1
|
Yu J, Zhang Z, Chen Y, Wang J, Li G, Tao Y, Zhang Y, Yang Y, Zhang C, Li T, Cheng J, Ji T, Wei Z, Wang W, Fang F, Jiang W, Chu P, Yin H, Wu D, Li X, Wang X, Fan J, Hu S, Zhu Z, Wu S, Lu J, Pan J. Super-Enhancer-Driven IRF2BP2 is Activated by Master Transcription Factors and Sustains T-ALL Cell Growth and Survival. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407113. [PMID: 39454110 PMCID: PMC11714186 DOI: 10.1002/advs.202407113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/10/2024] [Indexed: 10/27/2024]
Abstract
Super enhancers (SEs) are large clusters of transcriptional enhancers driving the expression of genes crucial for defining cell identity. In cancer, tumor-specific SEs activate key oncogenes, leading to tumorigenesis. Identifying SE-driven oncogenes in tumors and understanding their functional mechanisms is of significant importance. In this study, a previously unreported SE region is identified in T-cell acute lymphoblastic leukemia (T-ALL) patient samples and cell lines. This SE activates the expression of interferon regulatory factor 2 binding protein 2 (IRF2BP2) and is regulated by T-ALL master transcription factors (TFs) such as ETS transcription factor ERG (ERG), E74 like ETS transcription factor 1 (ELF1), and ETS proto-oncogene 1, transcription factor (ETS1). Hematopoietic system-specific IRF2BP2 conditional knockout mice is generated and showed that IRF2BP2 has minimal impact on normal T cell development. However, in vitro and in vivo experiments demonstrated that IRF2BP2 is crucial for T-ALL cell growth and survival. Loss of IRF2BP2 affects the MYC and E2F pathways in T-ALL cells. Cleavage under targets and tagmentation (CUT&Tag) assays and immunoprecipitation revealed that IRF2BP2 cooperates with the master TFs of T-ALL cells, targeting the enhancer of the T-ALL susceptibility gene recombination activating 1 (RAG1) and modulating its expression. These findings provide new insights into the regulatory network within T-ALL cells, identifying potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Juanjuan Yu
- Children's Hospital of Soochow UniversitySuzhou215003China
| | - Zimu Zhang
- Institute of Pediatric ResearchChildren's Hospital of Soochow UniversitySuzhouJiangsu215003China
| | - Yanling Chen
- Children's Hospital of Soochow UniversitySuzhou215003China
| | - Jianwei Wang
- Institute of Pediatric ResearchChildren's Hospital of Soochow UniversitySuzhouJiangsu215003China
| | - Gen Li
- Institute of Pediatric ResearchChildren's Hospital of Soochow UniversitySuzhouJiangsu215003China
| | - Yanfang Tao
- Department of Traditional Chinese MedicineChildren's Hospital of Soochow UniversitySuzhouJiangsu215003China
| | - Yongping Zhang
- Institute of Pediatric ResearchChildren's Hospital of Soochow UniversitySuzhouJiangsu215003China
| | - Yang Yang
- Institute of Pediatric ResearchChildren's Hospital of Soochow UniversitySuzhouJiangsu215003China
| | - Chenyue Zhang
- Children's Hospital of Soochow UniversitySuzhou215003China
| | - Tiandan Li
- Children's Hospital of Soochow UniversitySuzhou215003China
| | - Jia Cheng
- Children's Hospital of Soochow UniversitySuzhou215003China
| | - Tongtign Ji
- Children's Hospital of Soochow UniversitySuzhou215003China
| | - Zhongling Wei
- Department of HematologyChildren's Hospital of Soochow UniversitySuzhouJiangsu215003China
| | - Wenjuan Wang
- Department of PharmacyChildren's Hospital of Soochow UniversitySuzhouJiangsu215025China
| | - Fang Fang
- Institute of Pediatric ResearchChildren's Hospital of Soochow UniversitySuzhouJiangsu215003China
| | - Wei Jiang
- Department of PediatricsTaizhou Municipal HospitalNo. 581 Shifu RoadTai zhouZhejiang318000China
| | - Peipei Chu
- Department of PediatricsSuzhou Wujiang District Children HospitalNo.176 Garden RoadSuzhouJiangsu215200China
| | - Hongli Yin
- Institute of Pediatric ResearchChildren's Hospital of Soochow UniversitySuzhouJiangsu215003China
| | - Di Wu
- Institute of Pediatric ResearchChildren's Hospital of Soochow UniversitySuzhouJiangsu215003China
| | - Xiaolu Li
- Institute of Pediatric ResearchChildren's Hospital of Soochow UniversitySuzhouJiangsu215003China
| | - Xiaodong Wang
- Department of OrthopaedicsChildren's Hospital of Soochow UniversitySuzhouJiangsu215003China
| | - Jun‐Jie Fan
- Department of HematologyChildren's Hospital of Soochow UniversitySuzhouJiangsu215003China
| | - Shaoyan Hu
- Department of HematologyChildren's Hospital of Soochow UniversitySuzhouJiangsu215003China
| | - Zhen‐Hong Zhu
- Burn and Plastic SurgeryChildren's Hospital of Soochow UniversitySuzhouJiangsu215003China
| | - Shuiyan Wu
- Pediatric Intensive Care UnitChildren's Hospital of Soochow UniversitySuzhouJiangsu215003China
| | - Jun Lu
- Department of HematologyChildren's Hospital of Soochow UniversitySuzhouJiangsu215003China
| | - Jian Pan
- Institute of Pediatric ResearchChildren's Hospital of Soochow UniversitySuzhouJiangsu215003China
| |
Collapse
|
2
|
Suto K, Takei N, Yokoyama K, Chiba M, Ishio T, Maeda M, Goto H, Endo T, Teshima T, Yang Y, Nakagawa M. Genome-wide CRISPR screen identifies MAD2L1BP and ANAPC15 as targets for brentuximab vedotin sensitivity in CD30+ peripheral T-cell lymphoma. Leukemia 2025; 39:243-247. [PMID: 39433928 DOI: 10.1038/s41375-024-02441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Affiliation(s)
- Keito Suto
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Norio Takei
- Institute for Animal Experimentation, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Keito Yokoyama
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Masahiro Chiba
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Takashi Ishio
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Michiyuki Maeda
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hideki Goto
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Tomoyuki Endo
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yibin Yang
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Masao Nakagawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan.
| |
Collapse
|
3
|
Yan Z, Xia J, Cao Z, Zhang H, Wang J, Feng T, Shu Y, Zou L. Multi-omics integration reveals potential stage-specific druggable targets in T-cell acute lymphoblastic leukemia. Genes Dis 2024; 11:100949. [PMID: 39071111 PMCID: PMC11282411 DOI: 10.1016/j.gendis.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/11/2023] [Indexed: 07/30/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL), a heterogeneous hematological malignancy, is caused by the developmental arrest of normal T-cell progenitors. The development of targeted therapeutic regimens is impeded by poor knowledge of the stage-specific aberrances in this disease. In this study, we performed multi-omics integration analysis, which included mRNA expression, chromatin accessibility, and gene-dependency database analyses, to identify potential stage-specific druggable targets and repositioned drugs for this disease. This multi-omics integration helped identify 29 potential pathological genes for T-ALL. These genes exhibited tissue-specific expression profiles and were enriched in the cell cycle, hematopoietic stem cell differentiation, and the AMPK signaling pathway. Of these, four known druggable targets (CDK6, TUBA1A, TUBB, and TYMS) showed dysregulated and stage-specific expression in malignant T cells and may serve as stage-specific targets in T-ALL. The TUBA1A expression level was higher in the early T cell precursor (ETP)-ALL cells, while TUBB and TYMS were mainly highly expressed in malignant T cells arrested at the CD4 and CD8 double-positive or single-positive stage. CDK6 exhibited a U-shaped expression pattern in malignant T cells along the naïve to maturation stages. Furthermore, mebendazole and gemcitabine, which target TUBA1A and TYMS, respectively, exerted stage-specific inhibitory effects on T-ALL cell lines, indicating their potential stage-specific antileukemic role in T-ALL. Collectively, our findings might aid in identifying potential stage-specific druggable targets and are promising for achieving more precise therapeutic strategies for T-ALL.
Collapse
Affiliation(s)
- Zijun Yan
- Clinical Research Unit, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Jie Xia
- Bioinformatics and BioMedical Bigdata Mining Laboratory, School of Big Health, Guizhou Medical University, Guiyang, Guizhou 554300, China
| | - Ziyang Cao
- Clinical Research Unit, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Hongyang Zhang
- Clinical Research Unit, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Jinxia Wang
- Clinical Research Unit, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Tienan Feng
- Clinical Research Unit, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Shu
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lin Zou
- Clinical Research Unit, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
4
|
Cao X, Huber S, Ahari AJ, Traube FR, Seifert M, Oakes CC, Secheyko P, Vilov S, Scheller IF, Wagner N, Yépez VA, Blombery P, Haferlach T, Heinig M, Wachutka L, Hutter S, Gagneur J. Analysis of 3760 hematologic malignancies reveals rare transcriptomic aberrations of driver genes. Genome Med 2024; 16:70. [PMID: 38769532 PMCID: PMC11103968 DOI: 10.1186/s13073-024-01331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/04/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Rare oncogenic driver events, particularly affecting the expression or splicing of driver genes, are suspected to substantially contribute to the large heterogeneity of hematologic malignancies. However, their identification remains challenging. METHODS To address this issue, we generated the largest dataset to date of matched whole genome sequencing and total RNA sequencing of hematologic malignancies from 3760 patients spanning 24 disease entities. Taking advantage of our dataset size, we focused on discovering rare regulatory aberrations. Therefore, we called expression and splicing outliers using an extension of the workflow DROP (Detection of RNA Outliers Pipeline) and AbSplice, a variant effect predictor that identifies genetic variants causing aberrant splicing. We next trained a machine learning model integrating these results to prioritize new candidate disease-specific driver genes. RESULTS We found a median of seven expression outlier genes, two splicing outlier genes, and two rare splice-affecting variants per sample. Each category showed significant enrichment for already well-characterized driver genes, with odds ratios exceeding three among genes called in more than five samples. On held-out data, our integrative modeling significantly outperformed modeling based solely on genomic data and revealed promising novel candidate driver genes. Remarkably, we found a truncated form of the low density lipoprotein receptor LRP1B transcript to be aberrantly overexpressed in about half of hairy cell leukemia variant (HCL-V) samples and, to a lesser extent, in closely related B-cell neoplasms. This observation, which was confirmed in an independent cohort, suggests LRP1B as a novel marker for a HCL-V subclass and a yet unreported functional role of LRP1B within these rare entities. CONCLUSIONS Altogether, our census of expression and splicing outliers for 24 hematologic malignancy entities and the companion computational workflow constitute unique resources to deepen our understanding of rare oncogenic events in hematologic cancers.
Collapse
Affiliation(s)
- Xueqi Cao
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Graduate School of Quantitative Biosciences (QBM), Munich, Germany
| | - Sandra Huber
- Munich Leukemia Laboratory (MLL), Munich, Germany
| | - Ata Jadid Ahari
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Franziska R Traube
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Marc Seifert
- Department of Haematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christopher C Oakes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Polina Secheyko
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sergey Vilov
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Ines F Scheller
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Nils Wagner
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Helmholtz Association - Munich School for Data Science (MUDS), Munich, Germany
| | - Vicente A Yépez
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Piers Blombery
- Peter MacCallum Cancer Centre, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
- Torsten Haferlach Leukämiediagnostik Stiftung, Munich, Germany
| | | | - Matthias Heinig
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Leonhard Wachutka
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
| | | | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Graduate School of Quantitative Biosciences (QBM), Munich, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
5
|
Xiang M, Li H, Zhan Y, Ma D, Gao Q, Fang Y. Functional CRISPR screens in T cells reveal new opportunities for cancer immunotherapies. Mol Cancer 2024; 23:73. [PMID: 38581063 PMCID: PMC10996278 DOI: 10.1186/s12943-024-01987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
T cells are fundamental components in tumour immunity and cancer immunotherapies, which have made immense strides and revolutionized cancer treatment paradigm. However, recent studies delineate the predicament of T cell dysregulation in tumour microenvironment and the compromised efficacy of cancer immunotherapies. CRISPR screens enable unbiased interrogation of gene function in T cells and have revealed functional determinators, genetic regulatory networks, and intercellular interactions in T cell life cycle, thereby providing opportunities to revamp cancer immunotherapies. In this review, we briefly described the central roles of T cells in successful cancer immunotherapies, comprehensively summarised the studies of CRISPR screens in T cells, elaborated resultant master genes that control T cell activation, proliferation, fate determination, effector function, and exhaustion, and highlighted genes (BATF, PRDM1, and TOX) and signalling cascades (JAK-STAT and NF-κB pathways) that extensively engage in multiple branches of T cell responses. In conclusion, this review bridged the gap between discovering element genes to a specific process of T cell activities and apprehending these genes in the global T cell life cycle, deepened the understanding of T cell biology in tumour immunity, and outlined CRISPR screens resources that might facilitate the development and implementation of cancer immunotherapies in the clinic.
Collapse
Affiliation(s)
- Minghua Xiang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Fang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Chiba M, Shimono J, Suto K, Ishio T, Endo T, Goto H, Hasegawa H, Maeda M, Teshima T, Yang Y, Nakagawa M. Whole-genome CRISPR screening identifies molecular mechanisms of PD-L1 expression in adult T-cell leukemia/lymphoma. Blood 2024; 143:1379-1390. [PMID: 38142436 PMCID: PMC11033594 DOI: 10.1182/blood.2023021423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023] Open
Abstract
ABSTRACT Adult T-cell leukemia/lymphoma (ATLL) is an aggressive T-cell malignancy with a poor prognosis and limited treatment options. Programmed cell death ligand 1(PD-L1) is recognized to be involved in the pathobiology of ATLL. However, what molecules control PD-L1 expression and whether genetic or pharmacological intervention might modify PD-L1 expression in ATLL cells are still unknown. To comprehend the regulatory mechanisms of PD-L1 expression in ATLL cells, we performed unbiased genome-wide clustered regularly interspaced short palindromic repeat (CRISPR) screening in this work. In ATLL cells, we discovered that the neddylation-associated genes NEDD8, NAE1, UBA3, and CUL3 negatively regulated PD-L1 expression, whereas STAT3 positively did so. We verified, in line with the genetic results, that treatment with the JAK1/2 inhibitor ruxolitinib or the neddylation pathway inhibitor pevonedistat resulted in a decrease in PD-L1 expression in ATLL cells or an increase in it, respectively. It is significant that these results held true regardless of whether ATLL cells had the PD-L1 3' structural variant, a known genetic anomaly that promotes PD-L1 overexpression in certain patients with primary ATLL. Pevonedistat alone showed cytotoxicity for ATLL cells, but compared with each single modality, pevonedistat improved the cytotoxic effects of the anti-PD-L1 monoclonal antibody avelumab and chimeric antigen receptor (CAR) T cells targeting PD-L1 in vitro. As a result, our work provided insight into a portion of the complex regulatory mechanisms governing PD-L1 expression in ATLL cells and demonstrated the in vitro preliminary preclinical efficacy of PD-L1-directed immunotherapies by using pevonedistat to upregulate PD-L1 in ATLL cells.
Collapse
Affiliation(s)
- Masahiro Chiba
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Joji Shimono
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Keito Suto
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Takashi Ishio
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Tomoyuki Endo
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hideki Goto
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Michiyuki Maeda
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yibin Yang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Masao Nakagawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| |
Collapse
|
7
|
Gholamzad A, Khakpour N, Gholamzad M, Roudaki Sarvandani MR, Khosroshahi EM, Asadi S, Rashidi M, Hashemi M. Stem cell therapy for HTLV-1 induced adult T-cell leukemia/lymphoma (ATLL): A comprehensive review. Pathol Res Pract 2024; 255:155172. [PMID: 38340584 DOI: 10.1016/j.prp.2024.155172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a rare and aggressive form of cancer associated with human T-cell lymphotropic virus type 1 (HTLV-1) infection. The emerging field of stem cell therapies for ATLL is discussed, highlighting the potential of hematopoietic stem cell transplantation (HSCT) and genetically modified stem cells. HSCT aims to eradicate malignant T-cells and restore a functional immune system through the infusion of healthy donor stem cells. Genetically modified stem cells show promise in enhancing their ability to target and eliminate ATLL cells. The article presents insights from preclinical studies and limited clinical trials, emphasizing the need for further research to establish the safety, efficacy, and long-term outcomes of stem cell therapies for ATLL and challenges associated with these innovative approaches are also explored. Overall, stem cell therapies hold significant potential in revolutionizing ATLL treatment, and ongoing clinical trials aim to determine their benefits in larger patient populations.
Collapse
Affiliation(s)
- Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Islamic Azad University of Medical Science, Tehran, Iran.
| | | | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
Chen B, Abdel-Wahab O. Targeting the cBAF complex in T-ALL. Blood 2024; 143:566-567. [PMID: 38358848 DOI: 10.1182/blood.2023023040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
|
9
|
Li D, Liang H, Wei Y, Xiao H, Peng X, Pan W. Exploring the potential of histone demethylase inhibition in multi-therapeutic approaches for cancer treatment. Eur J Med Chem 2024; 264:115999. [PMID: 38043489 DOI: 10.1016/j.ejmech.2023.115999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Histone demethylases play a critical role in gene transcription regulation and have been implicated in cancer. Numerous reports have highlighted the overexpression of histone demethylases, such as LSD1 and JmjC, in various malignant tumor tissues, identifying them as effective therapeutic targets for cancer treatment. Despite many histone demethylase inhibitors entering clinical trials, their clinical efficacy has been limited. Therefore, combination therapies based on histone demethylase inhibitors, along with other modulators like dual-acting inhibitors, have gained significant attention and made notable progress in recent years. In this review, we provide an overview of recent advances in drug discovery targeting histone demethylases, focusing specifically on drug combination therapy and histone demethylases-targeting dual inhibitors. We discuss the rational design, pharmacodynamics, pharmacokinetics, and clinical status of these approaches. Additionally, we summarize the co-crystal structures of LSD1 inhibitors and their target proteins as well as describe the corresponding binding interactions. Finally, we also provided the challenges and future directions for utilizing histone demethylases in cancer therapy, such as PROTACs and molecular glue etc.
Collapse
Affiliation(s)
- Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Hailiu Liang
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China
| | - Yifei Wei
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China
| | - Hao Xiao
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China.
| | - Xiaopeng Peng
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China.
| | - Wanyi Pan
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
10
|
Ebrahimi K, Bagheri R, Gholamhosseinian H, Keramati MR, Rafatpanah H, Iranshahi M, Rassouli FB. Umbelliprenin improved anti-proliferative effects of ionizing radiation on adult T-cell leukemia/lymphoma cells via interaction with CDK6; an in vitro and in silico study. Int J Immunopathol Pharmacol 2024; 38:3946320241287873. [PMID: 39313767 PMCID: PMC11437583 DOI: 10.1177/03946320241287873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive malignancy with poor survival rates. The efficacy of radiotherapy in ATL needs enhancement with radiosensitizing agents. This study investigated whether umbelliprenin (UMB) could improve the therapeutic effects of ionizing radiation (IR) in ATL cells. UMB, a naturally occurring prenylated coumarin, exhibits anticancer properties and has shown synergistic effects when combined with chemotherapeutic drugs. Despite this promising profile, there is a notable lack of research on its potential combinatorial effects with IR, particularly for ATL treatment. UMB was extracted from Ferula persica using thin layer chromatography. MT-2 cells were treated with UMB alone and in combination with various doses of IR, and cell proliferation was assessed via alamarBlue assay. Flow cytometry with annexin V and PI staining was conducted, and candidate gene expression was analyzed by qPCR. In silico analysis involved identifying pathogenic targets of ATL, constructing protein-protein interaction (PPI) networks, and evaluating CDK6 expression in MT-2 cells. Molecular docking was used to determine the interaction between UMB and CDK6. The alamarBlue assay and flow cytometry showed that pretreating ATL cells with UMB significantly (p < .0001) enhanced anti-proliferative effects of IR. The combination index indicated a synergistic effect between UMB and IR. qPCR revealed significant (p < .0001) downregulation of CD44, CDK6, c-MYC, and cFLIPL, and overexpression of cFLIPS. Computational analysis identified CDK6 as a hub gene in the PPI network, and CDK6 overexpression was confirmed in MT-2 cells. Molecular docking revealed a favorable binding interaction between UMB and the ATP-binding site of CDK6, with a JAMDA score of -2.131, surpassing the control selonsertib. The current study provides evidence that UMB enhances the anti-proliferative effects of IR on ATL cells, and highlights the significance of targeting CDK6 in combinatorial approaches.
Collapse
Affiliation(s)
- Keyhan Ebrahimi
- Cancer Molecular Pathology Research Center, Department of Hematology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Bagheri
- Cancer Molecular Pathology Research Center, Department of Hematology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Gholamhosseinian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Keramati
- Cancer Molecular Pathology Research Center, Department of Hematology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh B Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
11
|
Sahu S, Poplawska M, Lim SH, Dutta D. CRISPR-based precision medicine for hematologic disorders: Advancements, challenges, and prospects. Life Sci 2023; 333:122165. [PMID: 37832631 DOI: 10.1016/j.lfs.2023.122165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
The development of programmable nucleases to introduce defined alterations in genomic sequences has been a powerful tool for precision medicine. While several nucleases such as zinc-finger nucleases (ZFN), transcriptor activator-like effector nucleases (TALEN), and meganucleases have been explored, the advent of CRISPR/Cas9 technology has revolutionized the field of genome engineering. In addition to disease modeling, the CRISPR/Cas9 technology has contributed to safer and more effective treatment strategies for hematologic diseases and personalized T-cell-based therapies. Here we discuss the applications of the CRISPR technology in the treatment of hematologic diseases, their efficacy, and ongoing clinical trials. We examine the obstacles to their successful use and the approaches investigated to overcome these challenges. Finally, we provide our perspectives to improve this genome editing tool for targeted therapies.
Collapse
Affiliation(s)
- Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Building 560, Room 32-04, Frederick, MD 21702, USA.
| | - Maria Poplawska
- Department of Medicine (Division of Hematology and Oncology), State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Seah H Lim
- Department of Medicine (Division of Hematology and Oncology), State University of New York Upstate Medical University, 750 E Adams, Syracuse, NY 13210, USA
| | - Dibyendu Dutta
- Department of Medicine (Division of Hematology and Oncology), State University of New York Upstate Medical University, 750 E Adams, Syracuse, NY 13210, USA.
| |
Collapse
|
12
|
Wu H, Chen Y, Li M, Chen Z, Liu J, Lai G. Characterization of tumor microenvironment infiltration and therapeutic responses of cell cycle-related genes' signature in breast cancer. J Cancer Res Clin Oncol 2023; 149:13889-13904. [PMID: 37540256 DOI: 10.1007/s00432-023-05198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND It is unknown how the cell cycle plays a role in breast cancer (BC). This study aimed to establish a clinically applicable predictive model to predict the therapeutic responses and overall survival in BC patients. MATERIALS AND METHODS Cell cycle-related genes (CCGs) were identified within the Cancer Genome Atlas cohort (n is equal to 1001) and the Gene Expression Omnibus cohort (n is equal to 3265). An analysis of univariate and multivariate Cox was then conducted to develop a nomogram based on CCGs. After validating the nomogram, risk cohort stratification was established and the predictive value was examined. Finally, immune cell infiltration and therapeutic responses were analysed. RESULTS Based on 15 CCGs, 4 prognostic predictors were identified and entered into the nomogram. According to the curves of calibration, the estimated and observed value of the nomogram is in optimal agreement. Subsequently, stratification into two risk cohorts showed that the predictive value, immune cell infiltration and overall survival were better among patients with low risk. Immune checkpoint expression in patients with BC at higher risk was downregulated. Furthermore, the results of the study revealed that doxorubicin, paclitaxel, docetaxel, cisplatin and vinorelbine all had higher IC50 values in patients with high-risk BC. CONCLUSION The nomogram based on CCG could assess tumour immune micro-environment regulation and therapeutic responses of immunotherapy in BC. Moreover, it may provide novel information on the control of immune micro-environment infiltration in BC and aid in the development of targeted immunotherapy.
Collapse
Affiliation(s)
- Huacong Wu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Dali University, Dali, China
| | - Yutao Chen
- The Second Clinical School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Mengyi Li
- Department of Thyroid and Breast Surgery, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Zijun Chen
- The Second Clinical School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie Liu
- Department of Breast Cancer, Affiliated Foshan Maternity and Child Health Care Hospital, Southern Medical University, Foshan, China.
| | - Guie Lai
- Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| |
Collapse
|
13
|
Meyers S, Demeyer S, Cools J. CRISPR screening in hematology research: from bulk to single-cell level. J Hematol Oncol 2023; 16:107. [PMID: 37875911 PMCID: PMC10594891 DOI: 10.1186/s13045-023-01495-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 10/26/2023] Open
Abstract
The CRISPR genome editing technology has revolutionized the way gene function is studied. Genome editing can be achieved in single genes or for thousands of genes simultaneously in sensitive genetic screens. While conventional genetic screens are limited to bulk measurements of cell behavior, recent developments in single-cell technologies make it possible to combine CRISPR screening with single-cell profiling. In this way, cell behavior and gene expression can be monitored simultaneously, with the additional possibility of including data on chromatin accessibility and protein levels. Moreover, the availability of various Cas proteins leading to inactivation, activation, or other effects on gene function further broadens the scope of such screens. The integration of single-cell multi-omics approaches with CRISPR screening open the path to high-content information on the impact of genetic perturbations at single-cell resolution. Current limitations in cell throughput and data density need to be taken into consideration, but new technologies are rapidly evolving and are likely to easily overcome these limitations. In this review, we discuss the use of bulk CRISPR screening in hematology research, as well as the emergence of single-cell CRISPR screening and its added value to the field.
Collapse
Affiliation(s)
- Sarah Meyers
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Sofie Demeyer
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Jan Cools
- Center for Human Genetics, KU Leuven, Leuven, Belgium.
- Center for Cancer Biology, VIB, Leuven, Belgium.
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Toyoda K, Yasunaga JI, Shichijo T, Arima Y, Tsujita K, Tanaka A, Salah T, Zhang W, Hussein O, Sonoda M, Watanabe M, Kurita D, Nakashima K, Yamada K, Miyoshi H, Ohshima K, Matsuoka M. HTLV-1 bZIP Factor-Induced Reprogramming of Lactate Metabolism and Epigenetic Status Promote Leukemic Cell Expansion. Blood Cancer Discov 2023; 4:374-393. [PMID: 37162520 PMCID: PMC10473166 DOI: 10.1158/2643-3230.bcd-22-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/17/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023] Open
Abstract
Acceleration of glycolysis is a common trait of cancer. A key metabolite, lactate, is typically secreted from cancer cells because its accumulation is toxic. Here, we report that a viral oncogene, HTLV-1 bZIP factor (HBZ), bimodally upregulates TAp73 to promote lactate excretion from adult T-cell leukemia-lymphoma (ATL) cells. HBZ protein binds to EZH2 and reduces its occupancy of the TAp73 promoter. Meanwhile, HBZ RNA activates TAp73 transcription via the BATF3-IRF4 machinery. TAp73 upregulates the lactate transporters MCT1 and MCT4. Inactivation of TAp73 leads to intracellular accumulation of lactate, inducing cell death in ATL cells. Furthermore, TAp73 knockout diminishes the development of inflammation in HBZ-transgenic mice. An MCT1/4 inhibitor, syrosingopine, decreases the growth of ATL cells in vitro and in vivo. MCT1/4 expression is positively correlated with TAp73 in many cancers, and MCT1/4 upregulation is associated with dismal prognosis. Activation of the TAp73-MCT1/4 pathway could be a common mechanism contributing to cancer metabolism. SIGNIFICANCE An antisense gene encoded in HTLV-1, HBZ, reprograms lactate metabolism and epigenetic modification by inducing TAp73 in virus-positive leukemic cells. A positive correlation between TAp73 and its target genes is also observed in many other cancer cells, suggesting that this is a common mechanism for cellular oncogenesis. This article is featured in Selected Articles from This Issue, p. 337.
Collapse
Affiliation(s)
- Kosuke Toyoda
- Department of Hematology, Rheumatology, and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun-ichirou Yasunaga
- Department of Hematology, Rheumatology, and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takafumi Shichijo
- Department of Hematology, Rheumatology, and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuichiro Arima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Azusa Tanaka
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tarig Salah
- Department of Hematology, Rheumatology, and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Wenyi Zhang
- Department of Hematology, Rheumatology, and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Osama Hussein
- Department of Hematology, Rheumatology, and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Miyu Sonoda
- Department of Hematology, Rheumatology, and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Miho Watanabe
- Department of Hematology, Rheumatology, and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Daisuke Kurita
- Department of Hematology, Rheumatology, and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazutaka Nakashima
- Department of Pathology, Kurume University School of Medicine, Fukuoka, Japan
| | - Kyohei Yamada
- Department of Pathology, Kurume University School of Medicine, Fukuoka, Japan
| | - Hiroaki Miyoshi
- Department of Pathology, Kurume University School of Medicine, Fukuoka, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Fukuoka, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology, and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
15
|
Ostini A, Mourtada-Maarabouni M. Investigation into the Role of Long-Non-Coding RNA MIAT in Leukemia. Noncoding RNA 2023; 9:47. [PMID: 37624039 PMCID: PMC10459085 DOI: 10.3390/ncrna9040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Myocardial Infarction Associated Transcript (MIAT) is a nuclear long non-coding RNA (LncRNA) with four different splicing variants. MIAT dysregulation is associated with carcinogenesis, mainly acting as an oncogene regulating cellular growth, invasion, and metastasis. The aim of the current study is to investigate the role of MIAT in the regulation of T and chronic myeloid leukemic cell survival. To this end, MIAT was silenced using MIAT-specific siRNAs in leukemic cell lines, and functional assays were performed thereafter. This investigation also aims to investigate the effects of MIAT silencing on the expression of core genes involved in cancer. Functional studies and gene expression determination confirm that MIAT knockdown not only affects short- and long-term survival and the apoptosis of leukemic cells but also plays a pivotal role in the alteration of key genes involved in cancer, including c-MYC and HIF-1A. Our observations suggest that MIAT could act as an oncogene and it has the potential to be used not only as a reliable biomarker for leukemia, but also be employed for prognostic and therapeutic purposes.
Collapse
Affiliation(s)
| | - Mirna Mourtada-Maarabouni
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, UK;
| |
Collapse
|
16
|
Scheich S, Chen J, Liu J, Schnütgen F, Enssle JC, Ceribelli M, Thomas CJ, Choi J, Morris V, Hsiao T, Nguyen H, Wang B, Bolomsky A, Phelan JD, Corcoran S, Urlaub H, Young RM, Häupl B, Wright GW, Huang DW, Ji Y, Yu X, Xu W, Yang Y, Zhao H, Muppidi J, Pan KT, Oellerich T, Staudt LM. Targeting N-linked Glycosylation for the Therapy of Aggressive Lymphomas. Cancer Discov 2023; 13:1862-1883. [PMID: 37141112 PMCID: PMC10524254 DOI: 10.1158/2159-8290.cd-22-1401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) can be subdivided into the activated B-cell (ABC) and germinal center B cell-like (GCB) subtypes. Self-antigen engagement of B-cell receptors (BCR) in ABC tumors induces their clustering, thereby initiating chronic active signaling and activation of NF-κB and PI3 kinase. Constitutive BCR signaling is essential in some GCB tumors but primarily activates PI3 kinase. We devised genome-wide CRISPR-Cas9 screens to identify regulators of IRF4, a direct transcriptional target of NF-κB and an indicator of proximal BCR signaling in ABC DLBCL. Unexpectedly, inactivation of N-linked protein glycosylation by the oligosaccharyltransferase-B (OST-B) complex reduced IRF4 expression. OST-B inhibition of BCR glycosylation reduced BCR clustering and internalization while promoting its association with CD22, which attenuated PI3 kinase and NF-κB activation. By directly interfering with proximal BCR signaling, OST-B inactivation killed models of ABC and GCB DLBCL, supporting the development of selective OST-B inhibitors for the treatment of these aggressive cancers. SIGNIFICANCE DLBCL depends on constitutive BCR activation and signaling. There are currently no therapeutics that target the BCR directly and attenuate its pathologic signaling. Here, we unraveled a therapeutically exploitable, OST-B-dependent glycosylation pathway that drives BCR organization and proximal BCR signaling. This article is highlighted in the In This Issue feature, p. 1749.
Collapse
Affiliation(s)
- Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Jiamin Liu
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Julius C. Enssle
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Craig J. Thomas
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivian Morris
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Johns Hopkins University, Department of Biology, Baltimore, MD, 21218, USA
| | - Tony Hsiao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hang Nguyen
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Boya Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arnold Bolomsky
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James D. Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sean Corcoran
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Ryan M. Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Björn Häupl
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - George W. Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yanlong Ji
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jagan Muppidi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kuan-Ting Pan
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Thomas Oellerich
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Stuver R, Horwitz SM, Epstein-Peterson ZD. Treatment of Adult T-Cell Leukemia/Lymphoma: Established Paradigms and Emerging Directions. Curr Treat Options Oncol 2023; 24:948-964. [PMID: 37300656 PMCID: PMC11010735 DOI: 10.1007/s11864-023-01111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 06/12/2023]
Abstract
OPINION STATEMENT Adult T-cell leukemia/lymphoma (ATL) is a rare, aggressive subtype of peripheral T-cell lymphoma developing after many years of chronic, asymptomatic infection with the retrovirus human T-cell lymphotropic virus type 1 (HTLV-1). HTLV-1 is endemic to certain geographic areas of the world, and primary infection generally occurs in infancy through mother-to-child transmission via breastfeeding. In less than 5% of infected individuals, a decades-long pathogenic process culminates in the development of ATL. Aggressive subtypes of ATL are life-threatening and challenging to treat, with median overall survival typically less than 1 year in the absence of allogeneic hematopoietic cell transplantation (alloHCT). Owing to the rarity of this illness, prospective large-scale clinical trials have been challenging to perform, and treatment recommendations are largely founded upon limited evidence. Herein, we review the current therapeutic options for ATL, providing a broad literature overview of the foremost clinical trials and reports of this disease. We emphasize our own treatment paradigm, which is broadly based upon disease subtype, patient fitness, and intent to perform alloHCT. Finally, we highlight recent advances in understanding ATL disease biology and important ongoing clinical trials that we foresee as informative and potentially practice-changing.
Collapse
Affiliation(s)
- Robert Stuver
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 530 E. 74th St, New York, NY, 10021, USA.
| | - Steven M Horwitz
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 530 E. 74th St, New York, NY, 10021, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Zachary D Epstein-Peterson
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 530 E. 74th St, New York, NY, 10021, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
18
|
O'Donnell JS, Hunt SK, Chappell KJ. Integrated molecular and immunological features of human T-lymphotropic virus type 1 infection and disease progression to adult T-cell leukaemia or lymphoma. Lancet Haematol 2023; 10:e539-e548. [PMID: 37407143 DOI: 10.1016/s2352-3026(23)00087-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 07/07/2023]
Abstract
The human T-lymphotropic virus type 1 (HTLV-1) retrovirus infects 10-20 million people globally, with endemic regions in southwestern Japan, the Caribbean basin, Africa, and central Australia. HTLV-1 is associated with lifelong infection and immune suppression, resulting in a range of serious sequalae, including adult T-cell leukaemia or lymphoma (ATLL) in 5% of cases. To date, there are no preventive or curative treatments for HTLV-1 and treatment outcomes for ATLL remain generally poor. Depending on the disease subtype, overall survival is 8-55 months. Recent advancements in the past decade have identified genetic, molecular, and immunological events occurring throughout the lives of individuals infected with HTLV-1 and of those who progress to ATLL. In addition, updated guidelines for clinical management have been published. With the aim of focusing research efforts on the development of treatments for both HTLV-1 infections and ATLL, we have conceptualised a four-step disease model for HTLV-1-associated ATLL: (1) viral exposure, (2) establishment of chronic infection, (3) cellular transformation and evolution, and (4) disease presentation and management. For each stage we describe the clinical features, molecular and immunological factors involved, potential biomarkers of disease progression, and the therapeutic applicability of individual targets. We also discuss emerging concepts and novel treatment approaches. Our hope is that this model will promote research interest and guide the testing of new treatments for this neglected virus and its associated rare cancer.
Collapse
Affiliation(s)
- Jake S O'Donnell
- School of Chemistry and Molecular Biosciences, and the Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia.
| | - Stewart K Hunt
- Department of Haematology and Bone Marrow Transplant, Royal Brisbane and Women's Hospital, Herston, QLD, Australia; Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Keith J Chappell
- School of Chemistry and Molecular Biosciences, and the Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia; Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
19
|
Li W, Hu JK, Hu MG. CDK6: an attractive therapeutic target for T-ALL/LBL. Expert Opin Ther Targets 2023; 27:1087-1096. [PMID: 37975616 DOI: 10.1080/14728222.2023.2285775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Human T-cell acute lymphoblastic leukemia/T-cell lymphoblastic lymphoma (T-ALL/LBL) is a type of cancer that originates from the bone marrow and spreads quickly to other organs. Long-term survival rate with current available chemotherapy is less than 20%. Despite the potentially huge market, a truly effective and safe therapy for T-ALL/LBL is elusive. Thus, it is imperative to identify new therapeutic ways to target essential pathways in T-ALL that regulate the proliferation and survival of these cancer cells. AREAS COVERED The role of the Cyclin-dependent kinase 6 (CDK6) pathway in human T-ALL is of significant interest with major clinical/translational relevance. This review covers the recent advances in elucidating the essential roles of CDK6 and its closely regulated networks in proliferation, survival, and metabolism of T-ALL cells, with new insight into its mechanisms of action which hopefully could trigger the identification of new therapeutic avenues. EXPERT OPINION Animal models showed that inhibition of CDK6 and its related networks blocked initiation, growth, and survival of T-ALL in vivo. Numerous clinical trials of CDK4/6 inhibitors are ongoing in T-ALL. Specific CDK6 inhibitors alone or novel combination regimens may hopefully delay the progression, or even reverse the symptoms of T-ALL, leading to disease eradication and cure.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, USA
| | - Jamie Katy Hu
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Miaofen G Hu
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, USA
| |
Collapse
|
20
|
Zhou H, Yang L, Lin X, Chan TF, Lee NPY, Tse WKF, Zhang X, Li R, Lai KP. Integrated network findings reveal ubiquitin-specific protease 44 overexpression suppresses tumorigenicity of liver cancer. Aging (Albany NY) 2023; 15:204733. [PMID: 37204480 DOI: 10.18632/aging.204733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer and third leading cause of cancer-related deaths worldwide. HCC is a multistep disease marked by various signaling alterations. A better understanding of the new molecular drivers of HCC could therefore provide an opportunity to develop effective diagnostic and therapeutic targets. Ubiquitin-specific protease 44 (USP44), a member of the cysteine protease family, has been reported to play a role in many cancer types. However, its contribution to HCC development remains unknown. In the present study, we observed suppression of USP44 expression in HCC tissue. Clinicopathologic analysis further showed that low USP44 expression correlated with poorer survival and a later tumor stage in HCC, suggesting that USP44 could be a predictor of poor prognosis in patients with HCC. Gain-of-function analysis in vitro demonstrated the importance of USP44 in HCC cell growth and G0/G1 cell cycle arrest. To investigate the downstream targets of USP44 and the molecular mechanisms underlying its regulation of cell proliferation in HCC, we conducted a comparative transcriptomic analysis and identified a cluster of proliferation-related genes, including CCND2, CCNG2, and SMC3. Ingenuity Pathway Analysis further delineated the gene networks controlled by USP44 through the regulation of membrane proteins and receptors, enzymes, transcriptional factors, and cyclins involved in the control of cell proliferation, metastasis, and apoptosis in HCC. To summarize, our results highlight, for the first time, the tumor-suppression role of USP44 in HCC and suggest a new prognostic biomarker in this disease.
Collapse
Affiliation(s)
- Huanhuan Zhou
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, Guangxi, PR China
| | - Lu Yang
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, Guangxi, PR China
| | - Xiao Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nikki Pui-Yue Lee
- Department of Surgery, University of Hong Kong, Hong Kong SAR, China
| | - William Ka Fai Tse
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Xing Zhang
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, Guangxi, PR China
- Department of Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, PR China
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, Guangxi, PR China
- Department of Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, PR China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, Guangxi, PR China
- Department of Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, PR China
| |
Collapse
|
21
|
Kuehnle N, Gottwein E. Druggable host gene dependencies in primary effusion lymphoma. Curr Opin Virol 2022; 56:101270. [PMID: 36182745 PMCID: PMC10043043 DOI: 10.1016/j.coviro.2022.101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes primary effusion lymphoma (PEL). Here, we review what is known about human gene essentiality in PEL-derived cell lines. We provide an updated list of PEL-specific human gene dependencies, based on the improved definition of core essential genes across human cancer types. The requirements of PEL cell lines for interferon regulatory factor 4 (IRF4), basic leukine zipper ATF-like transcription factor (BATF), G1/S cyclin D2 (CCND2), CASP8 and FADD like apoptosis regulator (CFLAR), MCL1 apoptosis regulator (MCL1), and murine double minute 2 (MDM2) have been confirmed experimentally. KSHV co-opts IRF4 and BATF to drive superenhancer (SE)-mediated expression of IRF4 itself, MYC, and CCND2. IRF4 dependency of SE-mediated gene expression is shared with Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs) and human T-cell leukemia virus type 1-transformed adult T-cell leukemia/lymphoma (ATLL) cell lines, as well as several B-cell lymphomas of nonviral etiology. LCLs and ATLL cell lines similarly share dependencies on CCND2 and CFLAR with PEL, but also have distinct gene dependencies. Genetic dependencies could be exploited for therapeutic intervention in PEL and other cancers.
Collapse
Affiliation(s)
- Neil Kuehnle
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Eva Gottwein
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
22
|
Ancos-Pintado R, Bragado-García I, Morales ML, García-Vicente R, Arroyo-Barea A, Rodríguez-García A, Martínez-López J, Linares M, Hernández-Sánchez M. High-Throughput CRISPR Screening in Hematological Neoplasms. Cancers (Basel) 2022; 14:3612. [PMID: 35892871 PMCID: PMC9329962 DOI: 10.3390/cancers14153612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
CRISPR is becoming an indispensable tool in biological research, revolutionizing diverse fields of medical research and biotechnology. In the last few years, several CRISPR-based genome-targeting tools have been translated for the study of hematological neoplasms. However, there is a lack of reviews focused on the wide uses of this technology in hematology. Therefore, in this review, we summarize the main CRISPR-based approaches of high throughput screenings applied to this field. Here we explain several libraries and algorithms for analysis of CRISPR screens used in hematology, accompanied by the most relevant databases. Moreover, we focus on (1) the identification of novel modulator genes of drug resistance and efficacy, which could anticipate relapses in patients and (2) new therapeutic targets and synthetic lethal interactions. We also discuss the approaches to uncover novel biomarkers of malignant transformations and immune evasion mechanisms. We explain the current literature in the most common lymphoid and myeloid neoplasms using this tool. Then, we conclude with future directions, highlighting the importance of further gene candidate validation and the integration and harmonization of the data from CRISPR screening approaches.
Collapse
Affiliation(s)
- Raquel Ancos-Pintado
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, CIBERONC, ES 28041 Madrid, Spain; (R.A.-P.); (M.L.M.); (R.G.-V.); (A.R.-G.); (J.M.-L.); (M.L.)
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain; (I.B.-G.); (A.A.-B.)
| | - Irene Bragado-García
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain; (I.B.-G.); (A.A.-B.)
| | - María Luz Morales
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, CIBERONC, ES 28041 Madrid, Spain; (R.A.-P.); (M.L.M.); (R.G.-V.); (A.R.-G.); (J.M.-L.); (M.L.)
| | - Roberto García-Vicente
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, CIBERONC, ES 28041 Madrid, Spain; (R.A.-P.); (M.L.M.); (R.G.-V.); (A.R.-G.); (J.M.-L.); (M.L.)
| | - Andrés Arroyo-Barea
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain; (I.B.-G.); (A.A.-B.)
| | - Alba Rodríguez-García
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, CIBERONC, ES 28041 Madrid, Spain; (R.A.-P.); (M.L.M.); (R.G.-V.); (A.R.-G.); (J.M.-L.); (M.L.)
| | - Joaquín Martínez-López
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, CIBERONC, ES 28041 Madrid, Spain; (R.A.-P.); (M.L.M.); (R.G.-V.); (A.R.-G.); (J.M.-L.); (M.L.)
- Department of Medicine, Medicine School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain
| | - María Linares
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, CIBERONC, ES 28041 Madrid, Spain; (R.A.-P.); (M.L.M.); (R.G.-V.); (A.R.-G.); (J.M.-L.); (M.L.)
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain; (I.B.-G.); (A.A.-B.)
| | - María Hernández-Sánchez
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain; (I.B.-G.); (A.A.-B.)
| |
Collapse
|
23
|
Targeting vulnerabilities of adult T-cell leukemia. Blood 2022; 139:1435. [PMID: 35267009 DOI: 10.1182/blood.2021014879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022] Open
|