1
|
Isshiki Y, Chen X, Teater M, Karagiannidis I, Nam H, Cai W, Meydan C, Xia M, Shen H, Gutierrez J, Easwar Kumar V, Carrasco SE, Ouseph MM, Yamshon S, Martin P, Griess O, Shema E, Porazzi P, Ruella M, Brentjens RJ, Inghirami G, Zappasodi R, Chadburn A, Melnick AM, Béguelin W. EZH2 inhibition enhances T cell immunotherapies by inducing lymphoma immunogenicity and improving T cell function. Cancer Cell 2025; 43:49-68.e9. [PMID: 39642889 PMCID: PMC11732734 DOI: 10.1016/j.ccell.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/02/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
T cell-based immunotherapies have demonstrated effectiveness in treating diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL) but predicting response and understanding resistance remains a challenge. To address this, we developed syngeneic models reflecting the genetics, epigenetics, and immunology of human FL and DLBCL. We show that EZH2 inhibitors reprogram these models to re-express T cell engagement genes and render them highly immunogenic. EZH2 inhibitors do not harm tumor-controlling T cells or CAR-T cells. Instead, they reduce regulatory T cells, promote memory chimeric antigen receptor (CAR) CD8 phenotypes, and reduce exhaustion, resulting in a decreased tumor burden. Intravital 2-photon imaging shows increased CAR-T recruitment and interaction within the tumor microenvironment, improving lymphoma cell killing. Therefore, EZH2 inhibition enhances CAR-T cell efficacy through direct effects on CAR-T cells, in addition to rendering lymphoma B cells immunogenic. This approach is currently being evaluated in two clinical trials, NCT05934838 and NCT05994235, to improve immunotherapy outcomes in B cell lymphoma patients.
Collapse
MESH Headings
- Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors
- Enhancer of Zeste Homolog 2 Protein/immunology
- Animals
- Humans
- Mice
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Tumor Microenvironment/immunology
- Immunotherapy/methods
- Cell Line, Tumor
- Lymphoma, Follicular/immunology
- Lymphoma, Follicular/therapy
- Receptors, Chimeric Antigen/immunology
- Immunotherapy, Adoptive/methods
- T-Lymphocytes/immunology
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Yusuke Isshiki
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Xi Chen
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Matt Teater
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ioannis Karagiannidis
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Henna Nam
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Winson Cai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cem Meydan
- Institute for Computational Biomedicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Min Xia
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Hao Shen
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Johana Gutierrez
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Vigneshwari Easwar Kumar
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Sebastián E Carrasco
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA; Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and Rockefeller University, New York City, NY, USA
| | - Madhu M Ouseph
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Samuel Yamshon
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Peter Martin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ofir Griess
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Efrat Shema
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Patrizia Porazzi
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Ruella
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renier J Brentjens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Roberta Zappasodi
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Ari M Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
2
|
Blanchard Z, Brown EA, Ghazaryan A, Welm AL. PDX models for functional precision oncology and discovery science. Nat Rev Cancer 2024:10.1038/s41568-024-00779-3. [PMID: 39681638 DOI: 10.1038/s41568-024-00779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Precision oncology relies on detailed molecular analysis of how diverse tumours respond to various therapies, with the aim to optimize treatment outcomes for individual patients. Patient-derived xenograft (PDX) models have been key to preclinical validation of precision oncology approaches, enabling the analysis of each tumour's unique genomic landscape and testing therapies that are predicted to be effective based on specific mutations, gene expression patterns or signalling abnormalities. To extend these standard precision oncology approaches, the field has strived to complement the otherwise static and often descriptive measurements with functional assays, termed functional precision oncology (FPO). By utilizing diverse PDX and PDX-derived models, FPO has gained traction as an effective preclinical and clinical tool to more precisely recapitulate patient biology using in vivo and ex vivo functional assays. Here, we explore advances and limitations of PDX and PDX-derived models for precision oncology and FPO. We also examine the future of PDX models for precision oncology in the age of artificial intelligence. Integrating these two disciplines could be the key to fast, accurate and cost-effective treatment prediction, revolutionizing oncology and providing patients with cancer with the most effective, personalized treatments.
Collapse
Affiliation(s)
- Zannel Blanchard
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Elisabeth A Brown
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Arevik Ghazaryan
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Alana L Welm
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Panting RG, Kotecha RS, Cheung LC. The critical role of the bone marrow stromal microenvironment for the development of drug screening platforms in leukemia. Exp Hematol 2024; 133:104212. [PMID: 38552942 DOI: 10.1016/j.exphem.2024.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Extensive research over the past 50 years has resulted in significant improvements in survival for patients diagnosed with leukemia. Despite this, a subgroup of patients harboring high-risk genetic alterations still suffer from poor outcomes. There is a desperate need for new treatments to improve survival, yet consistent failure exists in the translation of in vitro drug development to clinical application. Preclinical screening conventionally utilizes tumor cell monocultures to assess drug activity; however, emerging research has acknowledged the vital role of the tumor microenvironment in treatment resistance and disease relapse. Current co-culture drug screening methods frequently employ fibroblasts as the designated stromal cell component. Alternative stromal cell types that are known to contribute to chemoresistance are often absent in preclinical evaluations of drug efficacy. This review highlights mechanisms of chemoresistance by a range of different stromal constituents present in the bone marrow microenvironment. Utilizing an array of stromal cell types at the early stages of drug screening may enhance the translation of in vitro drug development to clinical use. Ultimately, we highlight the need to consider the bone marrow microenvironment in drug screening platforms for leukemia to develop superior therapies for the treatment of high-risk patients with poor prognostic outcomes.
Collapse
Affiliation(s)
- Rhiannon G Panting
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | - Rishi S Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia; School of Medicine, University of Western Australia, Perth, Western Australia, Australia; Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Laurence C Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia; Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
4
|
Fischer A, Alsina-Sanchis E. Disturbed endothelial cell signaling in tumor progression and therapy resistance. Curr Opin Cell Biol 2024; 86:102287. [PMID: 38029706 DOI: 10.1016/j.ceb.2023.102287] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Growth of new blood vessels is considered requisite to cancer progression. Recent findings revealed that in addition to inducing angiogenesis, tumor-derived factors alter endothelial cell gene transcription within the tumor mass but also systemically throughout the body. This subsequently contributes to immunosuppression, altered metabolism, therapy resistance and metastasis. Clinical studies demonstrated that targeting the endothelium can increase the success rate of immunotherapy. Single-cell technologies revealed remarkable organ-specific endothelial heterogeneity that becomes altered by the presence of a tumor. In metastases, endothelial transcription differs remarkably between newly formed and co-opted vessels which may provide a basis for developing new therapies to target endothelial cells and overcome therapy resistance more effectively. This review addresses how cancers impact the endothelium to facilitate tumor progression.
Collapse
Affiliation(s)
- Andreas Fischer
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen University, 37075 Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany.
| | - Elisenda Alsina-Sanchis
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen University, 37075 Göttingen, Germany
| |
Collapse
|
5
|
Liu J, Jiang P, Lu Z, Yu Z, Qian P. Decoding leukemia at the single-cell level: clonal architecture, classification, microenvironment, and drug resistance. Exp Hematol Oncol 2024; 13:12. [PMID: 38291542 PMCID: PMC10826069 DOI: 10.1186/s40164-024-00479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
Leukemias are refractory hematological malignancies, characterized by marked intrinsic heterogeneity which poses significant obstacles to effective treatment. However, traditional bulk sequencing techniques have not been able to effectively unravel the heterogeneity among individual tumor cells. With the emergence of single-cell sequencing technology, it has bestowed upon us an unprecedented resolution to comprehend the mechanisms underlying leukemogenesis and drug resistance across various levels, including the genome, epigenome, transcriptome and proteome. Here, we provide an overview of the currently prevalent single-cell sequencing technologies and a detailed summary of single-cell studies conducted on leukemia, with a specific focus on four key aspects: (1) leukemia's clonal architecture, (2) frameworks to determine leukemia subtypes, (3) tumor microenvironment (TME) and (4) the drug-resistant mechanisms of leukemia. This review provides a comprehensive summary of current single-cell studies on leukemia and highlights the markers and mechanisms that show promising clinical implications for the diagnosis and treatment of leukemia.
Collapse
Affiliation(s)
- Jianche Liu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- International Campus, Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Penglei Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, 310058, China
| | - Zezhen Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- International Campus, Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Zebin Yu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, 310058, China
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Menéndez V, Solórzano JL, García-Cosío M, Alonso-Alonso R, Rodríguez M, Cereceda L, Fernández S, Díaz E, Montalbán C, Estévez M, Piris MA, García JF. Immune and stromal transcriptional patterns that influence the outcome of classic Hodgkin lymphoma. Sci Rep 2024; 14:710. [PMID: 38184757 PMCID: PMC10771441 DOI: 10.1038/s41598-024-51376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024] Open
Abstract
Classic Hodgkin lymphoma (cHL) is characterized by a rich immune microenvironment as the main tumor component. It involves a broad range of cell populations, which are largely unexplored, even though they are known to be essential for growth and survival of Hodgkin and Reed-Sternberg cells. We profiled the gene expression of 25 FFPE cHL samples using NanoString technology and resolved their microenvironment compositions using cell-deconvolution tools, thereby generating patient-specific signatures. The results confirm individual immune fingerprints and recognize multiple clusters enriched in refractory patients, highlighting the relevance of: (1) the composition of immune cells and their functional status, including myeloid cell populations (M1-like, M2-like, plasmacytoid dendritic cells, myeloid-derived suppressor cells, etc.), CD4-positive T cells (exhausted, regulatory, Th17, etc.), cytotoxic CD8 T and natural killer cells; (2) the balance between inflammatory signatures (such as IL6, TNF, IFN-γ/TGF-β) and MHC-I/MHC-II molecules; and (3) several cells, pathways and genes related to the stroma and extracellular matrix remodeling. A validation model combining relevant immune and stromal signatures identifies patients with unfavorable outcomes, producing the same results in an independent cHL series. Our results reveal the heterogeneity of immune responses among patients, confirm previous findings, and identify new functional phenotypes of prognostic and predictive utility.
Collapse
Affiliation(s)
- Victoria Menéndez
- Translational Research, Fundación MD Anderson International España. Madrid, 28033, Madrid, Spain
| | - José L Solórzano
- Translational Research, Fundación MD Anderson International España. Madrid, 28033, Madrid, Spain
- Pathology Department, MD Anderson Cancer Center Madrid, C/Arturo Soria, 270, 28033, Madrid, Spain
| | - Mónica García-Cosío
- Pathology Department, Hospital Universitario Ramón y Cajal, 28034, Madrid, Spain
| | - Ruth Alonso-Alonso
- Pathology Department, IIS Hospital Universitario Fundación Jiménez Díaz, 28040, Madrid, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Marta Rodríguez
- Pathology Department, IIS Hospital Universitario Fundación Jiménez Díaz, 28040, Madrid, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Laura Cereceda
- Translational Research, Fundación MD Anderson International España. Madrid, 28033, Madrid, Spain
- Pathology Department, MD Anderson Cancer Center Madrid, C/Arturo Soria, 270, 28033, Madrid, Spain
| | - Sara Fernández
- Translational Research, Fundación MD Anderson International España. Madrid, 28033, Madrid, Spain
- Pathology Department, MD Anderson Cancer Center Madrid, C/Arturo Soria, 270, 28033, Madrid, Spain
| | - Eva Díaz
- Translational Research, Fundación MD Anderson International España. Madrid, 28033, Madrid, Spain
| | - Carlos Montalbán
- Hematology Department, MD Anderson Cancer Center Madrid, 28033, Madrid, Spain
| | - Mónica Estévez
- Hematology Department, MD Anderson Cancer Center Madrid, 28033, Madrid, Spain
| | - Miguel A Piris
- Pathology Department, IIS Hospital Universitario Fundación Jiménez Díaz, 28040, Madrid, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Juan F García
- Translational Research, Fundación MD Anderson International España. Madrid, 28033, Madrid, Spain.
- Pathology Department, MD Anderson Cancer Center Madrid, C/Arturo Soria, 270, 28033, Madrid, Spain.
- Center for Biomedical Network Research on Cancer (CIBERONC), ISCIII, 28029, Madrid, Spain.
| |
Collapse
|
7
|
Oria VO, Erler JT. Tumor Angiocrine Signaling: Novel Targeting Opportunity in Cancer. Cells 2023; 12:2510. [PMID: 37887354 PMCID: PMC10605017 DOI: 10.3390/cells12202510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
The vascular endothelium supplies nutrients and oxygen to different body organs and supports the progression of diseases such as cancer through angiogenesis. Pathological angiogenesis remains a challenge as most patients develop resistance to the approved anti-angiogenic therapies. Therefore, a better understanding of endothelium signaling will support the development of more effective treatments. Over the past two decades, the emerging consensus suggests that the role of endothelial cells in tumor development has gone beyond angiogenesis. Instead, endothelial cells are now considered active participants in the tumor microenvironment, secreting angiocrine factors such as cytokines, growth factors, and chemokines, which instruct their proximate microenvironments. The function of angiocrine signaling is being uncovered in different fields, such as tissue homeostasis, early development, organogenesis, organ regeneration post-injury, and tumorigenesis. In this review, we elucidate the intricate role of angiocrine signaling in cancer progression, including distant metastasis, tumor dormancy, pre-metastatic niche formation, immune evasion, and therapy resistance.
Collapse
Affiliation(s)
- Victor Oginga Oria
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark;
| | | |
Collapse
|
8
|
Lehner KM, Gopalakrishnapillai A, Kolb EA, Barwe SP. Bone Marrow Microenvironment-Induced Chemoprotection in KMT2A Rearranged Pediatric AML Is Overcome by Azacitidine-Panobinostat Combination. Cancers (Basel) 2023; 15:3112. [PMID: 37370721 DOI: 10.3390/cancers15123112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Advances in therapies of pediatric acute myeloid leukemia (AML) have been minimal in recent decades. Although 82% of patients will have an initial remission after intensive therapy, approximately 40% will relapse. KMT2A is the most common chromosomal translocation in AML and has a poor prognosis resulting in high relapse rates and low chemotherapy efficacy. Novel targeted approaches are needed to increase sensitivity to chemotherapy. Recent studies have shown how interactions within the bone marrow (BM) microenvironment help AML cells evade chemotherapy and contribute to relapse by promoting leukemic blast survival. This study investigates how DNA hypomethylating agent azacitidine and histone deacetylase inhibitor panobinostat synergistically overcome BM niche-induced chemoprotection modulated by stromal, endothelial, and mesenchymal stem cells and the extracellular matrix (ECM). We show that direct contact between AML cells and BM components mediates chemoprotection. We demonstrate that azacitidine and panobinostat synergistically sensitize MV4;11 cells and KMT2A rearranged pediatric patient-derived xenograft lines to cytarabine in multicell coculture. Treatment with the epigenetic drug combination reduced leukemic cell association with multicell monolayer and ECM in vitro and increased mobilization of leukemic cells from the BM in vivo. Finally, we show that pretreatment with the epigenetic drug combination improves the efficacy of chemotherapy in vivo.
Collapse
Affiliation(s)
- Kara M Lehner
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children's Hospital, Wilmington, DE 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Anilkumar Gopalakrishnapillai
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children's Hospital, Wilmington, DE 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Edward Anders Kolb
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children's Hospital, Wilmington, DE 19803, USA
| | - Sonali P Barwe
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children's Hospital, Wilmington, DE 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
9
|
Newer insights on how to TEC down T-ALL. Blood 2023; 141:444-445. [PMID: 36729545 DOI: 10.1182/blood.2022018004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
10
|
Khademi R, Mohammadi Z, Khademi R, Saghazadeh A, Rezaei N. Nanotechnology-based diagnostics and therapeutics in acute lymphoblastic leukemia: a systematic review of preclinical studies. NANOSCALE ADVANCES 2023; 5:571-595. [PMID: 36756502 PMCID: PMC9890594 DOI: 10.1039/d2na00483f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/19/2022] [Indexed: 05/23/2023]
Abstract
Background: Leukemia is a malignant disease that threatens human health and life. Nano-delivery systems improve drug solubility, bioavailability, and blood circulation time, and release drugs selectively at desired sites using targeting or sensing strategies. As drug carriers, they could improve therapeutic outcomes while reducing systemic toxicity. They have also shown promise in improving leukemia detection and diagnosis. The study aimed to assess the potential of nanotechnology-based diagnostics and therapeutics in preclinical human acute lymphoblastic leukemia (h-ALL). Methods: We performed a systematic search through April 2022. Articles written in English reporting the toxicity, efficacy, and safety of nanotechnology-based drugs (in the aspect of treatment) and specificity, limit of detection (LOD), or sensitivity (in the aspect of the detection field) in preclinical h-ALL were included. The study was performed according to PRISMA instructions. The methodological quality was assessed using the QualSyst tool. Results: A total of 63 original articles evaluating nanotechnology-based therapeutics and 35 original studies evaluating nanotechnology-based diagnostics were included in this review. As therapeutics in ALL, nanomaterials offer controlled release, targeting or sensing ligands, targeted gene therapy, photodynamic therapy and photothermic therapy, and reversal of multidrug-resistant ALL. A narrative synthesis of studies revealed that nanoparticles improve the ratio of efficacy to the toxicity of anti-leukemic drugs. They have also been developed as a vehicle for biomolecules (such as antibodies) that can help detect and monitor leukemic biomarkers. Therefore, nanomaterials can help with early diagnostics and personalized treatment of ALL. Conclusion: This review discussed nanotechnology-based preclinical strategies to achieve ALL diagnosis and therapy advancement. This involves modern drug delivery apparatuses and detection devices for prompt and targeted disease diagnostics. Nonetheless, we are yet in the experimental phase and investigational stage in the field of nanomedicine, with many features remained to be discovered as well as numerous problems to be solved.
Collapse
Affiliation(s)
- Reyhane Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN) Tehran Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN) Tehran Iran
- Department of Medical Laboratory Sciences, School of Para-medicine, Ahvaz Jundishapour University of Medical Sciences Ahvaz Iran
| | - Zahra Mohammadi
- Radiological Technology Department of Actually Paramedical Sciences, Babol University of Medical Sciences Babol Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN) Babol Iran
| | - Rahele Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN) Tehran Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN) Tehran Iran
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences Dr Qarib St, Keshavarz Blvd Tehran 14194 Iran +98-21-6692-9235 +98-21-6692-9234
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN) Tehran Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences Dr Qarib St, Keshavarz Blvd Tehran 14194 Iran +98-21-6692-9235 +98-21-6692-9234
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN) Tehran Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|