1
|
Tang H, Zhang N, Liu X, Xiao H, Zhang H, Zhou K, Deng J. Incidence Trends of Inherited Anemias at the Global, Regional, and National Levels Over Three Decades. J Epidemiol Glob Health 2024; 14:72-85. [PMID: 38079097 PMCID: PMC11043255 DOI: 10.1007/s44197-023-00170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/14/2023] [Indexed: 04/25/2024] Open
Abstract
Inherited anemia continues to pose a significant public health concern on a global scale, owing to its extensive geographical prevalence, substantial patient population, and profound ramifications. Here, we investigated detailed information on inherited anemias (including thalassemias, thalassemias trait, sickle cell disease, sickle cell trait, G6PD deficiency, and G6PD trait) for the period 1990-2019 from the Global Burden of Disease study. Over the course of three decades, there has been a persistent rise in the incidence of inherited anemias worldwide, culminating in a total of 44,896,026 incident cases in 2019. However, the prevalence of inherited anemias has exhibited a consistent downward trend over successive years. Significantly, these inherited anemias primarily impact females, exhibiting a male-to-female ratio of 1:1.88. Among males, the most prevalent inherited anemia is G6PD deficiency, whereas G6PD trait prevails among females. The incidence rates of inherited anemias and their temporal trend exhibited significant variations across different regions, with Central Sub-Saharan Africa displaying the highest incidence rates and Central Latin America experiencing the most substantial decline. The findings of this study suggest a significant correlation between the Socio-Demographic index (SDI) and incidence rates of inherited anemias, particularly in regions with lower SDI levels such as Africa and South Asia. These results contribute valuable insights for the analysis of global trends in the burden of inherited anemias.
Collapse
Affiliation(s)
- Hongwei Tang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, People's Republic of China
| | - Nan Zhang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, People's Republic of China
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430061, People's Republic of China
| | - Xinlei Liu
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, People's Republic of China
| | - Hongbo Xiao
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, People's Republic of China
| | - Hanyue Zhang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, People's Republic of China
| | - Kang Zhou
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, People's Republic of China.
| | - Jianchuan Deng
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
2
|
Quintana-Bustamante O, Fañanas-Baquero S, Dessy-Rodriguez M, Ojeda-Pérez I, Segovia JC. Gene Editing for Inherited Red Blood Cell Diseases. Front Physiol 2022; 13:848261. [PMID: 35418876 PMCID: PMC8995967 DOI: 10.3389/fphys.2022.848261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Today gene therapy is a real therapeutic option to address inherited hematological diseases that could be beneficial for thousands of patients worldwide. Currently, gene therapy is used to treat different monogenic hematological pathologies, including several red blood cell diseases such as β-thalassemia, sickle cell disease and pyruvate kinase deficiency. This approach is based on addition gene therapy, which consists of the correction of hematopoietic stem cells (HSCs) using lentiviral vectors, which integrate a corrected version of the altered gene. Lentivirally-corrected HSCs generate healthy cells that compensate for the deficiency caused by genetic mutations. Despite its successful results, this approach lacks both control of the integration of the transgene into the genome and endogenous regulation of the therapeutic gene, both of which are important aspects that might be a cause for concern. To overcome these limitations, gene editing is able to correct the altered gene through more precise and safer approaches. Cheap and easy-to-design gene editing tools, such as the CRISPR/Cas9 system, allow the specific correction of the altered gene without affecting the rest of the genome. Inherited erythroid diseases, such as thalassemia, sickle cell disease and Pyruvate Kinase Deficiency, have been the test bed for these gene editing strategies, and promising results are currently being seen. CRISPR/Cas9 system has been successfully used to manipulate globin regulation to re-activate fetal globin chains in adult red blood cells and to compensate for hemoglobin defects. Knock-in at the mutated locus to express the therapeutic gene under the endogenous gene regulatory region has also been accomplished successfully. Thanks to the lessons learned from previous lentiviral gene therapy research and trials, gene editing for red blood cell diseases is rapidly moving from its proof-of-concept to its first exciting results in the clinic. Indeed, patients suffering from β-thalassemia and sickle cell disease have already been successfully treated with gene editing, which will hopefully inspire the use of gene editing to cure erythroid disorders and many other inherited diseases in the near future.
Collapse
Affiliation(s)
- Oscar Quintana-Bustamante
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Unidad Mixta de Terapias Avanzadas, Madrid, Spain
| | - Sara Fañanas-Baquero
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Unidad Mixta de Terapias Avanzadas, Madrid, Spain
| | - Mercedes Dessy-Rodriguez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Unidad Mixta de Terapias Avanzadas, Madrid, Spain
| | - Isabel Ojeda-Pérez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Unidad Mixta de Terapias Avanzadas, Madrid, Spain
| | - Jose-Carlos Segovia
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Unidad Mixta de Terapias Avanzadas, Madrid, Spain
| |
Collapse
|