant difference in PFS between the patients treated with CHOP-like regimens and those treated with bendamustine regimens. In the CHOP-like group, the CLT+ patients exhibited significantly lower PFS than the CLT- patients. In the bendamustine group, the clinical transformation did not affect PFS. CONCLUSION Clinical transformation criteria may be useful for the prognostic stratification of FL prior to immunochemotherapy. Additionally, they may serve as predictors of POD24.
Collapse
Affiliation(s)
- Yoshikazu Hori
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama 641-8509, Japan; (Y.H.); (S.M.); (T.M.); (A.N.); (T.S.)
- Department of Hematology, Kinan Hospital, Wakayama 646-8588, Japan;
| | - Hiroki Hosoi
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama 641-8509, Japan; (Y.H.); (S.M.); (T.M.); (A.N.); (T.S.)
- Department of Transfusion Medicine, Wakayama Medical University Hospital, Wakayama 641-8510, Japan
- Department of Internal Medicine, Kainan Municipal Medical Center, Wakayama 642-0002, Japan
| | - Takayuki Hiroi
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama 641-8509, Japan; (Y.H.); (S.M.); (T.M.); (A.N.); (T.S.)
- Department of Internal Medicine, Kainan Municipal Medical Center, Wakayama 642-0002, Japan
| | - Ke Wan
- Clinical Study Support Center, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Shogo Murata
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama 641-8509, Japan; (Y.H.); (S.M.); (T.M.); (A.N.); (T.S.)
| | - Masaya Morimoto
- Department of Hematology, Kinan Hospital, Wakayama 646-8588, Japan;
- Department of Infection Prevention and Control, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Toshiki Mushino
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama 641-8509, Japan; (Y.H.); (S.M.); (T.M.); (A.N.); (T.S.)
- Department of Hematology, Kinan Hospital, Wakayama 646-8588, Japan;
| | - Akinori Nishikawa
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama 641-8509, Japan; (Y.H.); (S.M.); (T.M.); (A.N.); (T.S.)
- Division of Medical Information, Wakayama Medical University Hospital, Wakayama 641-8510, Japan
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama 641-8509, Japan; (Y.H.); (S.M.); (T.M.); (A.N.); (T.S.)
- Department of Transfusion Medicine, Wakayama Medical University Hospital, Wakayama 641-8510, Japan
| |
Collapse
|
5
|
Iorgulescu JB, Medeiros LJ, Patel KP. Predictive and prognostic molecular biomarkers in lymphomas. Pathology 2024; 56:239-258. [PMID: 38216400 DOI: 10.1016/j.pathol.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
Recent advances in molecular diagnostics have markedly expanded our understanding of the genetic underpinnings of lymphomas and catalysed a transformation in not just how we classify lymphomas, but also how we treat, target, and monitor affected patients. Reflecting these advances, the World Health Organization Classification, International Consensus Classification, and National Comprehensive Cancer Network guidelines were recently updated to better integrate these molecular insights into clinical practice. We summarise here the molecular biomarkers of lymphomas with an emphasis on biomarkers that have well-supported prognostic and predictive utility, as well as emerging biomarkers that show promise for clinical practice. These biomarkers include: (1) diagnostic entity-defining genetic abnormalities [e.g., B-cell acute lymphoblastic leukaemia (B-ALL) with KMT2A rearrangement]; (2) molecular alterations that guide patients' prognoses (e.g., TP53 loss frequently conferring worse prognosis); (3) mutations that serve as the targets of, and often a source of acquired resistance to, small molecular inhibitors (e.g., ABL1 tyrosine kinase inhibitors for B-ALL BCR::ABL1, hindered by ABL1 kinase domain resistance mutations); (4) the growing incorporation of molecular measurable residual disease (MRD) in the management of lymphoma patients (e.g., molecular complete response and sequencing MRD-negative criteria in multiple myeloma). Altogether, our review spans the spectrum of lymphoma types, from the genetically defined subclasses of precursor B-cell lymphomas to the highly heterogeneous categories of small and large cell mature B-cell lymphomas, Hodgkin lymphomas, plasma cell neoplasms, and T/NK-cell lymphomas, and provides an expansive summary of our current understanding of their molecular pathology.
Collapse
Affiliation(s)
- J Bryan Iorgulescu
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Li R, Yan L, Jiu J, Liu H, Li D, Li X, Zhang J, Li S, Fan Z, Lv Z, Zhu Y, Wang B. PSME2 offers value as a biomarker of M1 macrophage infiltration in pan-cancer and inhibits osteosarcoma malignant phenotypes. Int J Biol Sci 2024; 20:1452-1470. [PMID: 38385075 PMCID: PMC10878157 DOI: 10.7150/ijbs.90226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
A growing number of studies have revealed an association between proteasome activator complex subunit 2 (PSME2) and the progression of various forms of cancer. However, the effect of PSME2 on osteosarcoma progression is unknown. Pan-cancer analyses focused on the immunological activity and prognostic relevance of PSME2 have yet to be conducted. The Cancer Genome Atlas and Genome-Tissue Expression databases were leveraged to evaluate PSME2 expression and activity across 33 cancer types. Significant PSME2 dysregulation was noted in a wide range of cancer types and this gene was found to offer significant diagnostic and prognostic utility in most analyzed cancers. From a mechanistic perspective, PSME2 expression levels were correlated with DNA methylation, DNA repair, genomic instability, and TME scores in multiple cancer types. PSME2 was subsequently established as a pan-cancer biomarker of M1 macrophage infiltration based on a combination of bulk, single-cell, and spatial transcriptomic data and confirmatory fluorescent staining results. In osteosarcoma cells, overexpressing PSME2 significantly suppressed tumor proliferative, migratory, and invasive activity. Screening efforts also successfully identified the PSME2-activating drug irinotecan, which can synergistically promote the death of osteosarcoma cells when combined with the chemotherapeutic drug paclitaxel. As a biomarker of M1 macrophage infiltration, PSME2 expression levels may offer insight into tumor development and progression for a wide range of cancers including osteosarcoma, emphasizing its potential utility as a prognostic and therapeutic target worthy of further study.
Collapse
Affiliation(s)
- Ruoqi Li
- Department of Orthopaedic Surgery, The First Affliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Lei Yan
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, China
| | - Jingwei Jiu
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, China
| | - Haifeng Liu
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, China
| | - Dijun Li
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, China
| | - Xiaoke Li
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, China
| | - Jing Zhang
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, China
- Clinical College of Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Songyan Li
- Department of Orthopaedic Surgery, The First Affliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zijuan Fan
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Shanxi, China
| | - Zhi Lv
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, China
| | - Yuanyuan Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Burack WR, Li H, Adlowitz D, Spence JM, Rimsza LM, Shadman M, Spier CM, Kaminski MS, Leonard JP, Leblanc ML, Smith SM, Friedberg JW. Subclonal TP53 mutations are frequent and predict resistance to radioimmunotherapy in follicular lymphoma. Blood Adv 2023; 7:5082-5090. [PMID: 37379264 PMCID: PMC10471938 DOI: 10.1182/bloodadvances.2022009467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/12/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Although TP53 is commonly mutated in transformed follicular lymphoma, mutations are reported in <5% of pretreatment follicular lymphoma (FL) specimens. We assayed archival follicular B-cell non-Hodgkin lymphoma specimens from a completed clinical trial, Southwest Oncology Group S0016, a phase 3 randomized intergroup trial of CHOP (cyclophosphamide, hydroxydaunorubicin, oncovin, and prednisone) chemotherapy plus R-CHOP (rituximab-CHOP) compared with CHOP chemotherapy plus 131-iodine tositumomab (radioimmunotherapy [RIT]-CHOP). Subclonal TP53 mutations (median allele frequency 0.02) were found in 25% of diagnostic FL specimens and in 27% of a separate validation cohort. In the R-CHOP arm, pathogenic TP53 mutations were not associated with progression-free survival (PFS) (10-year PFS 43% vs 44%). In contrast, among patients with no detectable pathogenic TP53 mutation, RIT-CHOP was associated with a longer PFS than with R-CHOP (10-year PFS 67% vs 44%; hazard ratio = 0.49; P = .008). No relationship was detected between PFS and the extent of activation-induced cytidine deaminase (AICDA)-mediated heterogeneity. In summary, subclonal TP53 mutations are common in FL and are a distinct phenomenon from AICDA-mediated genetic heterogeneity. The absence of a detectable subclonal mutation in TP53 defined a population that particularly benefited from RIT.
Collapse
Affiliation(s)
- W. Richard Burack
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | - Hongli Li
- Clinical Research Division, Fred Hutchison Cancer Research Center, Seattle, WA
| | - Diana Adlowitz
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | - Janice M. Spence
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | - Lisa M. Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic in Arizona, Phoenix, AZ
| | - Mazyar Shadman
- Clinical Research Division, Fred Hutchison Cancer Research Center, Seattle, WA
| | | | - Mark S. Kaminski
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - John P. Leonard
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Michael L. Leblanc
- Clinical Research Division, Fred Hutchison Cancer Research Center, Seattle, WA
| | - Sonali M. Smith
- Department of Medicine, University of Chicago School of Medicine, Chicago, IL
| | | |
Collapse
|
8
|
Gao F, Liu H, Meng X, Liu J, Wang J, Yu J, Liu X, Liu X, Li L, Qiu L, Qian Z, Zhou S, Gong W, Meng B, Ren X, Golchehre Z, Chavoshzadeh Z, He J, Zhang H, Wang X. Integrative genomic and transcriptomic analysis reveals genetic alterations associated with the early progression of follicular lymphoma. Br J Haematol 2023; 202:1151-1164. [PMID: 37455019 DOI: 10.1111/bjh.18974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Follicular lymphoma (FL), the most common indolent lymphoma, is a clinically and genetically heterogeneous disease. However, the prognostic value of driver gene mutations and copy number alterations has not been systematically assessed. Here, we analysed the clinical-biological features of 415 FL patients to identify variables associated with disease progression within 24 months of first-line therapy (POD24). Patients with B symptoms, elevated lactate dehydrogenase and β2-microglobulin levels, unfavourable baseline haemoglobin levels, advanced stage, and high-risk FL International Prognostic Index (FLIPI) scores had an increased risk of POD24, with FLIPI being the most important factor in logistic regression. HIST1H1D, identified as a driver mutation, was correlated with POD24. Gains of 6p22.2 (HIST1H1D) and 18q21.33 (BCL2) and loss of 1p36.13 (NBPF1) predicted POD24 independent of FLIPI. Gene expression profiling of FL samples showed that the POD24 cohort was significantly enriched in the inflammatory response (mediated by interferon and tumour necrosis factor), cell cycle regulation (transcription, replication and proliferation) sets and PI3K-AKT-mTOR signalling. This result was further validated with transcriptome-wide information provided by RNA-seq at single-cell resolution. Our study, performed on a large cohort of FL patients, highlights the importance of distinctive genetic alterations and gene expression relevant to disease diagnosis and early progression.
Collapse
Affiliation(s)
- Fenghua Gao
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Hengqi Liu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Xiangrui Meng
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Jing Liu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Jiesong Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
- Department of Lymphoma & Head and Neck Oncology, College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou, China
| | - Jingwei Yu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Xia Liu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Xianming Liu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Lanfang Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Lihua Qiu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Zhengzi Qian
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Shiyong Zhou
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Wenchen Gong
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Bin Meng
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiubao Ren
- Department of Immunology/Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zahra Golchehre
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Chavoshzadeh
- Department of Immunology/Allergy, Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jin He
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Xianhuo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| |
Collapse
|
9
|
Zhu Y, Wang Z, Li Y, Peng H, Liu J, Zhang J, Xiao X. The Role of CREBBP/EP300 and Its Therapeutic Implications in Hematological Malignancies. Cancers (Basel) 2023; 15:cancers15041219. [PMID: 36831561 PMCID: PMC9953837 DOI: 10.3390/cancers15041219] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Disordered histone acetylation has emerged as a key mechanism in promoting hematological malignancies. CREB-binding protein (CREBBP) and E1A-binding protein P300 (EP300) are two key acetyltransferases and transcriptional cofactors that regulate gene expression by regulating the acetylation levels of histone proteins and non-histone proteins. CREBBP/EP300 dysregulation and CREBBP/EP300-containing complexes are critical for the initiation, progression, and chemoresistance of hematological malignancies. CREBBP/EP300 also participate in tumor immune responses by regulating the differentiation and function of multiple immune cells. Currently, CREBBP/EP300 are attractive targets for drug development and are increasingly used as favorable tools in preclinical studies of hematological malignancies. In this review, we summarize the role of CREBBP/EP300 in normal hematopoiesis and highlight the pathogenic mechanisms of CREBBP/EP300 in hematological malignancies. Moreover, the research basis and potential future therapeutic implications of related inhibitors were also discussed from several aspects. This review represents an in-depth insight into the physiological and pathological significance of CREBBP/EP300 in hematology.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| | - Zi Wang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| | - Yanan Li
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| | - Jing Liu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| | - Ji Zhang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang 421001, China
- Correspondence: (J.Z.); (X.X.); Tel.: +86-734-8279050 (J.Z.); +86-731-84805449 (X.X.)
| | - Xiaojuan Xiao
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
- Correspondence: (J.Z.); (X.X.); Tel.: +86-734-8279050 (J.Z.); +86-731-84805449 (X.X.)
| |
Collapse
|
10
|
Jacobsen E. Follicular lymphoma: 2023 update on diagnosis and management. Am J Hematol 2022; 97:1638-1651. [PMID: 36255040 DOI: 10.1002/ajh.26737] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/31/2023]
Abstract
DISEASE OVERVIEW Follicular lymphoma (FL) is generally an indolent B cell lymphoproliferative disorder of transformed follicular center B cells. FL is characterized by diffuse lymphadenopathy, bone marrow involvement, and splenomegaly. Extranodal involvement is less common. Cytopenias are relatively common but constitutional symptoms of fever, night sweats, and weight loss are uncommon in the absence of transformation to diffuse large B cell lymphoma. DIAGNOSIS The diagnosis is based on histology from a biopsy of a lymph node or other affected tissue. Incisional biopsy is preferred over needle biopsies in order to give adequate tissue to assign grade and assess for transformation. Immunohistochemical staining is positive in virtually all cases for cell surface CD19, CD20, CD10, and monoclonal immunoglobulin, as well as cytoplasmic expression of bcl-2 protein. The overwhelming majority of cases have the characteristic t(14;18) translocation involving the IgH/bcl-2 genes. RISK STRATIFICATION The Follicular Lymphoma International Prognostic Index (FLIPI) uses five independent predictors of inferior survival: age >60 years, hemoglobin <12 g/dL, serum LDH > normal, Ann Arbor stage III/IV, number of involved nodal areas >4. The presence of 0-1, 2, and ≥3 adverse factors defines low, intermediate, and high-risk disease. There are other clinical prognostic models but the FLIPI remains the most common. Other factors such as time to relapse of less than 2 years from chemoimmunotherapy and specific gene mutations may also be useful for prognosis. Regardless of the prognostic model used, modern therapies have demonstrably improved prognosis. RISK-ADAPTED THERAPY Observation continues to be appropriate for asymptomatic patients with low bulk disease and no cytopenias. There is no overall survival (OS) advantage for early treatment with either chemotherapy or single-agent rituximab. For patients needing therapy, most patients are treated with chemoimmunotherapy, which has improved overall response rates (ORR), DOR, and OS. Randomized studies have shown additional benefits for maintenance of rituximab. Lenalidomide was non-inferior to chemoimmunotherapy in a randomized front-line study and, when combined with rituximab, was superior to rituximab alone in relapsed FL. Kinase inhibitors, stem cell transplantation (SCT), and chimeric antigen receptor T cells (CAR-T) are also considered for recurrent disease.
Collapse
Affiliation(s)
- Eric Jacobsen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Crouch S, Painter D, Barrans SL, Roman E, Beer PA, Cooke SL, Glover P, Van Hoppe SJ, Webster N, Lacy SE, Ruiz C, Campbell PJ, Hodson DJ, Patmore R, Burton C, Smith A, Tooze RM. Molecular subclusters of follicular lymphoma: a report from the United Kingdom's Haematological Malignancy Research Network. Blood Adv 2022; 6:5716-5731. [PMID: 35363872 PMCID: PMC9619185 DOI: 10.1182/bloodadvances.2021005284] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/06/2022] [Indexed: 11/20/2022] Open
Abstract
Follicular lymphoma (FL) is morphologically and clinically diverse, with mutations in epigenetic regulators alongside t(14;18) identified as disease-initiating events. Identification of additional mutational entities confirms this cancer's heterogeneity, but whether mutational data can be resolved into mechanistically distinct subsets remains an open question. Targeted sequencing was applied to an unselected population-based FL cohort (n = 548) with full clinical follow-up (n = 538), which included 96 diffuse large B-cell lymphoma (DLBCL) transformations. We investigated whether molecular subclusters of FL can be identified and whether mutational data provide predictive information relating to transformation. DNA extracted from FL samples was sequenced with a 293-gene panel representing genes frequently mutated in DLBCL and FL. Three clusters were resolved using mutational data alone, independent of translocation status: FL_aSHM, with high burden of aberrant somatic hypermutation (aSHM) targets; FL_STAT6, with high STAT6 & CREBBP mutation and low aSHM; and FL_Com, with the absence of features of other subtypes and enriched KMT2D mutation. Analysis of mutation signatures demonstrated differential enrichment of predicted mutation signatures between subgroups and a dominant preference in the FL_aSHM subgroup for G(C>T)T and G(C>T)C transitions consistent with previously defined aSHM-like patterns. Of transformed cases with paired samples, 17 of 26 had evidence of branching evolution. Poorer overall survival (OS) in the aSHM group (P = .04) was associated with older age; however, overall tumor genetics provided limited information to predict individual patient risk. Our approach identifies 3 molecular subclusters of FL linked to differences in underlying mechanistic pathways. These clusters, which may be further resolved by the inclusion of translocation status and wider mutation profiles, have implications for understanding pathogenesis as well as improving treatment strategies in the future.
Collapse
Affiliation(s)
- Simon Crouch
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
| | - Daniel Painter
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
| | - Sharon L. Barrans
- Haematological Malignancy Diagnostic Service, St. James’s Institute of Oncology, Leeds, United Kingdom
| | - Eve Roman
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
| | - Philip A. Beer
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Susanna L. Cooke
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Paul Glover
- Haematological Malignancy Diagnostic Service, St. James’s Institute of Oncology, Leeds, United Kingdom
| | - Suzan J.L. Van Hoppe
- Haematological Malignancy Diagnostic Service, St. James’s Institute of Oncology, Leeds, United Kingdom
| | - Nichola Webster
- Haematological Malignancy Diagnostic Service, St. James’s Institute of Oncology, Leeds, United Kingdom
| | - Stuart E. Lacy
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
| | - Camilo Ruiz
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | | | - Daniel J. Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Russell Patmore
- Queen’s Centre for Oncology and Haematology, Castle Hill Hospital, Cottingham, United Kingdom
| | - Cathy Burton
- Haematological Malignancy Diagnostic Service, St. James’s Institute of Oncology, Leeds, United Kingdom
| | - Alexandra Smith
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
| | - Reuben M. Tooze
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
12
|
Ennishi D. Biological and clinical significance of epigenetic alterations in B-cell lymphomas. Int J Hematol 2022; 116:821-827. [PMID: 36208393 DOI: 10.1007/s12185-022-03461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 10/10/2022]
Abstract
Recent advances in genetic analysis of hematopoietic tumors have led to the discovery of enzyme abnormalities that control epigenetic changes. Notably, genetic mutations associated with DNA methylation and histone modifications have been identified in B-cell malignant lymphomas, including diffuse large B-cell lymphoma and follicular lymphoma. Gene expression involved in B lymphocyte differentiation and maturation within the germinal center (GC) is regulated epigenetically in these lymphomas, and epigenetic alterations play critical roles in the pathogenesis of GC-driven lymphomas. Recent studies also indicate the importance of epigenetic alterations as biomarkers and therapeutic targets, suggesting that they will have a central role in developing precision medicine for patients with GC-driven lymphomas.
Collapse
Affiliation(s)
- Daisuke Ennishi
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
13
|
Genetics of Transformed Follicular Lymphoma. HEMATO 2022. [DOI: 10.3390/hemato3040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Histological transformation (HT) to a more aggressive disease–mostly diffuse large B-cell lymphoma–is considered one of the most dismal events in the clinical course of follicular lymphoma (FL). Current knowledge has not found a single biological event specific for HT, although different studies have highlighted common genetic alterations, such as TP53 and CDKN2A/B loss, and MYC translocations, among others. Together, they increase genomic complexity and mutational burden at HT. A better knowledge of HT pathogenesis would presumably help to find diagnostic biomarkers allowing the identification of patients at high-risk of transformation, as well as the discrimination from patients with FL recurrence, and those who remain in remission. This would also help to identify new drug targets and the design of clinical trials for the treatment of transformation. In the present review we provide a comprehensive overview of the genetic events frequently identified in transformed FL contributing to the switch towards aggressive behaviour, and we will discuss current open questions in the field of HT.
Collapse
|
14
|
Odutola MK, van Leeuwen MT, Turner J, Bruinsma F, Seymour JF, Prince HM, Milliken ST, Trotman J, Verner E, Tiley C, Roncolato F, Underhill CR, Opat SS, Harvey M, Hertzberg M, Benke G, Giles GG, Vajdic CM. Associations between Smoking and Alcohol and Follicular Lymphoma Incidence and Survival: A Family-Based Case-Control Study in Australia. Cancers (Basel) 2022; 14:cancers14112710. [PMID: 35681690 PMCID: PMC9179256 DOI: 10.3390/cancers14112710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
The association between smoking and alcohol consumption and follicular lymphoma (FL) incidence and clinical outcome is uncertain. We conducted a population-based family case-control study (709 cases: 490 controls) in Australia. We assessed lifetime history of smoking and recent alcohol consumption and followed-up cases (median = 83 months). We examined associations with FL risk using unconditional logistic regression and with all-cause and FL-specific mortality of cases using Cox regression. FL risk was associated with ever smoking (OR = 1.38, 95%CI = 1.08−1.74), former smoking (OR = 1.36, 95%CI = 1.05−1.77), smoking initiation before age 17 (OR = 1.47, 95%CI = 1.06−2.05), the highest categories of cigarettes smoked per day (OR = 1.44, 95%CI = 1.04−2.01), smoking duration (OR = 1.53, 95%CI = 1.07−2.18) and pack-years (OR = 1.56, 95%CI = 1.10−2.22). For never smokers, FL risk increased for those exposed indoors to >2 smokers during childhood (OR = 1.84, 95%CI = 1.11−3.04). For cases, current smoking and the highest categories of smoking duration and lifetime cigarette exposure were associated with elevated all-cause mortality. The hazard ratio for current smoking and FL-specific mortality was 2.97 (95%CI = 0.91−9.72). We found no association between recent alcohol consumption and FL risk, all-cause or FL-specific mortality. Our study showed consistent evidence of an association between smoking and increased FL risk and possibly also FL-specific mortality. Strengthening anti-smoking policies and interventions may reduce the population burden of FL.
Collapse
Affiliation(s)
- Michael K. Odutola
- Centre for Big Data Research in Health, University of New South Wales, Sydney 2052, Australia; (M.K.O.); (M.T.v.L.)
| | - Marina T. van Leeuwen
- Centre for Big Data Research in Health, University of New South Wales, Sydney 2052, Australia; (M.K.O.); (M.T.v.L.)
| | - Jennifer Turner
- Department of Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park 2113, Australia;
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Science, Macquarie University, North Ryde 2109, Australia
| | - Fiona Bruinsma
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne 3004, Australia; (F.B.); (G.G.G.)
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville 3010, Australia
| | - John F. Seymour
- Royal Melbourne Hospital, Melbourne 3052, Australia;
- Peter MacCallum Cancer Centre, University of Melbourne, Parkville 3010, Australia;
| | - Henry M. Prince
- Peter MacCallum Cancer Centre, University of Melbourne, Parkville 3010, Australia;
- Epworth Healthcare, Richmond 3121, Australia
| | - Samuel T. Milliken
- St. Vincent’s Hospital, Sydney 2010, Australia;
- University of New South Wales, Sydney 2052, Australia; (F.R.); (M.H.)
| | - Judith Trotman
- Concord Repatriation General Hospital, Concord 2139, Australia; (J.T.); (E.V.)
- Faculty of Medicine and Health, University of Sydney, Concord 2139, Australia
| | - Emma Verner
- Concord Repatriation General Hospital, Concord 2139, Australia; (J.T.); (E.V.)
- Faculty of Medicine and Health, University of Sydney, Concord 2139, Australia
| | - Campbell Tiley
- Gosford Hospital, Gosford 2250, Australia;
- School of Medicine and Public Health, The University of Newcastle, Newcastle 2308, Australia
| | - Fernando Roncolato
- University of New South Wales, Sydney 2052, Australia; (F.R.); (M.H.)
- St. George Hospital, Kogarah 2217, Australia
| | - Craig R. Underhill
- Rural Medical School, Albury 2640, Australia;
- Border Medical Oncology Research Unit, Albury 2640, Australia
| | - Stephen S. Opat
- Clinical Haematology, Monash Health and Monash University, Clayton 3168, Australia;
| | - Michael Harvey
- Liverpool Hospital, Liverpool 2170, Australia;
- Western Sydney University, Sydney 2000, Australia
| | - Mark Hertzberg
- University of New South Wales, Sydney 2052, Australia; (F.R.); (M.H.)
- Department of Haematology, Prince of Wales Hospital, Sydney 2031, Australia
| | - Geza Benke
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia;
| | - Graham G. Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne 3004, Australia; (F.B.); (G.G.G.)
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville 3010, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton 3168, Australia
| | - Claire M. Vajdic
- Centre for Big Data Research in Health, University of New South Wales, Sydney 2052, Australia; (M.K.O.); (M.T.v.L.)
- Kirby Institute, University of New South Wales, Sydney 2052, Australia
- Correspondence:
| |
Collapse
|
15
|
Holtzman NG, Shah NN. CAR T-cell therapy for indolent lymphoma: a new treatment paradigm? Lancet Oncol 2021; 23:6-8. [PMID: 34895488 DOI: 10.1016/s1470-2045(21)00648-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Noa G Holtzman
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Follicular lymphoma: is there an optimal way to define risk? Hematology 2021; 2021:313-319. [DOI: 10.1182/hematology.2021000264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Follicular lymphoma (FL) has a long natural history and typically indolent behavior. In the present era, there are a plethora of prognostic factors combining clinical, biological, and genetic data to determine patient prognosis and help develop treatment strategies over the course of a patient's lifetime. The rapid pace of tumor-specific and clinical advances in FL has created a challenge in the prioritization and implementation of these factors into clinical practice. Developing a comprehensive understanding of existing prognostic markers in FL will help select optimal ways of utilization in the clinical setting and investigate opportunities to define and intervene upon risk at FL diagnosis and disease recurrence.
Collapse
|
17
|
Bruscaggin A, di Bergamo LT, Spina V, Hodkinson B, Forestieri G, Bonfiglio F, Condoluci A, Wu W, Pirosa MC, Faderl MR, Koch R, Schaffer M, Alvarez JD, Fourneau N, Gerber B, Stussi G, Zucca E, Balasubramanian S, Rossi D. Circulating tumor DNA for comprehensive noninvasive monitoring of lymphoma treated with ibrutinib plus nivolumab. Blood Adv 2021; 5:4674-4685. [PMID: 34500472 PMCID: PMC8759132 DOI: 10.1182/bloodadvances.2021004528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
To advance the use of circulating tumor DNA (ctDNA) applications, their broad clinical validity must be tested in different treatment settings, including targeted therapies. Using the prespecified longitudinal systematic collection of plasma samples in the phase 1/2a LYM1002 trial (registered on www.clinicaltrials.gov as NCT02329847), we tested the clinical validity of ctDNA for baseline mutation profiling, residual tumor load quantification, and acquisition of resistance mutations in patients with lymphoma treated with ibrutinib+nivolumab. Inclusion criterion for this ancillary biological study was the availability of blood collected at baseline and cycle 3, day 1. Overall, 172 ctDNA samples from 67 patients were analyzed by the LyV4.0 ctDNA Cancer Personalized Profiling Deep Sequencing Assay. Among baseline variants in ctDNA, only TP53 mutations (detected in 25.4% of patients) were associated with shorter progression-free survival; clones harboring baseline TP53 mutations did not disappear during treatment. Molecular response, defined as a >2-log reduction in ctDNA levels after 2 cycles of therapy (28 days), was achieved in 28.6% of patients with relapsed diffuse large B-cell lymphoma who had ≥1 baseline variant and was associated with best response and improved progression-free survival. Clonal evolution occurred frequently during treatment, and 10.3% new mutations were identified after 2 treatment cycles in nonresponders. PLCG2 was the topmost among genes that acquired new mutations. No patients acquired the C481S BTK mutation implicated in resistance to ibrutinib in CLL. Collectively, our results provide the proof of concept that ctDNA is useful for noninvasive monitoring of lymphoma treated with targeted agents in the clinical trial setting.
Collapse
Affiliation(s)
- Alessio Bruscaggin
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | | | - Valeria Spina
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | | | - Gabriela Forestieri
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Ferdinando Bonfiglio
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Adalgisa Condoluci
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Wei Wu
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Maria C. Pirosa
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Martin R. Faderl
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Ricardo Koch
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | | | | | | | - Bernhard Gerber
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Georg Stussi
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | | | | | - Davide Rossi
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
18
|
Kumar E, Pickard L, Okosun J. Pathogenesis of follicular lymphoma: genetics to the microenvironment to clinical translation. Br J Haematol 2021; 194:810-821. [PMID: 33694181 DOI: 10.1111/bjh.17383] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 01/10/2023]
Abstract
Follicular lymphoma (FL) represents a heterogeneous disease both clinically and biologically. The pathognomonic t(14;18) translocation can no longer be thought of as the primary genetic driver, with increasing recognition of the biological relevance of recurrent genetic alterations in epigenetic regulators that now feature as a pivotal hallmark of this lymphoma subtype. Furthermore, sequencing studies have provided a near complete catalogue of additional genetic aberrations. Longitudinal and spatial genetic studies add an additional layer to the biological heterogeneity, providing preliminary molecular insights into high-risk phenotypes such as early progressors and transformation, and also supporting evidence for the existence of persisting re-populating cells that act as lymphoma reservoirs and harbingers for FL recurrence. Simultaneously, understanding of the tumour microenvironmental cues promoting lymphomagenesis and disease progression continue to broaden. More recently, studies are beginning to unravel the convergence and co-operation between the genetics, epigenetics and microenvironment. There is a pressing need to marry biology with therapeutics, especially with the burgeoning treatment landscape in FL, to aid in optimising patient selection and guiding the 'right drug to the right patient'.
Collapse
Affiliation(s)
- Emil Kumar
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lucy Pickard
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
19
|
Prognostic impact of nutritional and inflammation-based risk scores in follicular lymphoma in the era of anti-CD20 targeted treatment strategies. J Cancer Res Clin Oncol 2021; 148:1789-1801. [PMID: 34415426 PMCID: PMC9189087 DOI: 10.1007/s00432-021-03758-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND The composition of the tumor microenvironment (TME) is conditioned by immunity and the inflammatory response. Nutritional and inflammation-based risk scores have emerged as relevant predictors of survival outcome across a variety of hematological malignancies. METHODS In this retrospective multicenter trial, we ascertained the prognostic impact of established nutritional and inflammation-based risk scores [Glasgow Prognostic Score (GPS), C-reactive-protein/albumin ratio (CAR), neutrophil-lymphocyte ratio (NLR), prognostic nutritional index (PNI), and prognostic index (PI)] in 209 eligible patients with histologically confirmed CD20+ follicular lymphoma (FL) of WHO grade 1 (37.3%), 1-2 (16.3%), 2 (26.8%) or 3A (19.8%) admitted to the participating centers between January 2000 and December 2019. Characteristics significantly associated with overall or progression-free survival (OS, PFS) upon univariate analysis were subsequently included in a Cox proportional hazard model. RESULTS In the study cohort, the median age was 63 (range 22-90 years). The median follow-up period covered 99 months. The GPS and the CAR were identified to predict survival in FL patients. The GPS was the only independent predictor of OS (p < 0.0001; HR 2.773; 95% CI 1.630-4.719) and PFS (p = 0.001; HR 1.995; 95% CI 1.352-2.944) upon multivariate analysis. Additionally, there was frequent occurrence of progression of disease within 24 months (POD24) in FL patients with a calculated GPS of 2. CONCLUSION The current results indicate that the GPS predicts especially OS in FL patients. Moreover, GPS was found to display disease-specific effects in regard to FL progression. These findings and potential combinations with additional established prognosticators should be further validated within prospective clinical trials.
Collapse
|
20
|
Castillo JJ, LaMacchia J, Flynn CA, Sarosiek S, Pozdnyakova O, Treon SP. Plasmablastic lymphoma transformation in a patient with Waldenström macroglobulinemia treated with ibrutinib. Br J Haematol 2021; 195:466-468. [PMID: 34355802 DOI: 10.1111/bjh.17759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jorge J Castillo
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - John LaMacchia
- Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Catherine A Flynn
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shayna Sarosiek
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Olga Pozdnyakova
- Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Steven P Treon
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
High-grade Follicular Lymphomas Exhibit Clinicopathologic, Cytogenetic, and Molecular Diversity Extending Beyond Grades 3A and 3B. Am J Surg Pathol 2021; 45:1324-1336. [PMID: 34334687 DOI: 10.1097/pas.0000000000001726] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although follicular lymphoma (FL) is usually graded as FL1-2, FL3A, and FL3B, some borderline cases can be observed and led us to investigate the clinicopathologic diversity of grade 3 FL (FL3). Among 2449 FL patients enrolled in Lymphoma Study Association (LYSA) trials, 1921 cases with sufficient material underwent a central pathologic review. The resulting diagnoses comprised 89.6% FL1-2 (n=1723), 7.2% FL3A (n=138), and 0.5% purely follicular FL3B (n=9). The remaining 51 unclassifiable cases (2.7%) exhibited high-grade features but did not meet WHO criteria for either FL3A or FL3B; and were considered as "unconventional" high-grade FL (FL3U). FL3U morphological pattern consisted of nodular proliferation of large cleaved cells or small-sized to medium-sized blast cells. Compared with FL3A, FL3U exhibited higher MUM1 and Ki67 expression, less BCL2 breaks and more BCL6 rearrangements, together with a higher number of cases without any BCL2, BCL6 or MYC rearrangement. FL3U harbored less frequent mutations in BCL2, KMT2D, KMT2B, and CREBBP than FL3A. MYC and BCL2 were less frequently mutated in FL3U than FL3B. Rituximab cyclophosphamide, doxorubicin, vincristine, and prednisone treated FL3U patients had a worse survival than FL1-2 patients with similar follicular lymphoma international prognostic index and treatment. These results suggest that high-grade FLs encompass a heterogeneous spectrum of tumors with variable morphology and genomic alterations, including FL3U cases that do not strictly fit WHO criteria for either FL3A or FL3B, and display a worse outcome than FL1-2. The distinction of FL3U may be useful to allow a better comprehension of high-grade FLs and to design clinical trials.
Collapse
|
22
|
Lu Y, Yu J, Gong W, Su L, Sun X, Bai O, Zhou H, Guan X, Zhang T, Li L, Qiu L, Qian Z, Zhou S, Meng B, Ren X, Wang X, Zhang H. An Immune-Clinical Prognostic Index (ICPI) for Patients With De Novo Follicular Lymphoma Treated With R-CHOP/CHOP Chemotherapy. Front Oncol 2021; 11:708784. [PMID: 34336695 PMCID: PMC8316046 DOI: 10.3389/fonc.2021.708784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose Although the role of tumor-infiltrating T cells in follicular lymphoma (FL) has been reported previously, the prognostic value of peripheral blood T lymphocyte subsets has not been systematically assessed. Thus, we aim to incorporate T-cell subsets with clinical features to develop a predictive model of clinical outcome. Methods We retrospectively screened a total of 1,008 patients, including 252 newly diagnosed de novo FL patients with available peripheral blood T lymphocyte subsets who were randomized to different sets (177 in the training set and 75 in the internal validation set). A nomogram and a novel immune-clinical prognostic index (ICPI) were established according to multivariate Cox regression analysis for progression-free survival (PFS). The concordance index (C-index), Akaike’s information criterion (AIC), and likelihood ratio chi-square were employed to compare the ICPI’s discriminatory capability and homogeneity to that of FLIPI, FLIPI2, and PRIMA-PI. Additional external validation was performed using a dataset (n = 157) from other four centers. Results In the training set, multivariate analysis identified five independent prognostic factors (Stage III/IV disease, elevated lactate dehydrogenase (LDH), Hb <120g/L, CD4+ <30.7% and CD8+ >36.6%) for PFS. A novel ICPI was established according to the number of risk factors and stratify patients into 3 risk groups: high, intermediate, and low-risk with 4-5, 2-3, 0-1 risk factors respectively. The hazard ratios for patients in the high and intermediate-risk groups than those in the low-risk were 27.640 and 2.758. The ICPI could stratify patients into different risk groups both in the training set (P < 0.0001), internal validation set (P = 0.0039) and external validation set (P = 0.04). Moreover, in patients treated with RCHOP-like therapy, the ICPI was also predictive (P < 0.0001). In comparison to FLIPI, FLIPI2, and PRIMA-PI (C-index, 0.613-0.647), the ICPI offered adequate discrimination capability with C-index values of 0.679. Additionally, it exhibits good performance based on the lowest AIC and highest likelihood ratio chi-square score. Conclusions The ICPI is a novel predictive model with improved prognostic performance for patients with de novo FL treated with R-CHOP/CHOP chemotherapy. It is capable to be used in routine practice and guides individualized precision therapy.
Collapse
Affiliation(s)
- Yaxiao Lu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Jingwei Yu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Wenchen Gong
- Departments of Pathology and Immunology/Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Liping Su
- Department of Hematology, Shanxi Provincial Cancer Hospital, Taiyuan, China
| | - Xiuhua Sun
- Department of Oncology, Second Hospital of Dalian Medical University, Dalian, China
| | - Ou Bai
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hui Zhou
- Department of Lymphoma & Hematology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xue Guan
- Departments of Pathology and Immunology/Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tingting Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Lanfang Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Lihua Qiu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Zhengzi Qian
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Shiyong Zhou
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Bin Meng
- Departments of Pathology and Immunology/Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiubao Ren
- Departments of Pathology and Immunology/Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xianhuo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| |
Collapse
|
23
|
Navrkalova V, Plevova K, Hynst J, Pal K, Mareckova A, Reigl T, Jelinkova H, Vrzalova Z, Stranska K, Pavlova S, Panovska A, Janikova A, Doubek M, Kotaskova J, Pospisilova S. LYmphoid NeXt-Generation Sequencing (LYNX) Panel: A Comprehensive Capture-Based Sequencing Tool for the Analysis of Prognostic and Predictive Markers in Lymphoid Malignancies. J Mol Diagn 2021; 23:959-974. [PMID: 34082072 DOI: 10.1016/j.jmoldx.2021.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
B-cell neoplasms represent a clinically heterogeneous group of hematologic malignancies with considerably diverse genomic architecture recently endorsed by next-generation sequencing (NGS) studies. Because multiple genetic defects have a potential or confirmed clinical impact, a tendency toward more comprehensive testing of diagnostic, prognostic, and predictive markers is desired. This study introduces the design, validation, and implementation of an integrative, custom-designed, capture-based NGS panel titled LYmphoid NeXt-generation sequencing (LYNX) for the analysis of standard and novel molecular markers in the most common lymphoid neoplasms (chronic lymphocytic leukemia, acute lymphoblastic leukemia, diffuse large B-cell lymphoma, follicular lymphoma, and mantle cell lymphoma). A single LYNX test provides the following: i) accurate detection of mutations in all coding exons and splice sites of 70 lymphoma-related genes with a sensitivity of 5% variant allele frequency, ii) reliable identification of large genome-wide (≥6 Mb) and recurrent chromosomal aberrations (≥300 kb) in at least 20% of the clonal cell fraction, iii) the assessment of immunoglobulin and T-cell receptor gene rearrangements, and iv) lymphoma-specific translocation detection. Dedicated bioinformatic pipelines were designed to detect all markers mentioned above. The LYNX panel represents a comprehensive, up-to-date tool suitable for routine testing of lymphoid neoplasms with research and clinical applicability. It allows a wide adoption of capture-based targeted NGS in clinical practice and personalized management of patients with lymphoproliferative diseases.
Collapse
Affiliation(s)
- Veronika Navrkalova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic; Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karla Plevova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic; Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jakub Hynst
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karol Pal
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Internal Medicine II - Hematology and Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andrea Mareckova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Tomas Reigl
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hana Jelinkova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Zuzana Vrzalova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic; Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Kamila Stranska
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Sarka Pavlova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic; Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Anna Panovska
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Andrea Janikova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Michael Doubek
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic; Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jana Kotaskova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic; Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Sarka Pospisilova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic; Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
24
|
New developments in non-Hodgkin lymphoid malignancies. Pathology 2021; 53:349-366. [PMID: 33685720 DOI: 10.1016/j.pathol.2021.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/23/2022]
Abstract
The revised fourth edition of the World Health Organization (WHO) Classification of Tumours of Haematopoietic and Lymphoid Tissues (2017) reflects significant advances in understanding the biology, genetic basis and behaviour of haematopoietic neoplasms. This review focuses on some of the major changes in B-cell and T-cell non-Hodgkin lymphomas in the 2017 WHO and includes more recent updates. The 2017 WHO saw a shift towards conservatism in the classification of precursor lesions of small B-cell lymphomas such as monoclonal B-cell lymphocytosis, in situ follicular and in situ mantle cell neoplasms. With more widespread use of next generation sequencing (NGS), special entities within follicular lymphoma and mantle cell lymphoma were recognised with recurrent genetic aberrations and unique clinicopathological features. The diagnostic workup of lymphoplasmacytic lymphoma and hairy cell leukaemia has been refined with the discovery of MYD88 L265P and BRAF V600E mutations, respectively, in these entities. Recommendations in the immunohistochemical evaluation of diffuse large B-cell lymphoma include determining cell of origin and expression of MYC and BCL2, so called 'double-expressor' phenotype. EBV-positive large B-cell lymphoma of the elderly has been renamed to recognise its occurrence amongst a wider age group. EBV-positive mucocutaneous ulcer is a newly recognised entity with indolent clinical behaviour that occurs in the setting of immunosuppression. Two lymphomas with recurrent genetic aberrations are newly included provisional entities: Burkitt-like lymphoma with 11q aberration and large B-cell lymphoma with IRF4 rearrangement. Aggressive B-cell lymphomas with MYC, BCL2 and/or BCL6 rearrangements, so called 'double-hit/triple-hit' lymphomas are now a distinct entity. Much progress has been made in understanding intestinal T-cell lymphomas. Enteropathy-associated T-cell lymphoma, type II, is now known to not be associated with coeliac disease and is hence renamed monomorphic epitheliotropic T-cell lymphoma. An indolent clonal T-cell lymphoproliferative disorder of the GI tract is a newly included provisional entity. Angioimmunoblastic T-cell lymphoma and nodal T-cell lymphomas with T-follicular helper phenotype are included in a single broad category, emphasising their shared genetic and phenotypic features. Anaplastic large cell lymphoma, ALK- is upgraded to a definitive entity with subsets carrying recurrent rearrangements in DUSP22 or TP63. Breast implant-associated anaplastic large cell lymphoma is a new provisional entity with indolent behaviour. Finally, cutaneous T-cell proliferations include a new provisional entity, primary cutaneous acral CD8-positive T-cell lymphoma, and reclassification of primary small/medium CD4-positive T-cell lymphoma as lymphoproliferative disorder.
Collapse
|
25
|
Abstract
Follicular lymphoma (FL) is the most common form of indolent non-Hodgkin lymphoma. It is a disease characterised by a long median overall survival and high response rates to currently available chemotherapy and anti-CD20 monoclonal antibody therapy combinations. However, for a sub-group of patients the disease behaves aggressively, fails to respond adequately to initial therapy or relapses early. For others, the disease becomes resistant following multiple lines of therapy, and despite recent advances the main cause of death for patients with FL remains their lymphoma. A wide landscape of novel therapies is emerging and the role of individual agents in the FL treatment paradigm is still being established. Some agents, including the cereblon modulator lenalidomide, the phosphatidylinositol 3-kinase inhibitors idelalisib, copanlisib and duvelisib, and the EZH2 inhibitor tazemetostat have received regulatory approval in the USA or European Union and have entered clinical practice for relapsed FL. Other developments, such as the emergence of immunotherapies including CAR-T cell therapy and bispecific antibodies, are expected to fundamentally change the approach to FL treatment in the future.
Collapse
|
26
|
Genetic complexity impacts the clinical outcome of follicular lymphoma patients. Blood Cancer J 2021; 11:11. [PMID: 33431798 PMCID: PMC7801414 DOI: 10.1038/s41408-020-00395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
|
27
|
Sorigue M, Cañamero E, Sancho JM. Precision medicine in follicular lymphoma: Focus on predictive biomarkers. Hematol Oncol 2020; 38:625-639. [PMID: 32700331 DOI: 10.1002/hon.2781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Current care for patients with follicular lymphoma (FL) offers most of them long-term survival. Improving it further will require careful patient selection. This review focuses on predictive biomarkers (ie, those whose outcome correlations depend on the treatment strategy) in FL, because awareness of what patient subsets benefit most or least from each therapy will help in this task. The first part of this review aims to summarize what biomarkers are predictive in FL, the magnitude of the effect and the quality of the evidence. We find predictive biomarkers in the setting of (a) indication of active treatment, (b) front-line induction (use of anthracyline-based regimens, CHOP vs bendamustine, addition of rituximab), (c) post-(front-line)induction (rituximab maintenance, radioimmunotherapy), and (d) relapse (hematopoietic stem cell transplant) and targeted agents. The second part of this review discusses the challenges of precision medicine in FL, including (a) cost, (b) clinical relevance considerations, and (c) difficulties over the broad implementation of biomarkers. We then provide our view on what biomarkers may become used in the next few years. We conclude by underscoring the importance of assessing the potential predictiveness of available biomarkers to improve patient care but also that there is a long road ahead before reaching their broad implementation due to remaining scientific, technological, and economic hurdles.
Collapse
Affiliation(s)
- Marc Sorigue
- Department of Hematology, ICO-Hospital Germans Trias i Pujol, Institut de Recerca Josep Carreras, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eloi Cañamero
- Department of Hematology, ICO-Hospital Germans Trias i Pujol, Institut de Recerca Josep Carreras, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Juan-Manuel Sancho
- Department of Hematology, ICO-Hospital Germans Trias i Pujol, Institut de Recerca Josep Carreras, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
28
|
Clinical and Biological Prognostic Factors in Follicular Lymphoma. Hematol Oncol Clin North Am 2020; 34:647-662. [PMID: 32586571 DOI: 10.1016/j.hoc.2020.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Follicular lymphoma comprises approximately 20-30% of all cases of B-cell lymphomas. Median survival has improved significantly in the modern era. Prognostic factors include histologic grade, cytogenetics, molecular mutations, the tumor microenvironment, and tumor burden. Clinical prognostic indices are available and increasingly incorporate genetic information. Prognostic factors also arise during the course of treatment. Early progression within 24 months of initial chemoimmunotherapy is an adverse prognostic marker of inferior survival. Other high-risk populations include those with double refractory disease or those with high risk of transformation to diffuse large B-cell lymphoma.
Collapse
|
29
|
Zhong C, Chao CR, Song JY, Weisenburger DD, Luo J, Ding YC, Neuhausen SL, Bernstein L, Cozen W, Wang SS. Follicular lymphoma polygenic risk score is associated with increased disease risk but improved overall survival among women in a population based case-control in Los Angeles County California. Cancer Epidemiol 2020; 65:101688. [PMID: 32092486 PMCID: PMC7131878 DOI: 10.1016/j.canep.2020.101688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Although clinical prognostic indicators exist for follicular lymphoma(FL), patient outcomes remain heterogeneous. MATERIAL AND METHODS We evaluated the association between survival and a polygenic risk score(PRS) composed of five previously identified FL susceptibility loci(rs12195582, rs13254990, rs17749561, rs4245081, rs4938573) among women who participated in a case-control study of non-Hodgkin lymphoma in Los Angeles County between 2004-2008. Risk associations were estimated through logistic regression, calculating the odds ratios(OR) and 95 % confidence intervals(95 % CI). Survival was estimated under a Cox proportional hazards model and hazard ratios(HR) and 95 % CI were calculated. RESULTS Among 437 non-Hispanic White controls and 100 non-Hispanic White FL patients, we confirmed a 2.6-fold increased risk of FL associated with the highest PRS tertile (95 % CI:1.35-4.86). After accounting for clinical indicators, the PRS was associated with improved overall survival in non-Hispanic women (HR:0.31; 95 % CI:0.10-0.96). CONCLUSION PRS was associated with increased risk of FL, but improved overall survival.
Collapse
Affiliation(s)
- Charlie Zhong
- Division of Health Analytics, Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, United States.
| | - Chun R Chao
- Division of Epidemiologic Research, Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Joo Y Song
- Department of Pathology, City of Hope, Duarte, CA, United States
| | | | - Jianning Luo
- Division of Biomarkers of Early Detection and Prevention, Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Yuan Chun Ding
- Division of Biomarkers of Early Detection and Prevention, Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Susan L Neuhausen
- Division of Biomarkers of Early Detection and Prevention, Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Leslie Bernstein
- Division of Biomarkers of Early Detection and Prevention, Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Wendy Cozen
- Genetic Epidemiology Center, Department of Preventive Medicine, Keck School of Medicine of USC, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Sophia S Wang
- Division of Health Analytics, Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
30
|
Freedman A, Jacobsen E. Follicular lymphoma: 2020 update on diagnosis and management. Am J Hematol 2020; 95:316-327. [PMID: 31814159 DOI: 10.1002/ajh.25696] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
DISEASE OVERVIEW Follicular lymphoma (FL) is generally an indolent B cell lymphoproliferative disorder of transformed follicular center B cells. Follicular lymphoma is characterized by diffuse lymphadenopathy, bone marrow involvement, and splenomegaly. Extranodal involvement is less common. Cytopenias are relatively common but constitutional symptoms of fever, night sweats, and weight loss are uncommon in the absence of transformation to diffuse large B cell lymphoma. DIAGNOSIS The diagnosis is based on histology from a biopsy of a lymph node or other affected tissue. Incisional biopsy is preferred over needle biopsies in order to give adequate tissue to assign grade and assess for transformation. Immunohistochemical staining is positive in virtually all cases for cell surface CD19, CD20, CD10 and monoclonal immunoglobulin, as well as cytoplasmic expression of bcl-2 protein. The overwhelming majority of cases have the characteristic t(14;18) translocation involving the IgH/bcl-2 genes. RISK STRATIFICATION The Follicular Lymphoma International Prognostic Index (FLIPI) uses five independent predictors of inferior survival: age > 60 years, hemoglobin <12 g/dL, serum LDH > normal, Ann Arbor stage III/IV, number of involved nodal areas >4. The presence of 0-1, 2, and ≥ 3 adverse factors defines low, intermediate, and high-risk disease. There are other clinical prognostic models but the FLIPI remains the most common. Other factors such as time to relapse of less than 2 years from chemoimmunotherapy and specific gene mutations may also be useful for prognosis. Regardless of the prognostic model used, modern therapies have demonstrably improved prognosis. RISK-ADAPTED THERAPY Observation continues to be appropriate for asymptomatic patients with low bulk disease and no cytopenias. There is no overall survival advantage for early treatment with either chemotherapy or single agent rituximab. For patients needing therapy, most patients are treated with chemoimmunotherapy, which has improved response rates, duration of response and overall survival (OS). Randomized studies have shown additional benefit for maintenance rituximab. Lenalidomide was non-inferior to chemoimmunotherapy in a randomized front-line study and, when combined with rituximab, was superior to rituximab alone in relapsed FL. Kinase inhibitors, other immunotherapies, and stem cell transplantation (SCT) are also considered for recurrent disease.
Collapse
Affiliation(s)
- Arnold Freedman
- Department of Medical OncologyDana‐Farber Cancer Institute Boston Massachusetts
| | - Eric Jacobsen
- Department of Medical OncologyDana‐Farber Cancer Institute Boston Massachusetts
| |
Collapse
|
31
|
Lockmer S, Ren W, Brodtkorb M, Østenstad B, Wahlin BE, Pan-Hammarström Q, Kimby E. M7-FLIPI is not prognostic in follicular lymphoma patients with first-line rituximab chemo-free therapy. Br J Haematol 2019; 188:259-267. [PMID: 31423576 DOI: 10.1111/bjh.16159] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/22/2019] [Indexed: 11/29/2022]
Abstract
The clinical course of follicular lymphoma (FL) is highly variable. Recently the m7-FL international prognostic index (FLIPI) integrating performance status, FLIPI score and the mutational status of seven genes, was shown to stratify patients into "low-risk" and "high-risk" with respect to 5-year failure-free survival after first-line immunochemotherapy. Our aim was to evaluate the model after rituximab without chemotherapy. The Nordic Lymphoma Group performed two randomized clinical trials on indolent lymphoma patients receiving single rituximab and rituximab with interferon-α2a. In total, 95 FL patients had sufficient fresh-frozen diagnostic material for sequencing. A targeted panel for the genes EZH2, ARID1A, MEF2B, EP300, FOXO1, CREBBP and CARD11 was utilized for m7-FLIPI score calculation. With a median follow-up of 10·6 years, 76% of patients were alive. No difference in time to treatment failure (TTF), defined as the interval between start of trial therapy and initiation of new therapy or death, nor overall survival (OS) was found between the m7-FLIPI risk groups (log-rank P = 0·94 and 0·99, respectively). EZH2 mutations were associated with longer TTF (log-rank P = 0·04) and in EP300 mutations were associated with shorter TTF (log-rank P = 0·01). We conclude that the prognostic value of the m7-FLIPI clinicogenetic model seems dependent on therapeutic regimen.
Collapse
Affiliation(s)
- Sandra Lockmer
- Unit of Haematology, Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Stockholm, Sweden
| | - Weicheng Ren
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | | | - Bjørn Østenstad
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Björn E Wahlin
- Unit of Haematology, Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Stockholm, Sweden
| | | | - Eva Kimby
- Unit of Haematology, Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|