1
|
Thurm AR, Finkel Y, Andrews C, Cai XS, Benko C, Bintu L. High-throughput discovery of regulatory effector domains in human RNA-binding proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604317. [PMID: 39071298 PMCID: PMC11275849 DOI: 10.1101/2024.07.19.604317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
RNA regulation plays an integral role in tuning gene expression and is controlled by thousands of RNA-binding proteins (RBPs). We develop and use a high-throughput recruitment assay (HT-RNA-Recruit) to identify regulatory domains within human RBPs by recruiting over 30,000 protein tiles from 367 RBPs to a reporter mRNA. We discover over 100 unique RNA-regulatory effectors in 86 distinct RBPs, presenting evidence that RBPs contain functionally separable domains that dictate their post-transcriptional control of gene expression, and identify some with unique activity at 5' or 3'UTRs. We identify some domains that downregulate gene expression both when recruited to DNA and RNA, and dissect their mechanisms of regulation. Finally, we build a synthetic RNA regulator that can stably maintain gene expression at desired levels that are predictable by a mathematical model. This work serves as a resource for human RNA-regulatory effectors and expands the synthetic repertoire of RNA-based genetic control tools. Highlights HT-RNA-Recruit identifies hundreds of RNA-regulatory effectors in human proteins.Recruitment to 5' and 3' UTRs identifies regulatory domains unique to each position.Some protein domains have both transcriptional and post-transcriptional regulatory activity.We develop a synthetic RNA regulator and a mathematical model to describe its behavior.
Collapse
|
2
|
Hu X, Cao P, Wang F, Wang T, Duan J, Chen X, Ma X, Zhang Y, Chen J, Liu H, Zhang H, Wu X. Alternative polyadenylation quantitative trait loci contribute to acute myeloid leukemia risk genes regulation. Leuk Res 2024; 141:107499. [PMID: 38640632 DOI: 10.1016/j.leukres.2024.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/14/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
Acute myeloid leukemia (AML) is a hematopoietic malignancy with a high relapse rate and progressive drug resistance. Alternative polyadenylation (APA) contributes to post-transcriptional dysregulation, but little is known about the association between APA and AML. The APA quantitative trait locus (apaQTL) is a powerful method to investigate the relationship between APA and single nucleotide polymorphisms (SNPs). We quantified APA usage in 195 Chinese AML patients and identified 4922 cis-apaQTLs related to 1875 genes, most of which were newly reported. Cis-apaQTLs may modulate the APA selection of 115 genes through poly(A) signals. Colocalization analysis revealed that cis-apaQTLs colocalized with cis-eQTLs may regulate gene expression by affecting miRNA binding sites or RNA secondary structures. We discovered 207 cis-apaQTLs related to AML risk by comparing genotype frequency with the East Asian healthy controls from the 1000 Genomes Project. Genes with cis-apaQTLs were associated with hematological phenotypes and tumor incidence according to the PHARMGKB and MGI databases. Collectively, we profiled an atlas of cis-apaQTLs in Asian AML patients and found their association with APA selection, gene expression, AML risk, and complex traits. Cis-apaQTLs may provide insights into the regulatory mechanisms related to APA in AML occurrence, progression, and prognosis.
Collapse
Affiliation(s)
- Xi Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Panxiang Cao
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Fang Wang
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Tong Wang
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Junbo Duan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xue Chen
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Xiaoli Ma
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Yang Zhang
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Jiaqi Chen
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Hongxing Liu
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China.
| | - Huqin Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiaoming Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
3
|
Ding Y, Bajpai AK, Wu F, Lu W, Xu L, Mao J, Li Q, Pan Q, Lu L, Wang X. 5-methylcytosine RNA modification regulators-based patterns and features of immune microenvironment in acute myeloid leukemia. Aging (Albany NY) 2024; 16:2340-2361. [PMID: 38277218 PMCID: PMC10911375 DOI: 10.18632/aging.205484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous malignant disease of the blood cell. The current therapies for AML are unsatisfactory and the molecular mechanisms underlying AML are unclear. 5-methylcytosine (m5C) is an important posttranscriptional modification of mRNA, and is involved in the regulation of mRNA stability, translation, and other aspects of RNA metabolism. However, based on our knowledge of published literature, the role of the m5C regulators has not been explored in AML till date. In this study, we clarified the expression and gene variants of m5C regulators in AML and found that most m5C regulators were differentially expressed and correlated with disease prognosis. We also found that the methylation status of certain m5C regulators (e.g., DNMT3A, DNMT3B) affects the survival of AML patients. Two m5C modification subtypes, and high- and low-risk subgroups identified based on the expression of m5C regulators showed significant differences in the prognosis as well as immune cell infiltration. In addition, most of the m5C regulators were found to be correlated with miRNA expression in AML, as well as IC50 values of many drugs. The miRNA and GSVA analysis were used to identify the different miRNAs and KEGG or hallmark pathways between high- and low-risk subgroups. We also built a prognostic model based on m5C regulators, which was validated by two GSE databases. To verify the reliability of our analysis and conclusions, qPCR was used to identify the expressions of m5C regulators between normal and AML. In summary, we comprehensively explored the molecular characteristics of m5C regulators and built a prognostic model in AML. We proposed new mechanistic insights into the role of m5C in multiple databases and clinical data, which may pave novel ways for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Yuhong Ding
- Department of Hematology, The Affiliated Hospital of Nantong University, Jiangsu 226000, China
| | - Akhilesh K. Bajpai
- Department of Genetics, Genomics and Informatics University of Tennessee Health Science Cente, Memphis, TN 38163, USA
| | - Fengxia Wu
- Department of Hematology, The Affiliated Hospital of Nantong University, Jiangsu 226000, China
| | - Weihua Lu
- Department of Hematology and Oncology, The Branch Affiliated Hospital of Nantong University, Jiangsu 226000, China
| | - Lin Xu
- Department of Hematology, The Affiliated Hospital of Nantong University, Jiangsu 226000, China
| | - Jiawei Mao
- Department of Hematology, The Affiliated Hospital of Nantong University, Jiangsu 226000, China
| | - Qiang Li
- Department of Hematology, The Affiliated Hospital of Nantong University, Jiangsu 226000, China
| | - Qi Pan
- Department of Hematology, The Affiliated Hospital of Nantong University, Jiangsu 226000, China
| | - Lu Lu
- Department of Genetics, Genomics and Informatics University of Tennessee Health Science Cente, Memphis, TN 38163, USA
| | - Xinfeng Wang
- Department of Hematology, The Affiliated Hospital of Nantong University, Jiangsu 226000, China
| |
Collapse
|
4
|
Yuan S, Xi S, Weng H, Guo MM, Zhang JH, Yu ZP, Zhang H, Yu Z, Xing Z, Liu MY, Ming DJ, Sah RK, Zhou Y, Li G, Zeng T, Hong X, Li Y, Zeng XT, Hu H. YTHDC1 as a tumor progression suppressor through modulating FSP1-dependent ferroptosis suppression in lung cancer. Cell Death Differ 2023; 30:2477-2490. [PMID: 37903990 PMCID: PMC10733405 DOI: 10.1038/s41418-023-01234-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023] Open
Abstract
Ferroptosis is a regulated cell death process initiated by iron-dependent phospholipid peroxidation and is mainly suppressed by GPX4-dependent and FSP1-dependent surveillance mechanisms. However, how the ferroptosis surveillance system is regulated during cancer development remains largely unknown. Here, we report that the YTHDC1-mediated m6A epigenetic regulation of FSP1 alleviates the FSP1-dependent ferroptosis suppression that partially contributes to the tumor suppressive role of YTHDC1 in lung cancer progression. YTHDC1 knockdown promoted the lung tumor progression and upregulated FSP1 protein level that resulted in ferroptosis resistance of lung cancer cells. Silencing FSP1 abrogated YTHDC1 knockdown-induced proliferation increase and ferroptosis resistance. Mechanistically, YTHDC1 binding to the m6A sites in the FSP1 3'-UTR recruited the alternative polyadenylation regulator CSTF3 to generate a less stable shorter 3'-UTR contained FSP1 mRNA, whereas YTHDC1 downregulation generated the longer 3'-UTR contained FSP1 mRNA that is stabilized by RNA binding protein HuR and thus led to the enhanced FSP1 protein level. Therefore, our findings identify YTHDC1 as a tumor progression suppressor in lung cancer and a ferroptosis regulator through modulating the FSP1 mRNA stability and thus suggest a ferroptosis-related therapeutic option for YTHDC1high lung cancer.
Collapse
Affiliation(s)
- Shuai Yuan
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shu Xi
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Weng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Meng-Meng Guo
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jin-Hui Zhang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-Ping Yu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haozhe Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhaojun Yu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zengzhen Xing
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Meng-Yang Liu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dao-Jing Ming
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rajiv Kumar Sah
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yi Zhou
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Gang Li
- Cancer Center, Faculty of Health Sciences, MoE Frontier Science Center for Precision Oncology, University of Macau, Taipa, Macau, SAR, China
| | - Tao Zeng
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xin Hong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Chongqing, China.
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Hailiang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
5
|
Zhang Q, Tian B. The emerging theme of 3'UTR mRNA isoform regulation in reprogramming of cell metabolism. Biochem Soc Trans 2023; 51:1111-1119. [PMID: 37171086 PMCID: PMC10771799 DOI: 10.1042/bst20221128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/26/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
The 3' untranslated region (3'UTR) of mRNA plays a key role in the post-transcriptional regulation of gene expression. Most eukaryotic protein-coding genes express 3'UTR isoforms owing to alternative cleavage and polyadenylation (APA). The 3'UTR isoform expression profile of a cell changes in cell proliferation, differentiation, and stress conditions. Here, we review the emerging theme of regulation of 3'UTR isoforms in cell metabolic reprogramming, focusing on cell growth and autophagy responses through the mTOR pathway. We discuss regulatory events that converge on the Cleavage Factor I complex, a master regulator of APA in 3'UTRs, and recent understandings of isoform-specific m6A modification and endomembrane association in determining differential metabolic fates of 3'UTR isoforms.
Collapse
Affiliation(s)
- Qiang Zhang
- Gene Expression and Regulation Program and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, U.S.A
| | - Bin Tian
- Gene Expression and Regulation Program and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, U.S.A
| |
Collapse
|
6
|
Liu X, Sun W, Wang L, Zhou B, Li P. Melatonin promotes differentiation and apoptosis of AML1-ETO-positive cells. Bull Cancer 2023; 110:342-351. [PMID: 36863921 DOI: 10.1016/j.bulcan.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 03/04/2023]
Abstract
INTRODUCTION Acute Myeloid Leukemia 1-Eight-Twenty-One (AML1-ETO) is an oncogenic fusion protein that causes acute myeloid leukemia. We examined the effects of melatonin on AML1-ETO by investigating cell differentiation, apoptosis, and degradation in leukemia cell lines. METHOD We evaluated Kasumi-1, U937T, and primary acute myeloid leukemia (AML1-ETO-positive) cell proliferation by Cell Counting Kit-8 assay. Flow cytometry and western blotting were used to evaluate CD11b/CD14 levels (differentiation biomarkers) and the AML1-ETO protein degradation pathway, respectively. CM-Dil-labeled Kasumi-1 cells were also injected into zebrafish embryos to determine the effects of melatonin on vascular proliferation and development and to evaluate the combined effects of melatonin and common chemotherapeutic agents. RESULTS AML1-ETO-positive acute myeloid leukemia cells were more sensitive to melatonin than AML1-ETO-negative cells. Melatonin increased apoptosis and CD11b/CD14 expression in AML1-ETO-positive cells and decreased the nuclear/cytoplasmic ratio, together suggesting that melatonin induced cell differentiation. Mechanistically, melatonin degraded AML1-ETO by activating the caspase-3 pathway and regulating the mRNA levels of AML1-ETO downstream genes. Melatonin reduced the number of neovessels in Kasumi-1-injected zebrafish, suggesting that melatonin inhibits cell proliferation in vivo. Finally, combining drugs with melatonin inhibited cell viability. DISCUSSION Melatonin is a potential compound for the treatment of AML1-ETO-positive acute myeloid leukemia.
Collapse
Affiliation(s)
- Xuling Liu
- The First Affiliated Hospital of Wenzhou Medical University, Department of Pathology, Xuefu Road, Ouhai District, Wenzhou 325000, Zhejiang Province, China
| | - Wenwen Sun
- The First Affiliated Hospital of Wenzhou Medical University, Department of Pathology, Xuefu Road, Ouhai District, Wenzhou 325000, Zhejiang Province, China
| | - Leilei Wang
- The First Affiliated Hospital of Wenzhou Medical University, Department of Anesthesiology, Xuefu Road, Ouhai District, Wenzhou 325000, Zhejiang Province, China
| | - Bin Zhou
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Xuefu Road, Ouhai District, Wenzhou 325000, Zhejiang Province, China
| | - Peng Li
- The First Affiliated Hospital of Wenzhou Medical University, Department of Pathology, Xuefu Road, Ouhai District, Wenzhou 325000, Zhejiang Province, China.
| |
Collapse
|
7
|
Circular RNAs and Untranslated Regions in Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:ijms24043215. [PMID: 36834627 PMCID: PMC9967498 DOI: 10.3390/ijms24043215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Before the advent of next-generation sequencing, research on acute myeloid leukemia (AML) mostly centered on protein-coding genes. In recent years, breakthroughs in RNA sequencing technologies and whole transcriptome analysis have led to the discovery that approximately 97.5% of the human genome is transcribed into non-coding RNAs (ncRNAs). This paradigm shift has led to an explosion of research interest in different classes of non-coding RNAs, such as circular RNAs (circRNAs) as well as non-coding untranslated regions (UTRs) of protein-coding messenger RNAs. The critical roles of circRNAs and UTRs in AML pathogenesis have become increasingly apparent. In this review, we discuss the cellular mechanisms of circRNAs and summarize recent studies that reveal their biological roles in AML. Furthermore, we also review the contribution of 3'UTRs to disease progression. Finally, we discuss the potential of circRNAs and 3'UTRs as new biomarkers for disease stratification and/or the prediction of treatment response and targets for the development of RNA-directed therapeutic applications.
Collapse
|
8
|
Gallicchio L, Olivares GH, Berry CW, Fuller MT. Regulation and function of alternative polyadenylation in development and differentiation. RNA Biol 2023; 20:908-925. [PMID: 37906624 PMCID: PMC10730144 DOI: 10.1080/15476286.2023.2275109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Alternative processing of nascent mRNAs is widespread in eukaryotic organisms and greatly impacts the output of gene expression. Specifically, alternative cleavage and polyadenylation (APA) is a co-transcriptional molecular process that switches the polyadenylation site (PAS) at which a nascent mRNA is cleaved, resulting in mRNA isoforms with different 3'UTR length and content. APA can potentially affect mRNA translation efficiency, localization, stability, and mRNA seeded protein-protein interactions. APA naturally occurs during development and cellular differentiation, with around 70% of human genes displaying APA in particular tissues and cell types. For example, neurons tend to express mRNAs with long 3'UTRs due to preferential processing at PASs more distal than other PASs used in other cell types. In addition, changes in APA mark a variety of pathological states, including many types of cancer, in which mRNAs are preferentially cleaved at more proximal PASs, causing expression of mRNA isoforms with short 3'UTRs. Although APA has been widely reported, both the function of APA in development and the mechanisms that regulate the choice of 3'end cut sites in normal and pathogenic conditions are still poorly understood. In this review, we summarize current understanding of how APA is regulated during development and cellular differentiation and how the resulting change in 3'UTR content affects multiple aspects of gene expression. With APA being a widespread phenomenon, the advent of cutting-edge scientific techniques and the pressing need for in-vivo studies, there has never been a better time to delve into the intricate mechanisms of alternative cleavage and polyadenylation.
Collapse
Affiliation(s)
- Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, USA
| | - Gonzalo H. Olivares
- Escuela de Kinesiología, Facultad de Medicina y Ciencias de la Salud, Center for Integrative Biology (CIB), Universidad Mayor, Chile and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Margaret T. Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
9
|
3′UTR heterogeneity and cancer progression. Trends Cell Biol 2022:S0962-8924(22)00232-X. [DOI: 10.1016/j.tcb.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
|
10
|
Hu X, Song J, Chyr J, Wan J, Wang X, Du J, Duan J, Zhang H, Zhou X, Wu X. APAview: A web-based platform for alternative polyadenylation analyses in hematological cancers. Front Genet 2022; 13:928862. [PMID: 36035147 PMCID: PMC9411867 DOI: 10.3389/fgene.2022.928862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Hematologic malignancies, such as acute promyelocytic leukemia (APL) and acute myeloid leukemia (AML), are cancers that start in blood-forming tissues and can affect the blood, bone marrow, and lymph nodes. They are often caused by genetic and molecular alterations such as mutations and gene expression changes. Alternative polyadenylation (APA) is a post-transcriptional process that regulates gene expression, and dysregulation of APA contributes to hematological malignancies. RNA-sequencing-based bioinformatic methods can identify APA sites and quantify APA usages as molecular indexes to study APA roles in disease development, diagnosis, and treatment. Unfortunately, APA data pre-processing, analysis, and visualization are time-consuming, inconsistent, and laborious. A comprehensive, user-friendly tool will greatly simplify processes for APA feature screening and mining. Results: Here, we present APAview, a web-based platform to explore APA features in hematological cancers and perform APA statistical analysis. APAview server runs on Python3 with a Flask framework and a Jinja2 templating engine. For visualization, APAview client is built on Bootstrap and Plotly. Multimodal data, such as APA quantified by QAPA/DaPars, gene expression data, and clinical information, can be uploaded to APAview and analyzed interactively. Correlation, survival, and differential analyses among user-defined groups can be performed via the web interface. Using APAview, we explored APA features in two hematological cancers, APL and AML. APAview can also be applied to other diseases by uploading different experimental data.
Collapse
Affiliation(s)
- Xi Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jialin Song
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jacqueline Chyr
- Center for Computational Systems Medicine, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, United States
| | - Jinping Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoyan Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jianqiang Du
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Junbo Duan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Huqin Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, United States
| | - Xiaoming Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Xiaoming Wu,
| |
Collapse
|
11
|
Identification of uPAR Variants Acting as ceRNAs in Leukaemia Cells. Cancers (Basel) 2022; 14:cancers14081980. [PMID: 35454884 PMCID: PMC9025028 DOI: 10.3390/cancers14081980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The urokinase (uPA) receptor (uPAR) concentrates proteolytic activities on the cell surface and is an adhesion receptor for vitronectin. Urokinase/Vitronectin binding to uPAR activates intracellular signals promoting cell adhesion, migration, proliferation and survival. Thus, uPAR can sustain most activities of malignant cells and, accordingly, increased uPAR expression is associated with poor prognosis in several malignancies. We previously demonstrated that, in leukaemia cells, the uPAR 3′untranslated region (3′UTR) up-regulates the expression of pro-tumoral factors by recruiting microRNAs targeting their mRNAs, thus acting as competitive endogenous RNA (ceRNA). Here, we identify 3′UTR-containing variants of uPAR mRNA in leukaemia cells and demonstrate that the over-expression of uPAR Δ5-variant mRNA promotes expression of pro-tumoral factors and increase in biological activities, probably by its ceRNA activity. On this basis, we propose that uPAR may play a crucial role in cancer biology also at mRNA level, through the ceRNA activity of its variants. Abstract The 3′untranslated region (3′UTR) of the urokinase (uPA) receptor (uPAR) mRNA can act as a competitive endogenous RNA (ceRNA) in acute myeloid leukaemia (AML) cells, promoting the expression of pro-tumoral targets, including uPAR. Here, we identified three variants of uPAR mRNA containing the 3′UTR, in KG1 and U937 leukaemia cells expressing low and high uPAR levels, respectively. Identified variants lack exon 5 (uPAR Δ5) or exon 6 (uPAR Δ6) or part of exon 6, exon 7 and part of 3′UTR (uPAR Δ6/7). uPAR Δ5 and uPAR Δ6 transcript levels were higher in U937 cells compared to KG1 cells. Both uPAR variants were expressed also in AML blasts, at higher levels as compared to CD34 hematopoietic cells from healthy donors. The presence of the 3′UTR conferred high instability to the uPAR Δ5 variant transcript, preventing its translation in protein. Overexpression of the uPAR Δ5-3′UTR variant regulated the expression of some pro-tumoral factors previously reported to be regulated by the 3′UTR of uPAR and increased KG1 cell adhesion, migration and proliferation. These results demonstrate the expression of uPAR mRNA variants containing the 3′UTR in AML cells and the ceRNA activity and the biological effects of the uPAR Δ5-3′UTR variant.
Collapse
|
12
|
Driving differentiation: targeting APA in AML. Blood 2022; 139:317-319. [PMID: 35050335 DOI: 10.1182/blood.2021013814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
|