1
|
Wang A, Qi Z, Tian M, Huang J, Yang J, Yang L. In-line RNA-based microreactor direct mass spectrometry for ultrasensitive and rapid assay of terminal deoxynucleotidyl transferase activity. Talanta 2024; 279:126631. [PMID: 39094533 DOI: 10.1016/j.talanta.2024.126631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Terminal deoxynucleotidyl transferase (TdT), a unique template-independent DNA polymerase, plays a crucial role in the human adaptive immune system and is considered a promising biomarker for the diagnosis of various forms of acute or chronic leukemia. The accurate and sensitive detection of trace TdT is of pivotal importance to fulfill the significant medical interest in understanding its pathological functions and diagnosing TdT-related diseases. We hereby present an in-line RNA-based microreactor direct mass spectrometry (MS) method and its application for ultrasensitive, accurate, and rapid analysis of trace TdT activity in leukemic cell samples. A specially designed RNA-based microreactor is fabricated by immobilizing short RNA sequence via covalent Au-S bond on the inner surface of a capillary pre-modified with three-dimensional porous layer (PL) and Au nanoparticles (AuNPs). Utilizing this PL@Au@RNA microreactor, the signal of target TdT is conversed into reporter molecules (adenine), which exhibit a strong MS response. This conversion process enables efficient signal amplification and enhances detection sensitivity. The outlet end of the PL@Au@RNA microreactor is deliberately crafted into a porous tip, serving as an electrospray ionization (ESI) interface to directly couple to ESI-MS in-line. This design facilitates the direct transmission of the generated signaling molecules into the MS system, eliminating the need for laborious sample treatment procedures. By implementing this RNA-based microreactor in direct MS analysis, we have achieved remarkable sensitivity in detecting TdT activity with the limit-of-detection of 4 × 10-9 U, surpassing other reported methods in literature by three to four orders of magnitude. Furthermore, each assay requires a minimal sample volume of merely 10 nL. This method has successfully demonstrated its application in accurately and efficiently detecting TdT activity in leukemia cells, and its detection results are consistent with those obtained by ELISA kits.
Collapse
Affiliation(s)
- Anping Wang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Zihe Qi
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Miaomiao Tian
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun, Jilin Province, 130052, China
| | - Jing Huang
- Laboratory Department of the First Hospital of Jilin University, Changchun, Jilin Province, 130024, China
| | - Jinlan Yang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Li Yang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China.
| |
Collapse
|
2
|
Greiner J, Mohamed E, Fletcher DM, Schuler PJ, Schrezenmeier H, Götz M, Guinn BA. Immunotherapeutic Potential of Mutated NPM1 for the Treatment of Acute Myeloid Leukemia. Cancers (Basel) 2024; 16:3443. [PMID: 39456538 PMCID: PMC11505958 DOI: 10.3390/cancers16203443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a malignant disease of the blood and bone marrow that is characterized by uncontrolled clonal proliferation of abnormal myeloid progenitor cells. Nucleophosmin 1 (NPM1) gene mutations are the most common genetic abnormality in AML, detectable in blast cells from about one-third of adults with AML. AML NPM1mut is recognized as a separate entity in the World Health Organization classification of AML. Clinical and survival data suggest that patients with this form of AML often have a more favorable prognosis, which may be due to the immunogenicity created by the mutations in the NPM1 protein. Consequently, AML with NPM1mut can be considered an immunogenic subtype of AML. However, the underlying mechanisms of this immunogenicity and associated favorable survival outcomes need to be further investigated. Immune checkpoint molecules, such as the programmed cell death-1 (PD-1) protein and its ligand, PD-L1, play important roles in leukemogenesis through their maintenance of an immunosuppressive tumor microenvironment. Preclinical trials have shown that the use of PD-1/PD-L1 checkpoint inhibitors in solid tumors and lymphoma work best in novel therapy combinations. Patients with AML NPM1mut may be better suited to immunogenic strategies that are based on the inhibition of the PD-1 immune checkpoint pathway than patients without this mutation, suggesting the genetic landscape of patients may also inform best practice for the use of PD-1 inhibitors.
Collapse
Affiliation(s)
- Jochen Greiner
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany;
- Department of Internal Medicine, Diakonie Hospital Stuttgart, 70176 Stuttgart, Germany
| | - Eithar Mohamed
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (E.M.); (D.M.F.)
| | - Daniel M. Fletcher
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (E.M.); (D.M.F.)
| | - Patrick J. Schuler
- Department of Otorhinolaryngology, University Hospital Ulm, 89075 Ulm, Germany;
- Department of Oto-Rhino-Laryngology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, 89073 Ulm, Germany;
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, 89081 Ulm, Germany
| | - Marlies Götz
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany;
- Department of Internal Medicine, Diakonie Hospital Stuttgart, 70176 Stuttgart, Germany
| | - Barbara-ann Guinn
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (E.M.); (D.M.F.)
| |
Collapse
|
3
|
Dunn WG, McLoughlin MA, Vassiliou GS. Clonal hematopoiesis and hematological malignancy. J Clin Invest 2024; 134:e180065. [PMID: 39352393 PMCID: PMC11444162 DOI: 10.1172/jci180065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Clonal hematopoiesis (CH), the expansion of hematopoietic stem cells and their progeny driven by somatic mutations in leukemia-associated genes, is a common phenomenon that rises in prevalence with advancing age to affect most people older than 70 years. CH remains subclinical in most carriers, but, in a minority, it progresses to a myeloid neoplasm, such as acute myeloid leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm. Over the last decade, advances in our understanding of CH, its molecular landscape, and the risks associated with different driver gene mutations have culminated in recent developments that allow for a more precise estimation of myeloid neoplasia risk in CH carriers. In turn, this is leading to the development of translational and clinical programs to intercept and prevent CH from developing into myeloid neoplasia. Here, we give an overview of the spectrum of CH driver mutations, what is known about their pathophysiology, and how this informs the risk of incident myeloid malignancy.
Collapse
Affiliation(s)
- William G. Dunn
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Matthew A. McLoughlin
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - George S. Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| |
Collapse
|
4
|
Othman J, Potter N, Ivey A, Tazi Y, Papaemmanuil E, Jovanovic J, Freeman SD, Gilkes A, Gale R, Rapoz-D'Silva T, Runglall M, Kleeman M, Dhami P, Thomas I, Johnson S, Canham J, Cavenagh J, Kottaridis P, Arnold C, Ommen HB, Overgaard UM, Dennis M, Burnett A, Wilhelm-Benartzi C, Huntly B, Russell NH, Dillon R. Molecular, clinical, and therapeutic determinants of outcome in NPM1-mutated AML. Blood 2024; 144:714-728. [PMID: 38691678 DOI: 10.1182/blood.2024024310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
ABSTRACT Although NPM1-mutated acute myeloid leukemia (AML) carries a generally favorable prognosis, many patients still relapse and die. Previous studies identified several molecular and clinical features associated with poor outcomes; however, only FLT3-internal tandem duplication (ITD) mutation and adverse karyotype are currently used for risk stratification because of inconsistent results and uncertainty about how other factors should influence treatment, particularly given the strong prognostic effect of postinduction measurable residual disease (MRD). Here, we analyzed a large group of patients with NPM1 mutations (NPM1mut) AML enrolled in prospective trials (National Cancer Research Institute [NCRI] AML17 and AML19, n = 1357) to delineate the impact of baseline molecular and clinical features, postinduction MRD status, and treatment intensity on the outcome. FLT3-ITD (hazard ratio [HR], 1.28; 95% confidence interval [CI], 1.01-1.63), DNMT3A (HR, 1.65; 95% CI, 1.32-2.05), WT1 (HR, 1.74; 95% CI, 1.27-2.38), and non-ABD NPM1mut (HR, 1.64; 95% CI, 1.22-2.21) were independently associated with poorer overall survival (OS). These factors were also strongly associated with MRD positivity. For patients who achieved MRD negativity, these mutations (except FLT3-ITD) were associated with an increased cumulative incidence of relapse (CIR) and poorer OS. However, apart from the few patients with adverse cytogenetics, we could not identify any group of MRD-negative patients with a CIR >40% or with benefit from allograft in first remission. Intensified chemotherapy with the FLAG-Ida (fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin) regimen was associated with improved outcomes in all subgroups, with greater benefits observed in the high-risk molecular subgroups.
Collapse
MESH Headings
- Humans
- Nucleophosmin
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/drug therapy
- Nuclear Proteins/genetics
- Mutation
- Middle Aged
- Female
- Male
- Adult
- Aged
- fms-Like Tyrosine Kinase 3/genetics
- Prognosis
- Young Adult
- Neoplasm, Residual/genetics
- DNA Methyltransferase 3A
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- WT1 Proteins/genetics
- DNA (Cytosine-5-)-Methyltransferases/genetics
- Adolescent
- Treatment Outcome
- Aged, 80 and over
Collapse
Affiliation(s)
- Jad Othman
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Nicola Potter
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Adam Ivey
- Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Yanis Tazi
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jelena Jovanovic
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Sylvie D Freeman
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Amanda Gilkes
- Department of Haematology, Cardiff University, Cardiff, United Kingdom
| | - Rosemary Gale
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Tanya Rapoz-D'Silva
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Manohursingh Runglall
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Michelle Kleeman
- Genomics Facility, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Pawan Dhami
- Genomics Facility, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Ian Thomas
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Sean Johnson
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Joanna Canham
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Jamie Cavenagh
- St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | | | - Claire Arnold
- Clinical Haematology, Belfast City Hospital, Belfast, United Kingdom
| | | | | | - Mike Dennis
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Alan Burnett
- Paul O'Gorman Leukaemia Centre, Glasgow University, Glasgow, Scotland
| | | | - Brian Huntly
- Department of Haematology and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Nigel H Russell
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Richard Dillon
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
5
|
Liu Y, Liu X, Wei D, Dang L, Xu X, Huang S, Li L, Wu S, Wu J, Liu X, Sun W, Tao W, Wei Y, Huang X, Li K, Wang X, Zhou F. CoHIT: a one-pot ultrasensitive ERA-CRISPR system for detecting multiple same-site indels. Nat Commun 2024; 15:5014. [PMID: 38866774 PMCID: PMC11169540 DOI: 10.1038/s41467-024-49414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Genetic testing is crucial for precision cancer medicine. However, detecting multiple same-site insertions or deletions (indels) is challenging. Here, we introduce CoHIT (Cas12a-based One-for-all High-speed Isothermal Test), a one-pot CRISPR-based assay for indel detection. Leveraging an engineered AsCas12a protein variant with high mismatch tolerance and broad PAM scope, CoHIT can use a single crRNA to detect multiple NPM1 gene c.863_864 4-bp insertions in acute myeloid leukemia (AML). After optimizing multiple parameters, CoHIT achieves a detection limit of 0.01% and rapid results within 30 minutes, without wild-type cross-reactivity. It successfully identifies NPM1 mutations in 30 out of 108 AML patients and demonstrates potential in monitoring minimal residual disease (MRD) through continuous sample analysis from three patients. The CoHIT method is also competent for detecting indels of KIT, BRAF, and EGFR genes. Integration with lateral flow test strips and microfluidic chips highlights CoHIT's adaptability and multiplexing capability, promising significant advancements in clinical cancer diagnostics.
Collapse
Affiliation(s)
- Yin Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Wuhan University Shenzhen Research Institute, Shenzhen, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Xinyi Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modeatarn Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dongyi Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lu Dang
- Department of Reproductive Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoran Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | | | - Liwen Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modeatarn Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sanyun Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jinxian Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wenjun Sun
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Wanyu Tao
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xingxu Huang
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modeatarn Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Xinjie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modeatarn Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Cammann E, Madhav S, Hutchinson L, Cerny J, Ramanathan M, Bledsoe JR, Makarenko V, Patel SA, Meng X, Tomaszewicz K, Nath R, Chen B, Woda B, Selove W. Frameshift Mutations in Leukemia-Associated Genes Correlate With Superior Outcomes in Patients Undergoing Allogeneic Stem Cell Transplant for De Novo Acute Myeloid Leukemia. J Hematol 2024; 13:86-93. [PMID: 38993741 PMCID: PMC11236359 DOI: 10.14740/jh1276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Background Allogeneic stem cell transplant (allo-SCT) is a mainstay of treatment for acute myeloid leukemia (AML). Its success depends largely on response of donor T lymphocytes against leukemia cells, known as graft-vs-leukemia (GvL) effect. A key potential driver of GvL is immune response to mutation-derived neoantigens. Previous studies in solid tumors have demonstrated enhanced immunogenicity of frameshift (FS)-derived peptides vs. those from non-synonymous single nucleotide variants (SNVs). We therefore hypothesized that AML cases bearing FS mutations in leukemia-associated genes would be more immunogenic than those with only other types of mutations (non-FS), and thus benefit more from allo-SCT via more robust GvL. Methods We identified AML patients who had undergone allo-SCT between 2010 and 2022 and had next-generation sequencing data available on diagnostic specimens using a 42-gene hot spot panel. We compared the impact of tumor mutations present at diagnosis on overall survival and relapse-free survival based on FS versus non-FS status. Results Ninety-five AML allo-SCT patients were identified. We observed superior relapse-free survival (P = 0.038, hazard ratio (HR): 0.24) and borderline superior overall survival (P = 0.058, HR: 0.55) post-transplant in de novo AML patients, who had at least one FS mutation (other than NPM1) in one of the 42 assessed genes versus those with only non-FS mutations. Conclusions Our findings suggest that FS-mutated AML cases may benefit more from allo-SCT than those with only non-FS mutations, possibly due to increased generation of immunogenic neoepitopes. If validated in an expanded study, incorporation of somatic FS mutation status in AML could improve patient selection algorithms for bone marrow transplant and thereby lead to superior outcomes.
Collapse
Affiliation(s)
| | - Sindha Madhav
- Department of Pathology, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, USA
| | - Lloyd Hutchinson
- Department of Pathology, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, USA
| | - Jan Cerny
- Department of Hematology-Oncology, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, USA
| | - Muthalagu Ramanathan
- Department of Hematology-Oncology, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, USA
| | - Jacob R Bledsoe
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | | | - Shyam A Patel
- Department of Hematology-Oncology, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, USA
| | - Xiuling Meng
- Department of Pathology, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, USA
| | - Keith Tomaszewicz
- Department of Pathology, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, USA
| | - Rajneesh Nath
- Department of Hematology, Medical Oncology, Banner MD Anderson Cancer Center Clinic, Gilbert, AZ, USA
| | | | - Bruce Woda
- Department of Pathology, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, USA
| | - William Selove
- UMass Medical School, Worcester, MA, USA
- Department of Pathology, Baystate Medical Center, Springfield, MA, USA
| |
Collapse
|
7
|
Shaforostova I, Call S, Evers G, Reicherts C, Angenendt L, Stelljes M, Berdel WE, Pohlmann A, Mikesch J, Rosenbauer F, Lenz G, Schliemann C, Wethmar K. Prevalence and clinical impact of CD56 and T-cell marker expression in acute myeloid leukaemia: A single-centre retrospective analysis. EJHAEM 2024; 5:93-104. [PMID: 38406551 PMCID: PMC10887264 DOI: 10.1002/jha2.827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 02/27/2024]
Abstract
Flow cytometry-based immunophenotyping is a mainstay of diagnostics in acute myeloid leukaemia (AML). Aberrant CD56 and T-cell antigen expression is observed in a fraction subset of AML cases, but the clinical relevance remains incompletely understood. Here, we retrospectively investigated the association of CD56 and T-cell marker expression with disease-specific characteristics and outcome of 324 AML patients who received intensive induction therapy at our centre between 2011 and 2019. We found that CD2 expression was associated with abnormal non-complex karyotype, NPM1 wild-type status and TP53 mutation. CD2 also correlated with a lower complete remission (CR) rate (47.8% vs. 71.6%, p = 0.03). CyTdT and CD2 were associated with inferior 3-year event-free-survival (EFS) (5.3% vs. 33.5%, p = 0.003 and 17.4% vs. 33.1%, p = 0.02, respectively). CyTdT expression was also correlated with inferior relapse-free survival (27.3% vs. 48.8%, p = 0.04). In multivariable analyses CD2 positivity was an independent adverse factor for EFS (HR 1.72, p = 0.03). These results indicate a biological relevance of aberrant T-cell marker expression in AML and provide a rationale to further characterise the molecular origin in T-lineage-associated AML.
Collapse
Affiliation(s)
| | - Simon Call
- Department of Medicine AUniversity Hospital MünsterMünsterGermany
| | - Georg Evers
- Department of Medicine AUniversity Hospital MünsterMünsterGermany
| | | | - Linus Angenendt
- Department of Medicine AUniversity Hospital MünsterMünsterGermany
- Department of Biosystems Science and EngineeringETH ZurichZürichSwitzerland
| | | | | | | | | | - Frank Rosenbauer
- Institute of Molecular Tumor BiologyFaculty of MedicineUniversity of MünsterMünsterGermany
| | - Georg Lenz
- Department of Medicine AUniversity Hospital MünsterMünsterGermany
| | | | - Klaus Wethmar
- Department of Medicine AUniversity Hospital MünsterMünsterGermany
| |
Collapse
|
8
|
Longitudinal single-cell profiling of chemotherapy response in acute myeloid leukemia. Nat Commun 2023; 14:1285. [PMID: 36890137 PMCID: PMC9995364 DOI: 10.1038/s41467-023-36969-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/22/2023] [Indexed: 03/10/2023] Open
Abstract
Acute myeloid leukemia may be characterized by a fraction of leukemia stem cells (LSCs) that sustain disease propagation eventually leading to relapse. Yet, the contribution of LSCs to early therapy resistance and AML regeneration remains controversial. We prospectively identify LSCs in AML patients and xenografts by single-cell RNA sequencing coupled with functional validation by a microRNA-126 reporter enriching for LSCs. Through nucleophosmin 1 (NPM1) mutation calling or chromosomal monosomy detection in single-cell transcriptomes, we discriminate LSCs from regenerating hematopoiesis, and assess their longitudinal response to chemotherapy. Chemotherapy induced a generalized inflammatory and senescence-associated response. Moreover, we observe heterogeneity within progenitor AML cells, some of which proliferate and differentiate with expression of oxidative-phosphorylation (OxPhos) signatures, while others are OxPhos (low) miR-126 (high) and display enforced stemness and quiescence features. miR-126 (high) LSCs are enriched at diagnosis in chemotherapy-refractory AML and at relapse, and their transcriptional signature robustly stratifies patients for survival in large AML cohorts.
Collapse
|
9
|
Xiao H, Wang S, Tang Y, Li S, Jiang Y, Yang Y, Zhang Y, Han Y, Wu X, Zheng L, Li Y, Gao Y. Absence of terminal deoxynucleotidyl transferase expression in T-ALL/LBL accumulates chromosomal abnormalities to induce drug resistance. Int J Cancer 2023; 152:2383-2395. [PMID: 36757202 DOI: 10.1002/ijc.34465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
T-acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) is a malignant neoplasm of immature lymphoblasts. Terminal deoxynucleotidyl transferase (TDT) is a template-independent DNA polymerase that plays an essential role in generating diversity for immunoglobulin genes. T-ALL/LBL patients with TDT- have a worse prognosis. However, how TDT- promotes the disease progression of T-ALL/LBL remains unknown. Here we analyzed the prognosis of T-ALL/LBL patients in Shanghai Children's Medical Center (SCMC) and confirmed that TDT- patients had a higher rate of recurrence and remission failure and worse outcomes. Cellular experiments demonstrated that TDT was involved in DNA damage repair. TDT knockout delayed DNA repair, arrested the cell cycle and decreased apoptosis to induce the accumulation of chromosomal abnormalities and tolerance to abnormal karyotypes. Our study demonstrated that the poor outcomes in TDT- T-ALL/LBL might be due to the drug resistance (VP16 and MTX) induced by chromosomal abnormalities. Our findings revealed novel functions and mechanisms of TDT in T-ALL/LBL and supported that hematopoietic stem cell transplantation (HSCT) might be a better choice for these patients.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Siqi Wang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yuejia Tang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Shanshan Li
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yufeng Jiang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yi Yang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yinwen Zhang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yali Han
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Xiaoyu Wu
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Liang Zheng
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yanxin Li
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yijin Gao
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| |
Collapse
|
10
|
Shang H, Peng Y, Yao L, Zheng Z, Li H, Chen W, Xu J. Self-Customized Multichannel Exponential Amplifications Regulate Powered Monitoring of Terminal Deoxynucleotidyl Transferase Activity. Anal Chem 2022; 94:11401-11408. [PMID: 35916369 DOI: 10.1021/acs.analchem.2c02427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The discovery and function analysis of terminal deoxynucleotidyl transferase (TdT) add a new dimension to the understanding of leukemia mechanisms and stimulate the development of new analytical tools for leukemia diagnosis. Herein, taking advantage of the inherent property of TdT for performing DNA synthesis using only single-stranded DNA as the nucleic acid substrate, we developed a self-customized multichannel exponential amplification (SMEA) system for the fluorescent sensing of TdT activity. The SMEA design employs an intermolecular DNA interaction made of a nicking site-incorporated elongation primer (EP) and a nicking site-incorporated poly-thymine tailed molecular beacon (Poly-T-MB). The absence of TdT is unable to bridge the relationship between EP and Poly-T-MB, ensuring the SMEA has an ultralow background. The presence of TdT, however, leads to the elongation of EP to poly-adenine tailed EP (Poly-A-EP) under a dATP pool responsible for further hybridization with numerous Poly-T-MB. With the aid of polymerase and nickase to react with the hybridization product of Poly-A-EP/(Poly-T-MB)n, it can cause bidirectional strand nicking, polymerization, and displacement in many cycles and channels. In this case, the SMEA is found to be associated with the configuration transformation and splitting of all Poly-T-MBs for a significant fluorescence enhancement. Depending on this high target signal amplification and strong background inhibition abilities, the SMEA sensing system is powerful for the qualitative and quantitative determination of TdT activity, showing that it has great promise for biomedical study and disease diagnosis.
Collapse
Affiliation(s)
- Huijie Shang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yubo Peng
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Li Yao
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhi Zheng
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Hongxia Li
- Department of Oncology, Hefei First People's Hospital, Third Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Wei Chen
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
11
|
Hindley A, Catherwood MA, McMullin MF, Mills KI. Significance of NPM1 Gene Mutations in AML. Int J Mol Sci 2021; 22:ijms221810040. [PMID: 34576201 PMCID: PMC8467861 DOI: 10.3390/ijms221810040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of this literature review is to examine the significance of the nucleophosmin 1 (NPM1) gene in acute myeloid leukaemia (AML). This will include analysis of the structure and normal cellular function of NPM1, the type of mutations commonly witnessed in NPM1, and the mechanism by which this influences the development and progression of AML. The importance of NPM1 mutation on prognosis and the treatment options available to patients will also be reviewed along with current guidelines recommending the rapid return of NPM1 mutational screening results and the importance of employing a suitable laboratory assay to achieve this. Finally, future developments in the field including research into new therapies targeting NPM1 mutated AML are considered.
Collapse
Affiliation(s)
- Andrew Hindley
- Clinical Haematology, Belfast City Hospital, Belfast BT9 7AB, UK;
- Correspondence:
| | | | - Mary Frances McMullin
- Centre for Medical Education, Queen’s University Belfast, Belfast BT7 1NN, UK;
- Northern Ireland and Belfast Health and Social Care Trust, Belfast BT9 7AB, UK
| | - Ken I. Mills
- Patrick G Johnston Center for Cancer Research, Queens University Belfast, Belfast BT9 7AE, UK;
| |
Collapse
|
12
|
Venanzi A, Rossi R, Martino G, Annibali O, Avvisati G, Mameli MG, Sportoletti P, Tiacci E, Falini B, Martelli MP. A Curious Novel Combination of Nucleophosmin ( NPM1) Gene Mutations Leading to Aberrant Cytoplasmic Dislocation of NPM1 in Acute Myeloid Leukemia (AML). Genes (Basel) 2021; 12:genes12091426. [PMID: 34573408 PMCID: PMC8468273 DOI: 10.3390/genes12091426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Nucleophosmin (NPM1) mutations occurring in acute myeloid leukemia (AML) (about 50 so far identified) cluster almost exclusively in exon 12 and lead to common changes at the NPM1 mutants C-terminus, i.e., loss of tryptophans 288 and 290 (or 290 alone) and creation of a new nuclear export signal (NES), at the bases of exportin-1(XPO1)-mediated aberrant cytoplasmic NPM1. Immunohistochemistry (IHC) detects cytoplasmic NPM1 and is predictive of the molecular alteration. Besides IHC and molecular sequencing, Western blotting (WB) with anti-NPM1 mutant specific antibodies is another approach to identify NPM1-mutated AML. Here, we show that among 382 AML cases with NPM1 exon 12 mutations, one was not recognized by WB, and describe the discovery of a novel combination of two mutations involving exon 12. This appeared as a conventional mutation A with the known TCTG nucleotides insertion/duplication accompanied by a second event (i.e., an 8-nucleotide deletion occurring 15 nucleotides downstream of the TCTG insertion), resulting in a new C-terminal protein sequence. Strikingly, the sequence included a functional NES ensuring cytoplasmic relocation of the new mutant supporting the role of cytoplasmic NPM1 as critical in AML leukemogenesis.
Collapse
Affiliation(s)
- Alessandra Venanzi
- Hematology and Clinical Immunology, Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, 06132 Perugia, Italy; (A.V.); (R.R.); (P.S.); (E.T.); (B.F.)
- Hematology Section, “Santa Maria della Misericordia” Hospital of Perugia, 06132 Perugia, Italy;
| | - Roberta Rossi
- Hematology and Clinical Immunology, Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, 06132 Perugia, Italy; (A.V.); (R.R.); (P.S.); (E.T.); (B.F.)
| | - Giovanni Martino
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Department of Pathology, AOU Cagliari, University of Cagliari, 09042 Cagliari, Italy
| | - Ombretta Annibali
- Hematology and Stem Cell Transplant Unit, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (O.A.); (G.A.)
| | - Giuseppe Avvisati
- Hematology and Stem Cell Transplant Unit, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (O.A.); (G.A.)
| | - Maria Grazia Mameli
- Hematology Section, “Santa Maria della Misericordia” Hospital of Perugia, 06132 Perugia, Italy;
| | - Paolo Sportoletti
- Hematology and Clinical Immunology, Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, 06132 Perugia, Italy; (A.V.); (R.R.); (P.S.); (E.T.); (B.F.)
- Hematology Section, “Santa Maria della Misericordia” Hospital of Perugia, 06132 Perugia, Italy;
| | - Enrico Tiacci
- Hematology and Clinical Immunology, Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, 06132 Perugia, Italy; (A.V.); (R.R.); (P.S.); (E.T.); (B.F.)
- Hematology Section, “Santa Maria della Misericordia” Hospital of Perugia, 06132 Perugia, Italy;
| | - Brunangelo Falini
- Hematology and Clinical Immunology, Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, 06132 Perugia, Italy; (A.V.); (R.R.); (P.S.); (E.T.); (B.F.)
- Hematology Section, “Santa Maria della Misericordia” Hospital of Perugia, 06132 Perugia, Italy;
| | - Maria Paola Martelli
- Hematology and Clinical Immunology, Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, 06132 Perugia, Italy; (A.V.); (R.R.); (P.S.); (E.T.); (B.F.)
- Hematology Section, “Santa Maria della Misericordia” Hospital of Perugia, 06132 Perugia, Italy;
- Correspondence:
| |
Collapse
|
13
|
NPM1 Mutational Status Underlines Different Biological Features in Pediatric AML. Cancers (Basel) 2021; 13:cancers13143457. [PMID: 34298672 PMCID: PMC8304368 DOI: 10.3390/cancers13143457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
Nucleophosmin (NPM1) is a nucleocytoplasmic shuttling protein, predominantly located in the nucleolus, that regulates a multiplicity of different biological processes. NPM1 localization in the cell is finely tuned by specific signal motifs, with two tryptophan residues (Trp) being essential for the nucleolar localization. In acute myeloid leukemia (AML), several NPM1 mutations have been reported, all resulting in cytoplasmic delocalization, but the putative biological and clinical significance of different variants are still debated. We explored HOXA and HOXB gene expression profile in AML patients and found a differential expression between NPM1 mutations inducing the loss of two (A-like) Trp residues and those determining the loss of one Trp residue (non-A-like). We thus expressed NPM1 A-like- or non-A-like-mutated vectors in AML cell lines finding that NPM1 partially remained in the nucleolus in the non-A-like NPM1-mutated cells. As a result, only in A-like-mutated cells we detected HOXA5, HOXA10, and HOXB5 hyper-expression and p14ARF/p21/p53 pathway deregulation, leading to reduced sensitivity to the treatment with either chemotherapy or Venetoclax, as compared to non-A-like cells. Overall, we identified that the NPM1 mutational status mediates crucial biological characteristics of AML cells, providing the basis for further sub-classification and, potentially, management of this subgroup of patients.
Collapse
|
14
|
NPM1-mutated acute myeloid leukemia: from bench to bedside. Blood 2021; 136:1707-1721. [PMID: 32609823 DOI: 10.1182/blood.2019004226] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleophosmin (NPM1) gene encodes for a multifunctional protein with prominent nucleolar localization that shuttles between nucleus and cytoplasm. NPM1 mutations represent the most common genetic lesion in adult acute myeloid leukemia (AML; about one third of cases), and they act deterministically to cause the aberrant cytoplasmic delocalization of NPM1 mutants. Because of its unique features, NPM1-mutated AML is recognized as a distinct entity in the 2017 World Health Organization (WHO) classification of hematopoietic neoplasms. Here, we focus on recently identified functions of wild-type NPM1 in the nucleolus and address new biological and clinical issues related to NPM1-mutated AML. The relevance of the cooperation between NPM1 and other mutations in driving AML with different outcomes is presented. We also discuss the importance of eradicating NPM1-mutated clones to achieve AML cure and the impact of preleukemic clonal hematopoiesis persistence in predisposing to second AML. The contribution of HOX genes' expression to the development of NPM1-mutated AML is also highlighted. Clinically, yet unsolved diagnostic issues in the 2017 WHO classification of myeloid neoplasms and the importance of NPM1 mutations in defining the framework of European LeukemiaNet genetic-based risk stratification are discussed. Finally, we address the value and limits of NPM1-based measurable residual disease assessment for treatment guidance and present the results of promising preclinical studies with XPO1 and menin-MLL inhibitors.
Collapse
|
15
|
Dillon R, Potter N, Freeman S, Russell N. How we use molecular minimal residual disease (MRD) testing in acute myeloid leukaemia (AML). Br J Haematol 2021; 193:231-244. [PMID: 33058194 DOI: 10.1111/bjh.17185] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years there have been major advances in the use of molecular diagnostic and monitoring techniques for patients with acute myeloid leukaemia (AML). Coupled with the simultaneous explosion of new therapeutic agents, this has sown the seeds for significant improvements to treatment algorithms. Here we show, using a selection of real-life examples, how molecular monitoring can be used to refine clinical decision-making and to personalise treatment in patients with AML with nucleophosmin (NPM1) mutations, core binding factor translocations and other fusion genes. For each case we review the established evidence base and provide practical recommendations where evidence is lacking or conflicting. Finally, we review important technical considerations that clinicians should be aware of in order to safely exploit these technologies as they undergo widespread implementation.
Collapse
Affiliation(s)
- Richard Dillon
- Cancer Genetics Laboratory, Department of Medical and Molecular Genetics, King's College, London, UK
- Department of Haematology, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | - Nicola Potter
- Cancer Genetics Laboratory, Department of Medical and Molecular Genetics, King's College, London, UK
| | - Sylvie Freeman
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Nigel Russell
- Department of Haematology, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| |
Collapse
|
16
|
Šašinková M, Heřman P, Holoubek A, Strachotová D, Otevřelová P, Grebeňová D, Kuželová K, Brodská B. NSC348884 cytotoxicity is not mediated by inhibition of nucleophosmin oligomerization. Sci Rep 2021; 11:1084. [PMID: 33441774 PMCID: PMC7806638 DOI: 10.1038/s41598-020-80224-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Nucleophosmin (NPM) mutations causing its export from the nucleoli to the cytoplasm are frequent in acute myeloid leukemia (AML). Due to heterooligomerization of wild type NPM with the AML-related mutant, the wild-type becomes misplaced from the nucleoli and its functions are significantly altered. Dissociation of NPM heterooligomers may thus restore the proper localization and function of wild-type NPM. NSC348884 is supposed to act as a potent inhibitor of NPM oligomerization. The effect of NSC348884 on the NPM oligomerization was thoroughly examined by fluorescence lifetime imaging with utilization of FRET and by a set of immunoprecipitation and electrophoretic methods. Leukemia-derived cell lines and primary AML cells as well as cells transfected with fluorescently labeled NPM forms were investigated. Our results clearly demonstrate that NSC348884 does not inhibit formation of NPM oligomers neither in vivo nor in vitro. Instead, we document that NSC348884 cytotoxicity is rather associated with modified cell adhesion signaling. The cytotoxic mechanism of NSC348884 has therefore to be reconsidered.
Collapse
Affiliation(s)
- Markéta Šašinková
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic
| | - Petr Heřman
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 121 16, Prague 2, Czech Republic.
| | - Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic
| | - Dita Strachotová
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 121 16, Prague 2, Czech Republic
| | - Petra Otevřelová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic
| | - Dana Grebeňová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic
| | - Kateřina Kuželová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic
| | - Barbora Brodská
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic.
| |
Collapse
|
17
|
Bolli N, Martinelli G, Cerchione C. The molecular pathogenesis of multiple myeloma. Hematol Rep 2020; 12:9054. [PMID: 33408844 PMCID: PMC7772755 DOI: 10.4081/hr.2020.9054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/29/2022] Open
Abstract
Multiple Myeloma (MM) is characterized by uncontrolled proliferation and accumulation of clonal plasma cells within the bone marrow. However, the cell of origin is a B-lymphocyte acquiring aberrant genomic events in the germinal center of a lymph node as off-target events during somatichypermutation and class-switch recombination driven by activation-induced-deaminase. Whether pre-germinal center events are also required for transformation, and which additional events are required for disease progression is still matter of debate. As early treatment in asymptomatic phases is gaining traction in the clinic, a better understanding of the molecular pathogenesis of myeloma progression would allow stratification of patients based on their risk of progression, thus rationalizing efficacy and cost of clinical interventions. In this review, we will discuss the development of MM, from the cell of origin through asymptomatic stages such as monoclonal gammopathy of undetermined significance and smoldering MM, to the development of symptomatic disease. We will explain the genetic heterogeneity of MM, one of the major drivers of disease recurrence. In this context, moreover, we will propose how this knowledge may influence future diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Niccolò Bolli
- Department of Oncology and Hemato- Oncology, University of Milan, Italy
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Martinelli
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Claudio Cerchione
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
18
|
NPM1-Mutated Myeloid Neoplasms with <20% Blasts: A Really Distinct Clinico-Pathologic Entity? Int J Mol Sci 2020; 21:ijms21238975. [PMID: 33255988 PMCID: PMC7730332 DOI: 10.3390/ijms21238975] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Nucleophosmin (NPM1) gene mutations rarely occur in non-acute myeloid neoplasms (MNs) with <20% blasts. Among nearly 10,000 patients investigated so far, molecular analyses documented NPM1 mutations in around 2% of myelodysplastic syndrome (MDS) cases, mainly belonging to MDS with excess of blasts, and 3% of myelodysplastic/myeloproliferative neoplasm (MDS/MPN) cases, prevalently classified as chronic myelomonocytic leukemia. These uncommon malignancies are associated with an aggressive clinical course, relatively rapid progression to overt acute myeloid leukemia (AML) and poor survival outcomes, raising controversies on their classification as distinct clinico-pathologic entities. Furthermore, fit patients with NPM1-mutated MNs with <20% blasts could benefit most from upfront intensive chemotherapy for AML rather than from moderate intensity MDS-directed therapies, although no firm conclusion can currently be drawn on best therapeutic approaches, due to the limited available data, obtained from small and mainly retrospective series. Caution is also suggested in definitely diagnosing NPM1-mutated MNs with blast count <20%, since NPM1-mutated AML cases frequently present dysplastic features and multilineage bone marrow cells showing abnormal cytoplasmic NPM1 protein delocalization by immunohistochemical staining, therefore belonging to NPM1-mutated clone regardless of blast morphology. Further prospective studies are warranted to definitely assess whether NPM1 mutations may become sufficient to diagnose AML, irrespective of blast percentage.
Collapse
|
19
|
De Bellis E, Ottone T, Mercante L, Falconi G, Cugini E, Consalvo MI, Travaglini S, Paterno G, Piciocchi A, Rossi ELL, Gurnari C, Maurillo L, Buccisano F, Arcese W, Voso MT. Terminal deoxynucleotidyl transferase (TdT) expression is associated with FLT3-ITD mutations in Acute Myeloid Leukemia. Leuk Res 2020; 99:106462. [PMID: 33091616 DOI: 10.1016/j.leukres.2020.106462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
The terminal deoxynucleotidyl transferase (TdT) is a DNA polymerase expressed in acute myeloid leukemias (AMLs), where it may be involved in the generation of NPM1 and FLT3-ITD mutations. We studied the correlations between TdT expression and FLT3-ITD or NPM1 mutations in primary AML samples, and the impact on patients' survival. TdT expression was analyzed in 143 adult AML patients by flow cytometry as percentage of positivity and mean fluorescence intensity (MFI) on blasts. TdT was positive in 49 samples (34.2%), with a median of 48% TdT-positivity (range 7-98) and a median MFI of 2.70 (range 1.23-30.54). FLT3-ITD and NPM1 mutations were present in 24 (16.7%) and 34 (23.7%) cases, respectively. Median TdT expression on blasts was significantly higher in FLT3-ITD+, as compared with FLT3-ITD- AMLs (median 8% vs 0% respectively, p = 0.035). NPM1 mutational status, FLT3-ITD allelic ratio, karyotype, and ELN risk groups, did not correlate with TdT expression or MFI on blasts. TdT + patients had poorer survival as compared to TdT-, but this result was not confirmed by the multivariable analysis, where ELN risk stratification as well as age and type of treatment remained independent prognostic factors for OS. In summary, our results support the possible implication of TdT enzyme in the generation of FLT3-ITD mutations in AML.
Collapse
Affiliation(s)
- Eleonora De Bellis
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy; Santa Lucia Foundation, I.R.C.C.S., Neuro-Oncohematology, Rome, Italy
| | - Lisa Mercante
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Giulia Falconi
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Elisa Cugini
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Maria Irno Consalvo
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | | | | | | | - Carmelo Gurnari
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Luca Maurillo
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Francesco Buccisano
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - William Arcese
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy; Santa Lucia Foundation, I.R.C.C.S., Neuro-Oncohematology, Rome, Italy.
| |
Collapse
|
20
|
Cela I, Di Matteo A, Federici L. Nucleophosmin in Its Interaction with Ligands. Int J Mol Sci 2020; 21:E4885. [PMID: 32664415 PMCID: PMC7402337 DOI: 10.3390/ijms21144885] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Nucleophosmin (NPM1) is a mainly nucleolar protein that shuttles between nucleoli, nucleoplasm and cytoplasm to fulfill its many functions. It is a chaperone of both nucleic acids and proteins and plays a role in cell cycle control, centrosome duplication, ribosome maturation and export, as well as the cellular response to a variety of stress stimuli. NPM1 is a hub protein in nucleoli where it contributes to nucleolar organization through heterotypic and homotypic interactions. Furthermore, several alterations, including overexpression, chromosomal translocations and mutations are present in solid and hematological cancers. Recently, novel germline mutations that cause dyskeratosis congenita have also been described. This review focuses on NPM1 interactions and inhibition. Indeed, the list of NPM1 binding partners is ever-growing and, in recent years, many studies contributed to clarifying the structural basis for NPM1 recognition of both nucleic acids and several proteins. Intriguingly, a number of natural and synthetic ligands that interfere with NPM1 interactions have also been reported. The possible role of NPM1 inhibitors in the treatment of multiple cancers and other pathologies is emerging as a new therapeutic strategy.
Collapse
Affiliation(s)
- Ilaria Cela
- Center for Advanced Studies and Technology (CAST), University of Chieti “G. d’Annunzio”, Via Polacchi, 66100 Chieti, Italy;
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology (IBPM) of the CNR, c/o “Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy;
| | - Luca Federici
- Center for Advanced Studies and Technology (CAST), University of Chieti “G. d’Annunzio”, Via Polacchi, 66100 Chieti, Italy;
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
21
|
Nucleophosmin 1 Mutations in Acute Myeloid Leukemia. Genes (Basel) 2020; 11:genes11060649. [PMID: 32545659 PMCID: PMC7348733 DOI: 10.3390/genes11060649] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Nucleophosmin (NPM1) is a ubiquitously expressed nucleolar protein involved in ribosome biogenesis, the maintenance of genomic integrity and the regulation of the ARF-p53 tumor-suppressor pathway among multiple other functions. Mutations in the corresponding gene cause a cytoplasmic dislocation of the NPM1 protein. These mutations are unique to acute myeloid leukemia (AML), a disease characterized by clonal expansion, impaired differentiation and the proliferation of myeloid cells in the bone marrow. Despite our improved understanding of NPM1 mutations and their consequences, the underlying leukemia pathogenesis is still unclear. Recent studies that focused on dysregulated gene expression in AML with mutated NPM1 have shed more light into these mechanisms. In this article, we review the current evidence on normal functions of NPM1 and aberrant functioning in AML, and highlight investigational strategies targeting these mutations.
Collapse
|
22
|
Saburi M, Ogata M, Satou T, Soga Y, Itani K, Kohno K, Kondo Y, Nakayama T. Prognostic implications of TdT expression in acute myeloid leukemia with an intermediate-risk karyotype. Int J Hematol 2020; 112:17-23. [PMID: 32253665 DOI: 10.1007/s12185-020-02871-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 11/29/2022]
Abstract
Terminal deoxynucleotidyl transferase (TdT) is expressed on precursor lymphoblastic neoplasms and some acute myeloid leukemia (AML) cells. The clinical impact of TdT expression on AML outcomes remains unclear. Here, we conducted a retrospective analysis to identify prognostic implications of TdT expression in AML with an intermediate-risk karyotype. Forty-eight cases of intermediate-risk AML were enrolled. TdT positivity was defined as expression on ≥ 10% of the gated cells. Of 48 cases, 12 (25%) were positive for TdT [median expression rate of TdT 0.9% (range 0-86.9%)]. No significant differences in patient characteristics or complete remission rate were observed between TdT-positive and TdT-negative cases. The probability of overall survival (OS) and event-free survival (EFS) at 1 year was not significantly different between TdT-positive and TdT-negative cases (OS: 58.3% vs. 65.2%, p = 0.32; EFS: 33.3% vs. 57.1%, p = 0.06). Relapse-free survival (RFS) probability at 1 year was significantly lower for TdT-positive than TdT-negative cases (10% vs. 71.3%, p = 0.002). Multivariate analyses revealed that TdT positivity was an independent significant adverse factor for RFS [hazard ratio: 3.309, 95% confidence interval: 1.334-8.209, p = 0.009]. Our results suggest that TdT expression is associated with increased risk of relapse in patients with intermediate-risk AML.
Collapse
Affiliation(s)
- Masuho Saburi
- Department of Hematology, Oita Kouseiren Tsurumi Hospital, Oita, Japan. .,Department of Medical Oncology and Hematology, Faculty of Medicine, Oita University, 1-1 Hasama Idaigaoka, Yuhu City, Oita, 879-5593, Japan.
| | - Masao Ogata
- Department of Hematology, Oita University Hospital, Oita, Japan
| | - Takako Satou
- Department of Clinical Laboratory, Oita Kouseiren Tsurumi Hospital, Oita, Japan
| | - Yasuhiro Soga
- Department of Clinical Laboratory, Oita Kouseiren Tsurumi Hospital, Oita, Japan
| | - Kazuhito Itani
- Department of Hematology, Oita Kouseiren Tsurumi Hospital, Oita, Japan
| | - Kazuhiro Kohno
- Department of Hematology, Oita Kouseiren Tsurumi Hospital, Oita, Japan
| | - Yoshiyuki Kondo
- Department of Diagnostic Pathology, Oita Kouseiren Tsurumi Hospital, Oita, Japan
| | | |
Collapse
|
23
|
Terminal deoxynucleotidyl transferase promotes acute myeloid leukemia by priming FLT3-ITD replication slippage. Blood 2020; 134:2281-2290. [PMID: 31650168 DOI: 10.1182/blood.2019001238] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022] Open
Abstract
FLT3-internal tandem duplications (FLT3-ITDs) are prognostic driver mutations found in acute myeloid leukemia (AML). Although these short duplications occur in 25% of AML patients, little is known about the molecular mechanism underlying their formation. Understanding the origin of FLT3-ITDs would advance our understanding of the genesis of AML. We analyzed the sequence and molecular anatomy of 300 FLT3-ITDs to address this issue, including 114 ITDs with additional nucleotides of unknown origin located between the 2 copies of the repeat. We observed anatomy consistent with replication slippage, but could only identify the germline microhomology (1-6 bp) anticipated to prime such slippage in one-third of FLT3-ITDs. We explain the paradox of the "missing" microhomology in the majority of FLT3-ITDs through occult microhomology: specifically, by priming through use of nontemplated nucleotides (N-nucleotides) added by terminal deoxynucleotidyl transferase (TdT). We suggest that TdT-mediated nucleotide addition in excess of that required for priming creates N-regions at the duplication junctions, explaining the additional nucleotides observed at this position. FLT3-ITD N-regions have a G/C content (66.9%), dinucleotide composition (P < .001), and length characteristics consistent with synthesis by TdT. AML types with high TdT show an increased incidence of FLT3-ITDs (M0; P = .0017). These results point to an unexpected role for the lymphoid enzyme TdT in priming FLT3-ITDs. Although the physiological role of TdT is to increase antigenic diversity through N-nucleotide addition during V(D)J recombination of IG/TCR genes, here we propose that illegitimate TdT activity makes a significant contribution to the genesis of AML.
Collapse
|
24
|
|