1
|
Lopresti L, Tatangelo V, Baldari CT, Patrussi L. Rewiring the T cell-suppressive cytokine landscape of the tumor microenvironment: a new frontier for precision anti-cancer therapy. Front Immunol 2024; 15:1418527. [PMID: 39281678 PMCID: PMC11392891 DOI: 10.3389/fimmu.2024.1418527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024] Open
Abstract
T lymphocytes that infiltrate the tumor microenvironment (TME) often fail to function as effective anti-cancer agents. Within the TME, cell-to-cell inhibitory interactions play significant roles in dampening their anti-tumor activities. Recent studies have revealed that soluble factors released in the TME by immune and non-immune cells, as well as by tumor cells themselves, contribute to the exacerbation of T cell exhaustion. Our understanding of the cytokine landscape of the TME, their interrelationships, and their impact on cancer development is still at its early stages. In this review, we aim to shed light on Interleukin (IL) -6, IL-9, and IL-10, a small group of JAK/STAT signaling-dependent cytokines harboring T cell-suppressive effects in the TME and summarize their mechanisms of action. Additionally, we will explore how advancements in scientific research can help us overcoming the obstacles posed by cytokines that suppress T cells in tumors, with the ultimate objective of stimulating further investigations for the development of novel therapeutic strategies to counteract their tumor-promoting activities.
Collapse
Affiliation(s)
| | | | | | - Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
2
|
Rossi S, Tatangelo V, Dichiara M, Butini S, Gemma S, Brogi S, Pasquini S, Cappello M, Vincenzi F, Varani K, Lopresti L, Malchiodi M, Carrara C, Gozzetti A, Bocchia M, Marotta G, Patrussi L, Carullo G, Baldari CT, Campiani G. A novel potent class I HDAC inhibitor reverses the STAT4/p66Shc apoptotic defect in B cells from chronic lymphocytic leukemia patients. Biomed Pharmacother 2024; 174:116537. [PMID: 38579402 DOI: 10.1016/j.biopha.2024.116537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) patients have a defective expression of the proapoptotic protein p66Shc and of its transcriptional factor STAT4, which evoke molecular abnormalities, impairing apoptosis and worsening disease prognosis and severity. p66Shc expression is epigenetically controlled and transcriptionally modulated by STAT4; epigenetic modifiers are deregulated in CLL cells and specific histone deacetylases (HDACs) like HDAC1, are overexpressed. Reactivation of STAT4/p66Shc expression may represent an attractive and challenging strategy to reverse CLL apoptosis defects. New selective class I HDAC inhibitors (HDACis, 6a-g) were developed with increased potency over existing agents and preferentially interfering with the CLL-relevant isoform HDAC1, to unveil the role of class I HDACs in the upregulation of STAT4 expression, which upregulates p66Shc expression and hence normalizes CLL cell apoptosis. 6c (chlopynostat) was identified as a potent HDAC1i with a superior profile over entinostat. 6c induces marked apoptosis of CLL cells compared with SAHA, which was associated with an upregulation of STAT4/p66Shc protein expression. The role of HDAC1, but not HDAC3, in the epigenetic upregulation of STAT4/p66Shc was demonstrated for the first time in CLL cells and was validated in siRNA-induced HDAC1/HDAC3 knock-down EBV-B cells. To sum up, HDAC1 inhibition is necessary to reactivate STAT4/p66Shc expression in patients with CLL. 6c is one of the most potent HDAC1is known to date and represents a novel pharmacological tool for reversing the impairment of the STAT4/p66Shc apoptotic machinery.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Apoptosis/drug effects
- Histone Deacetylase Inhibitors/pharmacology
- Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism
- Src Homology 2 Domain-Containing, Transforming Protein 1/genetics
- STAT4 Transcription Factor/metabolism
- B-Lymphocytes/drug effects
- B-Lymphocytes/metabolism
- Histone Deacetylase 1/metabolism
- Histone Deacetylase 1/antagonists & inhibitors
- Benzamides/pharmacology
- Male
- Aged
- Female
- Middle Aged
Collapse
Affiliation(s)
- Sara Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Vanessa Tatangelo
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Maria Dichiara
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno, Pisa 56126, Italy
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Borsari 46, Ferrara 44121, Italy
| | - Martina Cappello
- Department of Translational Medicine, University of Ferrara, Via Borsari 46, Ferrara 44121, Italy
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Via Borsari 46, Ferrara 44121, Italy
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Via Borsari 46, Ferrara 44121, Italy
| | - Ludovica Lopresti
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Margherita Malchiodi
- Haematology Unit, Department of Medical Sciences, Surgery and Neuroscience, University of Siena, Policlinico "Santa Maria alle Scotte", Viale Bracci, Siena 53100, Italy
| | - Chiara Carrara
- Haematology Unit, Department of Medical Sciences, Surgery and Neuroscience, University of Siena, Policlinico "Santa Maria alle Scotte", Viale Bracci, Siena 53100, Italy
| | - Alessandro Gozzetti
- Haematology Unit, Department of Medical Sciences, Surgery and Neuroscience, University of Siena, Policlinico "Santa Maria alle Scotte", Viale Bracci, Siena 53100, Italy
| | - Monica Bocchia
- Haematology Unit, Department of Medical Sciences, Surgery and Neuroscience, University of Siena, Policlinico "Santa Maria alle Scotte", Viale Bracci, Siena 53100, Italy
| | - Giuseppe Marotta
- Stem Cell Transplant and Cellular Therapy Unit, University Hospital, Policlinico "Santa Maria alle Scotte", Viale Bracci, Siena 53100, Italy
| | - Laura Patrussi
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, Siena 53100, Italy.
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy.
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy; Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-7346, Iran
| |
Collapse
|
3
|
Boncompagni G, Tatangelo V, Lopresti L, Ulivieri C, Capitani N, Tangredi C, Finetti F, Marotta G, Frezzato F, Visentin A, Ciofini S, Gozzetti A, Bocchia M, Calzada-Fraile D, Martin Cofreces NB, Trentin L, Patrussi L, Baldari CT. Leukemic cell-secreted interleukin-9 suppresses cytotoxic T cell-mediated killing in chronic lymphocytic leukemia. Cell Death Dis 2024; 15:144. [PMID: 38360867 PMCID: PMC10869739 DOI: 10.1038/s41419-024-06528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
The tumor microenvironment (TME) plays a central role in the pathogenesis of chronic lymphocytic leukemia (CLL), contributing to disease progression and chemoresistance. Leukemic cells shape the TME into a pro-survival and immunosuppressive niche through contact-dependent and contact-independent interactions with the cellular components of the TME. Immune synapse (IS) formation is defective in CLL. Here we asked whether soluble factors released by CLL cells contribute to their protection from cytotoxic T cell (CTL)-mediated killing by interfering with this process. We found that healthy CTLs cultured in media conditioned by leukemic cells from CLL patients or Eμ-TCL1 mice upregulate the exhaustion marker PD-1 and become unable to form functional ISs and kill target cells. These defects were more pronounced when media were conditioned by leukemic cells lacking p66Shc, a proapoptotic adapter whose deficiency has been implicated in disease aggressiveness both in CLL and in the Eμ-TCL1 mouse model. Multiplex ELISA assays showed that leukemic cells from Eμ-TCL1 mice secrete abnormally elevated amounts of CCL22, CCL24, IL-9 and IL-10, which are further upregulated in the absence of p66Shc. Among these, IL-9 and IL-10 were also overexpressed in leukemic cells from CLL patients, where they inversely correlated with residual p66Shc. Using neutralizing antibodies or the recombinant cytokines we show that IL-9, but not IL-10, mediates both the enhancement in PD-1 expression and the suppression of effector functions in healthy CTLs. Our results demonstrate that IL-9 secreted by leukemic cells negatively modulates the anti-tumor immune abilities of CTLs, highlighting a new suppressive mechanism and a novel potential therapeutical target in CLL.
Collapse
Affiliation(s)
| | | | | | | | - Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | | | - Giuseppe Marotta
- Stem Cell Transplant and Cellular Therapy Unit, University Hospital, Siena, Italy
| | - Federica Frezzato
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Andrea Visentin
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Sara Ciofini
- Department of Medical Science, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Alessandro Gozzetti
- Department of Medical Science, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Monica Bocchia
- Department of Medical Science, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Diego Calzada-Fraile
- Immunology Unit from Hospital Universitario de la Princesa, Universidad Autónoma de Madrid and Instituto de investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Noa B Martin Cofreces
- Immunology Unit from Hospital Universitario de la Princesa, Universidad Autónoma de Madrid and Instituto de investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Livio Trentin
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy.
| | | |
Collapse
|
4
|
Lopresti L, Capitani N, Tatangelo V, Tangredi C, Boncompagni G, Frezzato F, Visentin A, Marotta G, Ciofini S, Gozzetti A, Bocchia M, Trentin L, Baldari CT, Patrussi L. p66Shc deficiency in CLL cells enhances PD-L1 expression and suppresses immune synapse formation. Front Cell Dev Biol 2024; 12:1297116. [PMID: 38389706 PMCID: PMC10883382 DOI: 10.3389/fcell.2024.1297116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction: Escape from immunosurveillance is a hallmark of chronic lymphocytic leukemia (CLL) cells. In the protective niche of lymphoid organs, leukemic cells suppress the ability of T lymphocytes to form the immune synapse (IS), thereby hampering T-cell mediated anti-tumoral activities. By binding its cognate receptor PD-1 at the surface of T lymphocytes, the inhibitory ligand PD-L1, which is overexpressed in CLL cells, mediates the T-cell suppressive activities of CLL cells. However, the molecular mechanism underlying PD-L1 overexpression in CLL cells remains unknown. We have previously reported a defective expression of the pro-apoptotic and pro-oxidant adaptor p66Shc in CLL cells, which is causally related to an impairment in intracellular reactive oxygen species (ROS) production and to the activation of the ROS-sensitive transcription factor NF-κB. The fact that PD-L1 expression is regulated by NF-κB suggests a mechanistic relationship between p66Shc deficiency and PD-L1 overexpression in CLL cells. Methods: 62 treatment-naive CLL patients and 43 healthy donors were included in this study. PD-L1 and p66Shc expression was quantified in B cells by flow cytometry and qRT-PCR. IS architecture and local signaling was assessed by flow cytometry and confocal microscopy. CD8+ cell killing activity was assessed by flow cytometry. Results: Here we show that residual p66Shc expression in leukemic cells isolated both from CLL patients and from the CLL mouse model Eμ-TCL1 inversely correlated with PD-L1 expression. We also show that the PD-L1 increase prevented leukemic cells from forming ISs with T lymphocytes. Reconstitution of p66Shc, but not of a ROS-defective mutant, in both CLL cells and the CLL-derived cell line MEC-1, enhanced intracellular ROS and decreased PD-L1 expression. Similar results were obtained following treatment of CLL cells with H2O2 as exogenous source of ROS, that normalized PD-L1 expression and recovered IS formation. Discussion: Our data provide direct evidence that the p66Shc-deficiency-related ROS depletion in CLL cells concurs to enhance PD-L1 expression and provides a mechanistic basis for the suppression of T cell-mediated anti-tumoral functions in the immunosuppressive lymphoid niche.
Collapse
Affiliation(s)
| | - Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | | | | | - Federica Frezzato
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Giuseppe Marotta
- Stem Cell Transplant and Cellular Therapy Unit, University Hospital, Siena, Italy
| | - Sara Ciofini
- Department of Medical Science, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Alessandro Gozzetti
- Department of Medical Science, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Monica Bocchia
- Department of Medical Science, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Livio Trentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | | | - Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
5
|
Tatangelo V, Boncompagni G, Capitani N, Lopresti L, Manganaro N, Frezzato F, Visentin A, Trentin L, Baldari CT, Patrussi L. p66Shc Deficiency in Chronic Lymphocytic Leukemia Promotes Chemokine Receptor Expression Through the ROS-Dependent Inhibition of NF-κB. Front Oncol 2022; 12:877495. [PMID: 35847884 PMCID: PMC9278989 DOI: 10.3389/fonc.2022.877495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
The microenvironment of lymphoid organs is central to the pathogenesis of chronic lymphocytic leukemia (CLL). Within it, tumor cells find a favourable niche to escape immunosurveillance and acquire pro-survival signals. We have previously reported that a CLL-associated defect in the expression of the pro-apoptotic and pro-oxidant adaptor p66Shc leads to enhanced homing to and accumulation of leukemic cells in the lymphoid microenvironment. The p66Shc deficiency-related impairment in intracellular reactive oxygen species (ROS) production in CLL cells is causally associated to the enhanced expression of the chemokine receptors CCR2, CXCR3 and CCR7, that promote leukemic cell homing to both lymphoid and non-lymphoid organs, suggesting the implication of a ROS-modulated transcription factor(s). Here we show that the activity of the ROS-responsive p65 subunit of the transcription factor NF-κB was hampered in the CLL-derived cell line MEC-1 expressing a NF-κB-luciferase reporter following treatment with H2O2. Similar results were obtained when intracellular ROS were generated by expression of p66Shc, but not of a ROS-defective mutant, in MEC-1 cells. NF-κB activation was associated with increased expression of the chemokine receptors CCR2, CXCR3 and CCR7. Reconstitution of p66Shc in CLL cells normalized intracellular ROS and hampered NF-κB activation, which led to a decrease in the expression of these homing receptors. Our data provide direct evidence that the p66Shc-deficiency-related ROS depletion in CLL cells concurs to NF-κB hyperactivation and homing receptor overexpression, providing a mechanistic basis for the enhanced ability of these cells to accumulate in the pro-survival lymphoid niche.
Collapse
Affiliation(s)
| | | | - Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Noemi Manganaro
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Federica Frezzato
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Livio Trentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | | | - Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
6
|
Boncompagni G, Varone A, Tatangelo V, Capitani N, Frezzato F, Visentin A, Trentin L, Corda D, Baldari CT, Patrussi L. Glycerophosphoinositol Promotes Apoptosis of Chronic Lymphocytic Leukemia Cells by Enhancing Bax Expression and Activation. Front Oncol 2022; 12:835290. [PMID: 35392232 PMCID: PMC8980805 DOI: 10.3389/fonc.2022.835290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
An imbalance in the expression of pro- and anti-apoptotic members of the Bcl-2 family of apoptosis-regulating proteins is one of the main biological features of CLL, highlighting these proteins as therapeutic targets for treatment of this malignancy. Indeed, the Bcl-2 inhibitor Venetoclax is currently used for both first-line treatment and treatment of relapsed or refractory CLL. An alternative avenue is the transcriptional modulation of Bcl-2 family members to tilt their balance towards apoptosis. Glycerophosphoinositol (GroPIns) is a biomolecule generated from membrane phosphoinositides by the enzymes phospholipase A2 and lysolipase that pleiotropically affects key cellular functions. Mass-spectrometry analysis of GroPIns interactors recently highlighted the ability of GroPIns to bind to the non-receptor tyrosine phosphatase SHP-1, a known promoter of Bax expression, suggesting that GroPIns might correct the Bax expression defect in CLL cells, thereby promoting their apoptotic demise. To test this hypothesis, we cultured CLL cells in the presence of GroPIns, alone or in combination with drugs commonly used for treatment of CLL. We found that GroPIns alone increases Bax expression and apoptosis in CLL cells and enhances the pro-apoptotic activity of drugs used for CLL treatment in a SHP-1 dependent manner. Interestingly, among GroPIns interactors we found Bax itself. Short-term treatments of CLL cells with GroPIns induce Bax activation and translocation to the mitochondria. Moreover, GroPIns enhances the pro-apoptotic activity of Venetoclax and Fludarabine in CLL cells. These data provide evidence that GroPIns exploits two different pathways converging on Bax to promote apoptosis of leukemic cells and pave the way to new studies aimed at testing GroPIns in combination therapies for the treatment of CLL.
Collapse
Affiliation(s)
| | - Alessia Varone
- Institute of Endocrinology and Experimental Oncology “G. Salvatore”, National Research Council, Naples, Italy
| | | | - Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Federica Frezzato
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Livio Trentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Daniela Corda
- Department of Biomedical Sciences, National Research Council, Rome, Italy
| | | | - Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
7
|
Interleukin (IL)-9 Supports the Tumor-Promoting Environment of Chronic Lymphocytic Leukemia. Cancers (Basel) 2021; 13:cancers13246301. [PMID: 34944921 PMCID: PMC8699356 DOI: 10.3390/cancers13246301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Interleukin 9 (IL-9), a soluble factor secreted by immune cells, has been found in several tumor niches where, depending on the specific tumor type, it either promotes or counteracts tumor development. Recently, IL-9 has been implicated in the development of chronic lymphocytic leukemia, although the underlying molecular mechanism remains unknown. Here, we summarize the current knowledge concerning the roles of IL-9 in disease, with a focus on its implication in the pathogenesis of chronic lymphocytic leukemia. Abstract Interleukin (IL)-9 is a soluble factor secreted by immune cells into the microenvironment. Originally identified as a mediator of allergic responses, IL-9 has been detected in recent years in several tumor niches. In solid tumors, it mainly promotes anti-tumor immune responses, while in hematologic malignancies, it sustains the growth and survival of neoplastic cells. IL-9 has been recently implicated in the pathogenesis of chronic lymphocytic leukemia; however, the molecular mechanisms underlying its contribution to this complex neoplasia are still unclear. Here, we summarize the current knowledge of IL-9 in the tumor microenvironment, with a focus on its role in the pathogenesis of chronic lymphocytic leukemia.
Collapse
|
8
|
Ringshausen I. IL-9 in CLL: sensing home and settling down! Blood 2021; 137:2130-2131. [PMID: 33885714 DOI: 10.1182/blood.2020009464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|