1
|
Duan Z, Zhang X, Liu Y, Wang J, Zhu H, Chen R, Xu W, Miao K. The impact of matched and mismatched donor-recipient genotypes for MDR1 polymorphisms (G2677TA, C1236T and C3435T) on the outcomes of patients after allogeneic haematopoietic stem cell transplantation. Br J Haematol 2024; 205:634-644. [PMID: 38924031 DOI: 10.1111/bjh.19588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
In this study, we investigated whether matched and mismatched multidrug resistance gene (MDR1) genotypes (G2677TA, C1236T and C3435T) were associated with prognosis in patients after allogeneic haematopoietic stem cell transplantation (allo-HSCT). One hundred patients after transplantation and their donors were enrolled. Matched MDR1 G2677TA donor-recipient was associated with an increased risk of non-relapse mortality (NRM) (29.5% vs. 6.2%, p = 0.002), poor overall survival (OS) (51.7% vs. 63.8%, p = 0.024) and disease-free survival (DFS) (38.6% vs. 67%, p = 0.005). There were no differences in OS, DFS or NRM between MDR1 C1236T- and C3435T-matched and -mismatched groups. Subgroup analysis suggested that within the matched MDR1 G2677TA group, male gender, haematopoietic cell transplantation-specific comorbidity index ≥1, serum creatinine >137.2 μmol/L and post-transplantation thrombocytopenia were associated with poor survival. Our results demonstrated that patients receiving matched MDR1 G2677TA allo-HSCT experienced a poorer prognosis compared with the mismatched group. The potential mechanism may involve increased expression of P-glycoprotein, leading to decreased accumulation of antimicrobial agents and ultimately contributing to the progression of inflammation. This identification of MDR1 G2677TA genotype compatibility holds promise as a valuable molecular tool for selecting donors for allo-HSCT.
Collapse
Affiliation(s)
- Ziwen Duan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xiao Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, China
| | - Yanping Liu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jiawen Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Han Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Ruize Chen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Kourong Miao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
2
|
Wong DD, Ho SA, Domazetovska A, Yong MK, Rawlinson WD. Evidence supporting the use of therapeutic drug monitoring of ganciclovir in transplantation. Curr Opin Infect Dis 2023; 36:505-513. [PMID: 37729654 DOI: 10.1097/qco.0000000000000965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
PURPOSE OF REVIEW This review describes current knowledge of ganciclovir (GCV) and valganciclovir (ValGCV) pharmacokinetic/pharmacodynamic characteristics, highlighting the likely contribution from host genetic factors to interpatient variability. The evidence and challenges surrounding optimization of drug dosing through therapeutic drug monitoring (TDM) are examined, with recommendations made. RECENT FINDINGS Pharmacokinetic studies of current dosing guidelines have shown high interindividual and intraindividual variability of GCV concentrations. This is sometimes associated with a slow decline in cytomegalovirus (CMV) viral load in some transplant recipients. A high incidence of GCV-associated myelosuppression has limited the use of this drug in the transplant setting. Patient groups identified to benefit from GCV TDM include pediatric patients, cystic fibrosis with lung transplantation, obese with kidney transplantation, and patients with fluctuating renal function or on hemodialysis. The emergence of refractory resistant CMV, particularly in immune compromised patients, highlights the importance of appropriate dosing of these antivirals. Host genetic factors need to be considered where recently, two host genes were shown to account for interpatient variation during ganciclovir therapy. Therapeutic Drug Monitoring has been shown to improve target antiviral-level attainment. The use of TDM may guide concentration-based dose adjustment, potentially improving virological and clinical outcomes. However, evidence supporting the use of TDM in clinical practice remains limited and further study is needed in the transplant cohort. SUMMARY Further studies examining novel biomarkers are needed to guide target concentrations in prophylaxis and treatment. The use of TDM in transplant recipients is likely to improve the clinical efficacy of current antivirals and optimize outcomes in transplant recipients.
Collapse
Affiliation(s)
- Diana D Wong
- National Measurement Institute, Lindfield, Sydney, New South Wales
| | - Su Ann Ho
- Peter MacCallum Cancer Centre
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria
| | - Ana Domazetovska
- Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales
| | - Michelle K Yong
- Peter MacCallum Cancer Centre
- Department Infectious Diseases, Royal Melbourne Hospital
- National Centre for Infections in Cancer, Parkville
| | - William D Rawlinson
- Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales
- Schools of Biomedical Sciences, Biotechnology and Biomolecular Sciences, Clinical Sciences, University of NSW, Sydney New South Wales, Australia
| |
Collapse
|
3
|
Shapira G, Volkov H, Fabian I, Mohr DW, Bettinotti M, Shomron N, Avery RK, Arav-Boger R. Genomic Markers Associated with Cytomegalovirus DNAemia in Kidney Transplant Recipients. Viruses 2023; 15:2227. [PMID: 38005904 PMCID: PMC10674338 DOI: 10.3390/v15112227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Human cytomegalovirus (CMV) is a major pathogen after solid organ transplantation, leading to high morbidity and mortality. Transplantation from a CMV-seropositive donor to a CMV-seronegative recipient (D+/R-) is associated with high risk of CMV disease. However, that risk is not uniform, suggesting a role for host factors in immune control of CMV. To identify host genetic factors that control CMV DNAemia post transplantation, we performed a whole-exome association study in two cohorts of D+/R- kidney transplant recipients. Quantitative CMV DNA was measured for at least one year following transplantation. Several CMV-protective single-nucleotide polymorphisms (SNPs) were identified in the first cohort (72 patients) but were not reproducible in the second cohort (126 patients). A meta-analysis of both cohorts revealed several SNPs that were significantly associated with protection from CMV DNAemia. The copy number variation of several genes was significantly different between recipients with and without CMV DNAemia. Amongst patients with CMV DNAemia in the second cohort, several variants of interest (p < 5 × 10-5), the most common of which was NLRC5, were associated with peak viral load. We provide new predictive genetic markers for protection of CMV DNAemia. These markers should be validated in larger cohorts.
Collapse
Affiliation(s)
- Guy Shapira
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (G.S.)
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hadas Volkov
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (G.S.)
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Itai Fabian
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (G.S.)
| | - David W. Mohr
- Johns Hopkins Genetic Resources Core Facility, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Maria Bettinotti
- Immunogenetics Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Noam Shomron
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (G.S.)
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Robin K. Avery
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
4
|
Maillard M, Gong L, Nishii R, Yang JJ, Whirl-Carrillo M, Klein TE. PharmGKB summary: acyclovir/ganciclovir pathway. Pharmacogenet Genomics 2022; 32:201-208. [PMID: 35665708 PMCID: PMC9179945 DOI: 10.1097/fpc.0000000000000474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Maud Maillard
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Li Gong
- Departments of Biomedical Data Science
| | - Rina Nishii
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Teri E Klein
- Departments of Biomedical Data Science
- Medicine (BMIR), Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
Vallejo M, Muñiz P, Kwon M, Solán L, Bailén R, Carbonell D, Chicano M, Suárez-González J, Catalán P, Bellón JM, Triviño JC, Dorado N, Gallardo D, Díez-Martín JL, Ramírez N, Martínez-Laperche C, Buño I. Risk prediction of CMV reactivation after allogeneic stem cell transplantation using five non-HLA immunogenetic polymorphisms. Ann Hematol 2022; 101:1567-1576. [PMID: 35525883 PMCID: PMC9203380 DOI: 10.1007/s00277-022-04841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 04/05/2022] [Indexed: 11/27/2022]
Abstract
Despite advances in the understanding of the pathophysiology of cytomegalovirus (CMV) infection, it remains as one of the most common infectious complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The aim of this study was to determine the genotype of cytokines and chemokines in donor and recipient and their association with CMV reactivation. Eighty-five patients receiving an allo-HSCT from an HLA-identical sibling donor were included in the study. Fifty genes were selected for their potential role in the pathogenesis of CMV infection. CMV DNAemia was evaluated until day 180 after allo-HSCT. CMV reactivation was observed in 51/85 (60%) patients. Of the 213 genetic variants selected, 11 polymorphisms in 7 different genes (CXCL12, IL12A, KIR3DL1, TGFB2, TNF, IL1RN, and CD48) were associated with development or protection from CMV reactivation. A predictive model using five of such polymorphisms (CXCL12 rs2839695, IL12A rs7615589, KIR3DL1 rs4554639, TGFB2 rs5781034 for the recipient and CD48 rs2295615 for the donor) together with the development of acute GVHD grade III/IV improved risk stratification of CMV reactivation. In conclusion, the data presented suggest that the screening of five polymorphisms in recipient and donor pre-transplantation could help to predict the individual risk of CMV infection development after HLA-identical allo-HSCT.
Collapse
Affiliation(s)
- Miren Vallejo
- Oncohematology Research Group, Navarrabiomed, Complejo Hospitalario de Navarra, Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Paula Muñiz
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), C/Doctor Esquerdo 46, 28007, Madrid, Spain
| | - Mi Kwon
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), C/Doctor Esquerdo 46, 28007, Madrid, Spain
| | - Laura Solán
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), C/Doctor Esquerdo 46, 28007, Madrid, Spain
| | - Rebeca Bailén
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), C/Doctor Esquerdo 46, 28007, Madrid, Spain
| | - Diego Carbonell
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), C/Doctor Esquerdo 46, 28007, Madrid, Spain
| | - María Chicano
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), C/Doctor Esquerdo 46, 28007, Madrid, Spain
| | - Julia Suárez-González
- Gregorio Marañón Health Research Institute (IiSGM), C/Doctor Esquerdo 46, 28007, Madrid, Spain
- Genomics Unit, Gregorio Marañón General University Hospital, IiSGM, Madrid, Spain
| | - Pilar Catalán
- Department of Microbiology, Gregorio Marañón General University Hospital, Madrid, Spain
| | - José María Bellón
- Gregorio Marañón Health Research Institute (IiSGM), C/Doctor Esquerdo 46, 28007, Madrid, Spain
| | | | - Nieves Dorado
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), C/Doctor Esquerdo 46, 28007, Madrid, Spain
| | - David Gallardo
- Clinical Hematology Department, Institut Català d'Oncologia (ICO Girona), Girona, Spain
| | - José Luis Díez-Martín
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), C/Doctor Esquerdo 46, 28007, Madrid, Spain
- Department of Medicine, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Natalia Ramírez
- Oncohematology Research Group, Navarrabiomed, Complejo Hospitalario de Navarra, Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Carolina Martínez-Laperche
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.
- Gregorio Marañón Health Research Institute (IiSGM), C/Doctor Esquerdo 46, 28007, Madrid, Spain.
| | - Ismael Buño
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), C/Doctor Esquerdo 46, 28007, Madrid, Spain
- Genomics Unit, Gregorio Marañón General University Hospital, IiSGM, Madrid, Spain
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
6
|
Genetic risk of CMV reactivation? Blood 2021; 138:1516-1517. [PMID: 34709383 DOI: 10.1182/blood.2021013242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022] Open
|
7
|
Dhingra A, Götting J, Varanasi PR, Steinbrueck L, Camiolo S, Zischke J, Heim A, Schulz TF, Weissinger EM, Kay-Fedorov PC, Davison AJ, Suárez NM, Ganzenmueller T. Human cytomegalovirus multiple-strain infections and viral population diversity in haematopoietic stem cell transplant recipients analysed by high-throughput sequencing. Med Microbiol Immunol 2021; 210:291-304. [PMID: 34611744 PMCID: PMC8541999 DOI: 10.1007/s00430-021-00722-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023]
Abstract
Human cytomegalovirus (HCMV) is an important opportunistic pathogen in allogeneic haematopoietic stem cell transplant (HSCT) recipients. High-throughput sequencing of target-enriched libraries was performed to characterise the diversity of HCMV strains present in this high-risk group. Forty-four HCMV-DNA-positive plasma specimens (median viral input load 321 IU per library) collected at defined time points from 23 HSCT recipients within 80 days of transplantation were sequenced. The genotype distribution for 12 hypervariable HCMV genes and the number of HCMV strains present (i.e. single- vs. multiple-strain infection) were determined for 29 samples from 16 recipients. Multiple-strain infection was observed in seven of these 16 recipients, and five of these seven recipients had the donor (D)/recipient (R) HCMV-serostatus combination D + R + . A very broad range of genotypes was detected, with an intrahost composition that was generally stable over time. Multiple-strain infection was not associated with particular virological or clinical features, such as altered levels or duration of antigenaemia, development of acute graft-versus-host disease or increased mortality. In conclusion, despite relatively low viral plasma loads, a high frequency of multiple-strain HCMV infection and a high strain complexity were demonstrated in systematically collected clinical samples from this cohort early after HSCT. However, robust evaluation of the pathogenic role of intrahost viral diversity and multiple-strain infection will require studies enrolling larger numbers of recipients.
Collapse
Affiliation(s)
- A. Dhingra
- Hannover Medical School, Institute of Virology, Hannover, Germany ,German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| | - J. Götting
- Hannover Medical School, Institute of Virology, Hannover, Germany ,German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| | - P. R. Varanasi
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany ,Department of Haematology, Haemostasis and Oncology, Hannover Medical School, Hannover, Germany ,Present Address: National Centre for Biological Sciences, Bangalore, India
| | - L. Steinbrueck
- Hannover Medical School, Institute of Virology, Hannover, Germany ,German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| | - S. Camiolo
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - J. Zischke
- Hannover Medical School, Institute of Virology, Hannover, Germany ,German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| | - A. Heim
- Hannover Medical School, Institute of Virology, Hannover, Germany ,German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| | - T. F. Schulz
- Hannover Medical School, Institute of Virology, Hannover, Germany ,German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| | - E. M. Weissinger
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany ,Department of Haematology, Haemostasis and Oncology, Hannover Medical School, Hannover, Germany
| | - P. C. Kay-Fedorov
- Hannover Medical School, Institute of Virology, Hannover, Germany ,German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| | - A. J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - N. M. Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - T. Ganzenmueller
- Hannover Medical School, Institute of Virology, Hannover, Germany ,German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany ,Institute for Medical Virology and Epidemiology, University Hospital Tuebingen, Elfriede-Aulhorn-Str. 6, 72076 Tuebingen, Germany
| |
Collapse
|