1
|
Wells C, Robertson T, Sheth P, Abraham S. How aging influences the gut-bone marrow axis and alters hematopoietic stem cell regulation. Heliyon 2024; 10:e32831. [PMID: 38984298 PMCID: PMC11231543 DOI: 10.1016/j.heliyon.2024.e32831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
The gut microbiome has come to prominence across research disciplines, due to its influence on major biological systems within humans. Recently, a relationship between the gut microbiome and hematopoietic system has been identified and coined the gut-bone marrow axis. It is well established that the hematopoietic system and gut microbiome separately alter with age; however, the relationship between these changes and how these systems influence each other demands investigation. Since the hematopoietic system produces immune cells that help govern commensal bacteria, it is important to identify how the microbiome interacts with hematopoietic stem cells (HSCs). The gut microbiota has been shown to influence the development and outcomes of hematologic disorders, suggesting dysbiosis may influence the maintenance of HSCs with age. Short chain fatty acids (SCFAs), lactate, iron availability, tryptophan metabolites, bacterial extracellular vesicles, microbe associated molecular patterns (MAMPs), and toll-like receptor (TLR) signalling have been proposed as key mediators of communication across the gut-bone marrow axis and will be reviewed in this article within the context of aging.
Collapse
Affiliation(s)
- Christopher Wells
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tristan Robertson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Prameet Sheth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Division of Microbiology, Queen's University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Kingston, Ontario, Canada
| | - Sheela Abraham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
2
|
Zhang L, Kang H, Zhang W, Wang J, Liu Z, Jing J, Han L, Gao A. Probiotics ameliorate benzene-induced systemic inflammation and hematopoietic toxicity by inhibiting Bacteroidaceae-mediated ferroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165678. [PMID: 37478946 DOI: 10.1016/j.scitotenv.2023.165678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
The intestinal microbiota is associated with the development of benzene-induced hematopoietic toxicity. Modulation of intestinal homeostasis by probiotic supplementation has been considered an effective strategy to prevent adverse health effects. However, the role and mechanism of probiotics in benzene-induced hematopoietic toxicity are unclear. After 45 days of exposure, benzene caused bone marrow hematopoietic toxicity in mice. Furthermore, we found that benzene altered the intestinal barrier in mice, leading to an increase in the abundance of Bacteroidaceae and the activation of systemic inflammation. Interestingly, Fe2+ accumulation, lipid peroxidation, and differential expression of ferroptosis proteins were observed in the intestinal tissues of benzene-exposed mice. After fecal microbiota transplantation, stool microbes from benzene-exposed mice led to the development of intestinal ferroptosis in recipient mice. In particular, oral probiotics significantly reversed elevated Bacteroidaceae and intestinal ferroptosis, ultimately improving benzene-induced hematopoietic damage. We further used the benzene metabolite 1,4-BQ to treat human normal colonic epithelial cells (NCM460) and intervened with the ferroptosis inhibitor liproxstatin-1 (Lip-1) to validate the relationship between intestinal ferroptosis and inflammation. The results showed that 1,4-BQ treatment resulted in increased intracellular ROS levels and abnormal expression of ferroptosis proteins and the inflammatory factors IL-5 and IL-13. However, the use of Lip-1 significantly inhibited oxidative stress, ferroptosis, and inflammation in NCM460 cells. This result suggested that ferroptosis might be involved in benzene-induced hematopoietic toxicity by mediating Th2-type systemic inflammation. Overall, these findings revealed a role for Bacteroidaceae-intestinal ferroptosis-inflammation in benzene-induced hematopoietic toxicity and highlighted that probiotics could be a promising strategy to prevent adverse hematologic outcomes.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Huiwen Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - JingYu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Wang D, Zhang L, He D, Zhang Y, Bao J, Gao W, Cheng W, Zhu C, Jin H, Zhang W, Zhu H, Pan H. Systemic pharmacology reveal the mechanism by which the Qiangjin Zhuanggu Qufeng mixture inhibits LPS-induced pyroptosis of rat nucleus pulposus cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154998. [PMID: 37523835 DOI: 10.1016/j.phymed.2023.154998] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/02/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
OBJECTIVE Low back pain (LBP) is a worldwide health issue primarily attributed to intervertebral disc degeneration (IVDD). Qiangjin Zhuang Qufeng mixture (QJZG), an approved hospital-based formula with years of clinical application, has demonstrated notable therapeutic effects in the treatment of LBP. Nevertheless, the underlying mechanism by which it alleviates LBP remains uncertain. METHODS The bioactive constituents of QJZG were initially identified using ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). Subsequently, network pharmacology was employed to explore the core components and targets. In vivo and in vitro experiments were then conducted to validate the specific mechanism of action of QJZG based on the identified targets and pathways. Following that, ultra-high-performance liquid chromatography/mass spectrometry combined with 16S rRNA gene sequencing of blood and faecal samples was utilized to assess the impact of gut microbiota on faecal and serum metabolites subsequent to QJZG administration in intervertebral disc degeneration (IVDD) rats. RESULTS The principal constituents of QJZG were identified using UPLC-Q-TOF-MS/MS, revealing a substantial enrichment of flavonoids and triterpenes. Network pharmacology analysis indicated the potential inhibitory effects of QJZG on the NLRP3 inflammasome and downstream inflammatory factors. Furthermore, investigations demonstrated that intervertebral disc degeneration may be attributed to pyroptotic cell death within the nucleus pulposus. In vitro experiments were performed utilizing LPS to induce the inflammatory response in nucleus pulposus cells (NPC), and it was observed that QJZG-containing serum significantly suppressed key pyroptosis-related genes and downstream inflammatory factors. Additionally, in vivo experiments substantiated the capacity of QJZG to preserve disc height and ameliorate the progression of disc degeneration. Concurrently, oral pharmacotherapy in animal studies prominently involved the effects of Enterobacteriaceae and Clostridium, closely intertwined with lipid metabolism. CONCLUSIONS QJZG exhibited a delaying effect on IVDD by preserving the equilibrium between extracellular matrix (ECM) synthesis and degradation in NPCs. This effect was achieved through the suppression of NLRP3 inflammasome expression and the prevention of pyroptosis in NPCs.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou 310007, China; Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou 310021, China; Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou 310007, China
| | - Liangping Zhang
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou 310007, China
| | - Du He
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou 310007, China
| | - Yujun Zhang
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou 310007, China
| | - Jianhang Bao
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou 310007, China
| | - Wenshuo Gao
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou 310007, China
| | - Wei Cheng
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou 310021, China
| | - Chengyue Zhu
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou 310007, China; Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou 310007, China
| | - Hongting Jin
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou 310007, China; Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Zhang
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou 310007, China
| | - Hang Zhu
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou 310007, China
| | - Hao Pan
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou 310007, China; Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou 310021, China; Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou 310007, China.
| |
Collapse
|
4
|
Eickhardt-Dalbøge CS, Ingham AC, Nielsen HV, Fuursted K, Stensvold CR, Andersen LO, Larsen MK, Kjær L, Christensen SF, Knudsen TA, Skov V, Ellervik C, Olsen LR, Hasselbalch HC, Elmer Christensen JJ, Nielsen XC. Pronounced gut microbiota signatures in patients with JAK2V617F-positive essential thrombocythemia. Microbiol Spectr 2023; 11:e0066223. [PMID: 37695126 PMCID: PMC10581245 DOI: 10.1128/spectrum.00662-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/18/2023] [Indexed: 09/12/2023] Open
Abstract
Essential thrombocythemia (ET) is part of the Philadelphia chromosome-negative myeloproliferative neoplasms. It is characterized by an increased risk of thromboembolic events and also to a certain degree hypermetabolic symptoms. The gut microbiota is an important initiator of hematopoiesis and regulation of the immune system, but in patients with ET, where inflammation is a hallmark of the disease, it is vastly unexplored. In this study, we compared the gut microbiota via amplicon-based 16S rRNA gene sequencing of the V3-V4 region in 54 patients with ET according to mutation status Janus-kinase 2 (JAK2V617F)-positive vs JAK2V617F-negative patients with ET, and in 42 healthy controls (HCs). Gut microbiota richness was higher in patients with ET (median-observed richness, 283.5; range, 75-535) compared with HCs (median-observed richness, 191.5; range, 111-300; P < 0.001). Patients with ET had a different overall bacterial composition (beta diversity) than HCs (analysis of similarities [ANOSIM]; R = 0.063, P = 0.004). Patients with ET had a significantly lower relative abundance of taxa within the Firmicutes phylum compared with HCs (51% vs 59%, P = 0.03), and within that phylum, patients with ET also had a lower relative abundance of the genus Faecalibacterium (8% vs 15%, P < 0.001), an important immunoregulative bacterium. The microbiota signatures were more pronounced in patients harboring the JAK2V617F mutation, and highly similar to patients with polycythemia vera as previously described. These findings suggest that patients with ET may have an altered immune regulation; however, whether this dysregulation is induced in part by, or is itself inducing, an altered gut microbiota remains to be investigated. IMPORTANCE Essential thrombocythemia (ET) is a cancer characterized by thrombocyte overproduction. Inflammation has been shown to be vital in both the initiation and progression of other myeloproliferative neoplasms, and it is well known that the gut microbiota is important in the regulation of our immune system. However, the gut microbiota of patients with ET remains uninvestigated. In this study, we characterized the gut microbiota of patients with ET compared with healthy controls and thereby provide new insights into the field. We show that the gut microbiota of patients with ET differs significantly from that of healthy controls and the patients with ET have a lower relative abundance of important immunoregulative bacteria. Furthermore, we demonstrate that patients with JAK2V617F-positive ET have pronounced gut microbiota signatures compared with JAK2V617F-negative patients. Thereby confirming the importance of the underlying mutation, the immune response as well as the composition of the microbiota.
Collapse
Affiliation(s)
- Christina Schjellerup Eickhardt-Dalbøge
- Regional Department of Clinical Microbiology, Zealand University Hospital, Koege, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Anna Cäcilia Ingham
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Henrik V. Nielsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Kurt Fuursted
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | - Lee O'Brien Andersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Morten Kranker Larsen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Trine Alma Knudsen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Data and Data Support, Region Zealand, Sorø, Denmark
| | - Lars Rønn Olsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Hans Carl Hasselbalch
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Jørgen Elmer Christensen
- Regional Department of Clinical Microbiology, Zealand University Hospital, Koege, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Xiaohui Chen Nielsen
- Regional Department of Clinical Microbiology, Zealand University Hospital, Koege, Denmark
| |
Collapse
|
5
|
Zeng X, Li X, Li X, Wei C, Shi C, Hu K, Kong D, Luo Q, Xu Y, Shan W, Zhang M, Shi J, Feng J, Han Y, Huang H, Qian P. Fecal microbiota transplantation from young mice rejuvenates aged hematopoietic stem cells by suppressing inflammation. Blood 2023; 141:1691-1707. [PMID: 36638348 PMCID: PMC10646769 DOI: 10.1182/blood.2022017514] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Hematopoietic stem cell (HSC) aging is accompanied by hematopoietic reconstitution dysfunction, including loss of regenerative and engraftment ability, myeloid differentiation bias, and elevated risks of hematopoietic malignancies. Gut microbiota, a key regulator of host health and immunity, has recently been reported to affect hematopoiesis. However, there is currently limited empirical evidence explaining the direct impact of gut microbiome on aging hematopoiesis. In this study, we performed fecal microbiota transplantation (FMT) from young mice to aged mice and observed a significant increment in lymphoid differentiation and decrease in myeloid differentiation in aged recipient mice. Furthermore, FMT from young mice rejuvenated aged HSCs with enhanced short-term and long-term hematopoietic repopulation capacity. Mechanistically, single-cell RNA sequencing deciphered that FMT from young mice mitigated inflammatory signals, upregulated the FoxO signaling pathway, and promoted lymphoid differentiation of HSCs during aging. Finally, integrated microbiome and metabolome analyses uncovered that FMT reshaped gut microbiota composition and metabolite landscape, and Lachnospiraceae and tryptophan-associated metabolites promoted the recovery of hematopoiesis and rejuvenated aged HSCs. Together, our study highlights the paramount importance of the gut microbiota in HSC aging and provides insights into therapeutic strategies for aging-related hematologic disorders.
Collapse
Affiliation(s)
- Xiangjun Zeng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Xiaoqing Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Xia Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Cong Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Ce Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Kejia Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Delin Kong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Qian Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yulin Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Wei Shan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Meng Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jingjing Feng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yingli Han
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Watt SM, Hua P, Roberts I. Increasing Complexity of Molecular Landscapes in Human Hematopoietic Stem and Progenitor Cells during Development and Aging. Int J Mol Sci 2022; 23:3675. [PMID: 35409034 PMCID: PMC8999121 DOI: 10.3390/ijms23073675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
The past five decades have seen significant progress in our understanding of human hematopoiesis. This has in part been due to the unprecedented development of advanced technologies, which have allowed the identification and characterization of rare subsets of human hematopoietic stem and progenitor cells and their lineage trajectories from embryonic through to adult life. Additionally, surrogate in vitro and in vivo models, although not fully recapitulating human hematopoiesis, have spurred on these scientific advances. These approaches have heightened our knowledge of hematological disorders and diseases and have led to their improved diagnosis and therapies. Here, we review human hematopoiesis at each end of the age spectrum, during embryonic and fetal development and on aging, providing exemplars of recent progress in deciphering the increasingly complex cellular and molecular hematopoietic landscapes in health and disease. This review concludes by highlighting links between chronic inflammation and metabolic and epigenetic changes associated with aging and in the development of clonal hematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9BQ, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5005, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5001, Australia
| | - Peng Hua
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China;
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, and NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
- Department of Paediatrics and NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|