1
|
Zhong G, Chang X, Xie W, Zhou X. Targeted protein degradation: advances in drug discovery and clinical practice. Signal Transduct Target Ther 2024; 9:308. [PMID: 39500878 PMCID: PMC11539257 DOI: 10.1038/s41392-024-02004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024] Open
Abstract
Targeted protein degradation (TPD) represents a revolutionary therapeutic strategy in disease management, providing a stark contrast to traditional therapeutic approaches like small molecule inhibitors that primarily focus on inhibiting protein function. This advanced technology capitalizes on the cell's intrinsic proteolytic systems, including the proteasome and lysosomal pathways, to selectively eliminate disease-causing proteins. TPD not only enhances the efficacy of treatments but also expands the scope of protein degradation applications. Despite its considerable potential, TPD faces challenges related to the properties of the drugs and their rational design. This review thoroughly explores the mechanisms and clinical advancements of TPD, from its initial conceptualization to practical implementation, with a particular focus on proteolysis-targeting chimeras and molecular glues. In addition, the review delves into emerging technologies and methodologies aimed at addressing these challenges and enhancing therapeutic efficacy. We also discuss the significant clinical trials and highlight the promising therapeutic outcomes associated with TPD drugs, illustrating their potential to transform the treatment landscape. Furthermore, the review considers the benefits of combining TPD with other therapies to enhance overall treatment effectiveness and overcome drug resistance. The future directions of TPD applications are also explored, presenting an optimistic perspective on further innovations. By offering a comprehensive overview of the current innovations and the challenges faced, this review assesses the transformative potential of TPD in revolutionizing drug development and disease management, setting the stage for a new era in medical therapy.
Collapse
Affiliation(s)
- Guangcai Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiaoyu Chang
- School of Pharmaceutical Sciences, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
2
|
Li P, Hu X, Fan Z, Sun S, Ran Q, Wei T, Wei P, Jiang Q, Yan J, Yang N, Jia C, Yang T, Mao Y, Cai X, Xu T, Zhao Z, Qian X, Qin W, Zhuang X, Fan F, Xiao J, Zheng Z, Li S. Novel potent molecular glue degraders against broad range of hematological cancer cell lines via multiple neosubstrates degradation. J Hematol Oncol 2024; 17:77. [PMID: 39218923 PMCID: PMC11367868 DOI: 10.1186/s13045-024-01592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Targeted protein degradation of neosubstrates plays a crucial role in hematological cancer treatment involving immunomodulatory imide drugs (IMiDs) therapy. Nevertheless, the persistence of inevitable drug resistance and hematological toxicities represents a significant obstacle to their clinical effectiveness. METHODS Phenotypic profiling of a small molecule compounds library in multiple hematological cancer cell lines was conducted to screen for hit degraders. Molecular dynamic-based rational design and cell-based functional assays were conducted to develop more potent degraders. Multiple myeloma (MM) tumor xenograft models were employed to investigate the antitumor efficacy of the degraders as single or combined agents with standard of care agents. Unbiased proteomics was employed to identify multiple therapeutically relevant neosubstrates targeted by the degraders. MM patient-derived cell lines (PDCs) and a panel of solid cancer cell lines were utilized to investigate the effects of candidate degrader on different stage of MM cells and solid malignancies. Unbiased proteomics of IMiDs-resistant MM cells, cell-based functional assays and RT-PCR analysis of clinical MM specimens were utilized to explore the role of BRD9 associated with IMiDs resistance and MM progression. RESULTS We identified a novel cereblon (CRBN)-dependent lead degrader with phthalazinone scaffold, MGD-4, which induced the degradation of Ikaros proteins. We further developed a novel potent candidate, MGD-28, significantly inhibited the growth of hematological cancer cells and induced the degradation of IKZF1/2/3 and CK1α with nanomolar potency via a Cullin-CRBN dependent pathway. Oral administration of MGD-4 and MGD-28 effectively inhibited MM tumor growth and exhibited significant synergistic effects with standard of care agents. MGD-28 exhibited preferentially profound cytotoxicity towards MM PDCs at different disease stages and broad antiproliferative activity in multiple solid malignancies. BRD9 modulated IMiDs resistance, and the expression of BRD9 was significant positively correlated with IKZF1/2/3 and CK1α in MM specimens at different stages. We also observed pronounced synergetic efficacy between the BRD9 inhibitor and MGD-28 for MM treatment. CONCLUSIONS Our findings present a strategy for the multi-targeted degradation of Ikaros proteins and CK1α against hematological cancers, which may be expanded to additional targets and indications. This strategy may enhance efficacy treatment against multiple hematological cancers and solid tumors.
Collapse
Affiliation(s)
- Pengyun Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaotong Hu
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Zhiya Fan
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Shiyang Sun
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Qijie Ran
- Department of Clinical Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, 430012, China
| | - Ting Wei
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Pengli Wei
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Qiyu Jiang
- Department of Clinical Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jian Yan
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Ning Yang
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Changkai Jia
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Tingting Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yaqiu Mao
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xu Cai
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Tingting Xu
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Zhiyuan Zhao
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaohong Qian
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Weijie Qin
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiaomei Zhuang
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Feng Fan
- Department of Clinical Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Junhai Xiao
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Zhibing Zheng
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Song Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| |
Collapse
|
3
|
Nguyen A, Nuñez CG, Tran TA, Girard L, Peyton M, Catalan R, Guerena C, Avila K, Drapkin BJ, Chandra R, Minna JD, Martinez ED. Jumonji histone demethylases are therapeutic targets in small cell lung cancer. Oncogene 2024; 43:2885-2899. [PMID: 39154123 PMCID: PMC11405284 DOI: 10.1038/s41388-024-03125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Small cell lung cancer (SCLC) is a recalcitrant cancer of neuroendocrine (NE) origin. Changes in therapeutic approaches against SCLC have been lacking over the decades. Here, we use preclinical models to identify a new therapeutic vulnerability in SCLC consisting of the targetable Jumonji lysine demethylase (KDM) family. We show that Jumonji demethylase inhibitors block malignant growth and that etoposide-resistant SCLC cell lines are particularly sensitive to Jumonji inhibition. Mechanistically, small molecule-mediated inhibition of Jumonji KDMs activates endoplasmic reticulum (ER) stress genes, upregulates ER stress signaling, and triggers apoptotic cell death. Furthermore, Jumonji inhibitors decrease protein levels of SCLC NE markers INSM1 and Secretogranin-3 and of driver transcription factors ASCL1 and NEUROD1. Genetic knockdown of KDM4A, a Jumonji demethylase highly expressed in SCLC and a known regulator of ER stress genes, induces ER stress response genes, decreases INSM1, Secretogranin-3, and NEUROD1 and inhibits proliferation of SCLC in vitro and in vivo. Lastly, we demonstrate that two different small molecule Jumonji KDM inhibitors (pan-inhibitor JIB-04 and KDM4 inhibitor SD70) block the growth of SCLC tumor xenografts in vivo. Our study highlights the translational potential of Jumonji KDM inhibitors against SCLC, a clinically feasible approach in light of recently opened clinical trials evaluating this drug class, and establishes KDM4A as a relevant target across SCLC subtypes.
Collapse
Affiliation(s)
- Aiden Nguyen
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Clarissa G Nuñez
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tram Anh Tran
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michael Peyton
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rodrigo Catalan
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Cristina Guerena
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kimberley Avila
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin J Drapkin
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Raghav Chandra
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Elisabeth D Martinez
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Xie L, Chen C, Zhang T, Yang W, Zheng D, Cao L, Yuan J, Xu Y, Zhang Y, Liu L, Liang A, Yu Z, Zheng J. LILRB4 regulates multiple myeloma development through STAT3-PFKFB1 pathway. Cell Death Dis 2024; 15:515. [PMID: 39025844 PMCID: PMC11258265 DOI: 10.1038/s41419-024-06883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Although multiple myeloma (MM) responds well to immunotherapeutic treatment, certain portions of MM are still unresponsive or relapse after immunotherapy. Other immune molecules are needed for the immunotherapy of MM. Here, we revealed that leukocyte immunoglobulin-like receptor B4 (LILRB4) was highly expressed in multiple myeloma cell lines and patient samples and that the expression of LILRB4 was adversely correlated with the overall survival of MM patients. Knockdown of LILRB4 efficiently delayed the growth of MM cells both in vitro and in vivo. Mechanistically, IKZF1 transactivated LILRB4 expression to trigger the downstream of STAT3-PFKFB1 pathways to support MM cell proliferation. Blockade of LILRB4 signaling by blocking antibodies can effectively inhibit MM progression. Our data show that targeting LILRB4 is potentially an additional therapeutic strategy for the immunotherapeutic treatment of MM.
Collapse
Affiliation(s)
- Li Xie
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chiqi Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tinghua Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenqian Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Denghao Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liyuan Cao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jin Yuan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yilu Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yaping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ligen Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Aibin Liang
- Department of Hematology, Shanghai Tongji Hospital, Shanghai Tongji University School of Medicine, Shanghai, 200065, China.
| | - Zhuo Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Davis LN, Walker ZJ, Reiman LT, Parzych SE, Stevens BM, Jordan CT, Forsberg PA, Sherbenou DW. MYC Inhibition Potentiates CD8+ T Cells Against Multiple Myeloma and Overcomes Immunomodulatory Drug Resistance. Clin Cancer Res 2024; 30:3023-3035. [PMID: 38723281 PMCID: PMC11250500 DOI: 10.1158/1078-0432.ccr-24-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE Immunomodulatory drugs (IMiDs), such as lenalidomide and pomalidomide, are a cornerstone of multiple myeloma (MM) therapies, yet the disease inevitably becomes refractory. IMiDs exert cytotoxicity by inducing cereblon-dependent proteasomal degradation of IKZF1 and IKZF3, resulting in downregulation of the oncogenic transcription factors IRF4 and MYC. To date, clinical IMiD resistance independent of cereblon or IKZF1/3 has not been well explored. Here, we investigated the roles of IRF4 and MYC in this context. EXPERIMENTAL DESIGN Using bone marrow aspirates from patients with IMiD-naïve or refractory MM, we examined IKZF1/3 protein levels and IRF4/MYC gene expression following ex vivo pomalidomide treatment via flow cytometry and qPCR. We also assessed exvivo sensitivity to the MYC inhibitor MYCi975 using flow cytometry. RESULTS We discovered that although pomalidomide frequently led to IKZF1/3 degradation in MM cells, it did not affect MYC gene expression in most IMiD-refractory samples. We subsequently demonstrated that MYCi975 exerted strong anti-MM effects in both IMiD-naïve and -refractory samples. Unexpectedly, we identified a cluster of differentiation 8+ (CD8+ T) cells from patients with MM as crucial effectors of MYCi975-induced cytotoxicity in primary MM samples, and we discovered that MYCi975 enhanced the cytotoxic functions of memory CD8+ T cells. We lastly observed synergy between MYCi975 and pomalidomide in IMiD-refractory samples, suggesting that restoring MYC downregulation can re-sensitize refractory MM to IMiDs. CONCLUSIONS Our study supports the concept that MYC represents an Achilles' heel in MM across disease states and that MYCi975 may be a promising therapeutic for patients with MM, particularly in combination with IMiDs.
Collapse
Affiliation(s)
- Lorraine N. Davis
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zachary J. Walker
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lauren T. Reiman
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah E. Parzych
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brett M. Stevens
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Craig T. Jordan
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter A. Forsberg
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel W. Sherbenou
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
6
|
Li B, Adam Eichhorn PJ, Chng WJ. Targeting the ubiquitin pathway in lymphoid malignancies. Cancer Lett 2024; 594:216978. [PMID: 38795760 DOI: 10.1016/j.canlet.2024.216978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Ubiquitination and related cellular processes control a variety of aspects in human cell biology, and defects in these processes contribute to multiple illnesses. In recent decades, our knowledge about the pathological role of ubiquitination in lymphoid cancers and therapeutic strategies to target the modified ubiquitination system has evolved tremendously. Here we review the altered signalling mechanisms mediated by the aberrant expression of cancer-associated E2s/E3s and deubiquitinating enzymes (DUBs), which result in the hyperactivation of oncoproteins or the frequently allied downregulation of tumour suppressors. We discuss recent highlights pertaining to the several different therapeutic interventions which are currently being evaluated to effectively block abnormal ubiquitin-proteasome pathway and the use of heterobifunctional molecules which recruit the ubiquitination system to degrade or stabilize non-cognate substrates. This review aids in comprehension of ubiquitination aberrance in lymphoid cancers and current targeting strategies and elicits further investigations to deeply understand the link between cellular ubiquitination and lymphoid pathogenesis as well as to ameliorate corresponding treatment interventions.
Collapse
Affiliation(s)
- Boheng Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Pieter Johan Adam Eichhorn
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia; Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia.
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore, Singapore; Department of Medicine, School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Wu G, Yoshida N, Liu J, Zhang X, Xiong Y, Heavican-Foral TB, Mandato E, Liu H, Nelson GM, Yang L, Chen R, Donovan KA, Jones MK, Roshal M, Zhang Y, Xu R, Nirmal AJ, Jain S, Leahy C, Jones KL, Stevenson KE, Galasso N, Ganesan N, Chang T, Wu WC, Louissaint A, Debaize L, Yoon H, Cin PD, Chan WC, Sui SJH, Ng SY, Feldman AL, Horwitz SM, Adelman K, Fischer ES, Chen CW, Weinstock DM, Brown M. TP63 fusions drive multicomplex enhancer rewiring, lymphomagenesis, and EZH2 dependence. Sci Transl Med 2023; 15:eadi7244. [PMID: 37729434 PMCID: PMC11014717 DOI: 10.1126/scitranslmed.adi7244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023]
Abstract
Gene fusions involving tumor protein p63 gene (TP63) occur in multiple T and B cell lymphomas and portend a dismal prognosis for patients. The function and mechanisms of TP63 fusions remain unclear, and there is no target therapy for patients with lymphoma harboring TP63 fusions. Here, we show that TP63 fusions act as bona fide oncogenes and are essential for fusion-positive lymphomas. Transgenic mice expressing TBL1XR1::TP63, the most common TP63 fusion, develop diverse lymphomas that recapitulate multiple human T and B cell lymphomas. Here, we identify that TP63 fusions coordinate the recruitment of two epigenetic modifying complexes, the nuclear receptor corepressor (NCoR)-histone deacetylase 3 (HDAC3) by the N-terminal TP63 fusion partner and the lysine methyltransferase 2D (KMT2D) by the C-terminal TP63 component, which are both required for fusion-dependent survival. TBL1XR1::TP63 localization at enhancers drives a unique cell state that involves up-regulation of MYC and the polycomb repressor complex 2 (PRC2) components EED and EZH2. Inhibiting EZH2 with the therapeutic agent valemetostat is highly effective at treating transgenic lymphoma murine models, xenografts, and patient-derived xenografts harboring TP63 fusions. One patient with TP63-rearranged lymphoma showed a rapid response to valemetostat treatment. In summary, TP63 fusions link partner components that, together, coordinate multiple epigenetic complexes, resulting in therapeutic vulnerability to EZH2 inhibition.
Collapse
Affiliation(s)
- Gongwei Wu
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber
Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Noriaki Yoshida
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Current address: Merck Research Laboratories, Boston, MA
02215, USA
| | - Jihe Liu
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School
of Public Health, Boston, MA 02115, USA
| | - Xiaoyang Zhang
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge,
MA 02142, USA
- Department of Oncological Sciences, Huntsman Cancer
Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Yuan Xiong
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tayla B. Heavican-Foral
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Elisa Mandato
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Huiyun Liu
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Geoffrey M. Nelson
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical
School, Boston, MA 02115, USA
| | - Lu Yang
- Department of Systems Biology, City of Hope Comprehensive
Cancer Center, Monrovia, CA 91016, USA
| | - Renee Chen
- Department of Systems Biology, City of Hope Comprehensive
Cancer Center, Monrovia, CA 91016, USA
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Marcus K. Jones
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mikhail Roshal
- Department of Pathology, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Ran Xu
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ajit J. Nirmal
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Salvia Jain
- Massachusetts General Hospital Cancer Center, Boston, MA
02114, USA
| | - Catharine Leahy
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kristen L. Jones
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kristen E. Stevenson
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Natasha Galasso
- Department of Medicine, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Nivetha Ganesan
- Department of Medicine, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Tiffany Chang
- Department of Medicine, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Wen-Chao Wu
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Abner Louissaint
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Department of Pathology, Massachusetts General Hospital,
Boston, MA 02114, USA
| | - Lydie Debaize
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Hojong Yoon
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Paola Dal Cin
- Department of Pathology, Brigham and Women’s
Hospital, Boston, MA 02115, USA
| | - Wing C. Chan
- Department of Pathology, City of Hope Medical Center,
Duarte, CA 91010, USA
| | - Shannan J. Ho Sui
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School
of Public Health, Boston, MA 02115, USA
| | - Samuel Y. Ng
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Division of Hematopathology, Mayo Clinic College of
Medicine, Rochester, MN 55905, USA
| | - Andrew L. Feldman
- Current address: Department of Clinical Studies,
Radiation Effects Research Foundation, Hiroshima, 7320815, Japan
| | - Steven M. Horwitz
- Department of Medicine, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Karen Adelman
- Broad Institute of MIT and Harvard University, Cambridge,
MA 02142, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Chun-Wei Chen
- Department of Systems Biology, City of Hope Comprehensive
Cancer Center, Monrovia, CA 91016, USA
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge,
MA 02142, USA
- Current address: Merck Research Laboratories, Boston, MA
02215, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber
Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
8
|
Ma Q, Zhao M, Long B, Li H. Super-enhancer-associated gene CAPG promotes AML progression. Commun Biol 2023; 6:622. [PMID: 37296281 PMCID: PMC10256737 DOI: 10.1038/s42003-023-04973-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Acute myeloid leukemia is the most common acute leukemia in adults, the barrier of refractory and drug resistance has yet to be conquered in the clinical. Abnormal gene expression and epigenetic changes play an important role in pathogenesis and treatment. A super-enhancer is an epigenetic modifier that promotes pro-tumor genes and drug resistance by activating oncogene transcription. Multi-omics integrative analysis identifies the super-enhancer-associated gene CAPG and its high expression level was correlated with poor prognosis in AML. CAPG is a cytoskeleton protein but has an unclear function in AML. Here we show the molecular function of CAPG in regulating NF-κB signaling pathway by proteomic and epigenomic analysis. Knockdown of Capg in the AML murine model resulted in exhausted AML cells and prolonged survival of AML mice. In conclusion, SEs-associated gene CAPG can contributes to AML progression through NF-κB.
Collapse
Affiliation(s)
- Qian Ma
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Minyi Zhao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Bing Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haixia Li
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China.
| |
Collapse
|
9
|
Jiang B, Weinstock DM, Donovan KA, Sun HW, Wolfe A, Amaka S, Donaldson NL, Wu G, Jiang Y, Wilcox RA, Fischer ES, Gray NS, Wu W. ITK degradation to block T cell receptor signaling and overcome therapeutic resistance in T cell lymphomas. Cell Chem Biol 2023; 30:383-393.e6. [PMID: 37015223 PMCID: PMC10151063 DOI: 10.1016/j.chembiol.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 04/05/2023]
Abstract
Interleukin (IL)-2-inducible T cell kinase (ITK) is essential for T cell receptor (TCR) signaling and plays an integral role in T cell proliferation and differentiation. Unlike the ITK homolog BTK, no inhibitors of ITK are currently US Food and Drug Administration (FDA) approved. In addition, recent studies have identified mutations within BTK that confer resistance to both covalent and non-covalent inhibitors. Here, as an alternative strategy, we report the development of BSJ-05-037, a potent and selective heterobifunctional degrader of ITK. BSJ-05-037 displayed enhanced anti-proliferative effects relative to its parent inhibitor BMS-509744, blocked the activation of NF-kB/GATA-3 signaling, and increased the sensitivity of T cell lymphoma cells to cytotoxic chemotherapy both in vitro and in vivo. In summary, targeted degradation of ITK is a novel approach to modulate TCR signal strength that could have broad application for the investigation and treatment of T cell-mediated diseases.
Collapse
Affiliation(s)
- Baishan Jiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hong-Wei Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital, Jinan University, Zhuhai, China
| | - Ashley Wolfe
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sam Amaka
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nicholas L Donaldson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gongwei Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yuan Jiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Wenchao Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
10
|
Ming H, Li B, Jiang J, Qin S, Nice EC, He W, Lang T, Huang C. Protein degradation: expanding the toolbox to restrain cancer drug resistance. J Hematol Oncol 2023; 16:6. [PMID: 36694209 PMCID: PMC9872387 DOI: 10.1186/s13045-023-01398-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/01/2023] [Indexed: 01/25/2023] Open
Abstract
Despite significant progress in clinical management, drug resistance remains a major obstacle. Recent research based on protein degradation to restrain drug resistance has attracted wide attention, and several therapeutic strategies such as inhibition of proteasome with bortezomib and proteolysis-targeting chimeric have been developed. Compared with intervention at the transcriptional level, targeting the degradation process seems to be a more rapid and direct strategy. Proteasomal proteolysis and lysosomal proteolysis are the most critical quality control systems responsible for the degradation of proteins or organelles. Although proteasomal and lysosomal inhibitors (e.g., bortezomib and chloroquine) have achieved certain improvements in some clinical application scenarios, their routine application in practice is still a long way off, which is due to the lack of precise targeting capabilities and inevitable side effects. In-depth studies on the regulatory mechanism of critical protein degradation regulators, including E3 ubiquitin ligases, deubiquitylating enzymes (DUBs), and chaperones, are expected to provide precise clues for developing targeting strategies and reducing side effects. Here, we discuss the underlying mechanisms of protein degradation in regulating drug efflux, drug metabolism, DNA repair, drug target alteration, downstream bypass signaling, sustaining of stemness, and tumor microenvironment remodeling to delineate the functional roles of protein degradation in drug resistance. We also highlight specific E3 ligases, DUBs, and chaperones, discussing possible strategies modulating protein degradation to target cancer drug resistance. A systematic summary of the molecular basis by which protein degradation regulates tumor drug resistance will help facilitate the development of appropriate clinical strategies.
Collapse
Affiliation(s)
- Hui Ming
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing, 400038, China.
| | - Tingyuan Lang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, People's Republic of China. .,Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People's Republic of China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
11
|
Fuchs O. Targeting cereblon in hematologic malignancies. Blood Rev 2023; 57:100994. [PMID: 35933246 DOI: 10.1016/j.blre.2022.100994] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/28/2023]
Abstract
The protein cereblon (CRBN) is a substrate receptor of the cullin 4-really interesting new gene (RING) E3 ubiquitin ligase complex CRL4CRBN. Targeting CRBN mediates selective protein ubiquitination and subsequent degradation via the proteasome. This review describes novel thalidomide analogs, immunomodulatory drugs, also known as CRBN E3 ubiquitin ligase modulators or molecular glues (avadomide, iberdomide, CC-885, CC-90009, BTX-1188, CC-92480, CC-99282, CFT7455, and CC-91633), and CRBN-based proteolysis targeting chimeras (PROTACs) with increased efficacy and potent activity for application in hematologic malignancies. Both types of CRBN-binding drugs, molecular glues, and PROTACs stimulate the interaction between CRBN and its neosubstrates, recruiting target disease-promoting proteins and the E3 ubiquitin ligase CRL4CRBN. Proteins that are traditionally difficult to target (transcription factors and oncoproteins) can be polyubiquitinated and degraded in this way. The competition of CRBN neosubstrates with endogenous CRBN-interacting proteins and the pharmacology and rational combination therapies of and mechanisms of resistance to CRL4CRBN modulators or CRBN-based PROTACs are described.
Collapse
Affiliation(s)
- Ota Fuchs
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12800 Praha 2, Czech Republic.
| |
Collapse
|
12
|
Chen LY, Gooding S. Tumor and microenvironmental mechanisms of resistance to immunomodulatory drugs in multiple myeloma. Front Oncol 2022; 12:1038329. [PMID: 36439455 PMCID: PMC9682014 DOI: 10.3389/fonc.2022.1038329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 10/07/2023] Open
Abstract
Resistance to immunomodulatory drugs (IMiDs®) is a major cause of treatment failure, disease relapse and ultimately poorer outcomes in multiple myeloma (MM). In order to optimally deploy IMiDs and their newer derivates CRBN E3 ligase modulators (CELMoDs®) into future myeloma therapeutic regimens, it is imperative to understand the mechanisms behind the inevitable emergence of IMiD resistance. IMiDs bind and modulate Cereblon (CRBN), the substrate receptor of the CUL4CRBN E3 ubiquitin ligase, to target novel substrate proteins for ubiquitination and degradation. Most important of these are IKZF1 and IKZF3, key MM survival transcription factors which sustain the expression of myeloma oncogenes IRF4 and MYC. IMiDs directly target MM cell proliferation, but also stimulate T/NK cell activation by their CRBN-mediated effects, and therefore enhance anti-MM immunity. Thus, their benefits in myeloma are directed against tumor and immune microenvironment - and in considering the mechanisms by which IMiD resistance emerges, both these effects must be appraised. CRBN-dependent mechanisms of IMiD resistance, including CRBN genetic aberrations, CRBN protein loss and CRBN-substrate binding defects, are beginning to be understood. However, only a proportion of IMiD-resistant cases are related to CRBN and therefore additional mechanisms, which are currently less well described, need to be sought. These include resistance within the immune microenvironment. Here we review the existing evidence on both tumor and immune microenvironment mechanisms of resistance to IMiDs, pose important questions for future study, and consider how knowledge regarding resistance mechanism may be utilized to guide treatment decision making in the clinic.
Collapse
Affiliation(s)
- Lucia Y. Chen
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
| | - Sarah Gooding
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Słabicki M, Sperling AS. Repurposing the repurposed: thalidomide analogs as immune stimulants to overcome T cell exhaustion. Cell Chem Biol 2022; 29:1245-1247. [PMID: 35985276 DOI: 10.1016/j.chembiol.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this issue of Cell Chemical Biology, Geng and colleagues employ a novel mouse model of humanized cereblon (Crbn) to provide insights into the immunomodulatory effects of lenalidomide and provide rationale for potential therapeutic combinations including anti-PD1 immunotherapy.
Collapse
Affiliation(s)
- Mikołaj Słabicki
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Adam S Sperling
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Division of Hematology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Targeting IMiD-resistant T-cell lymphoma. Blood 2022; 139:1932-1933. [PMID: 35357480 DOI: 10.1182/blood.2021015119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 12/23/2022] Open
|