1
|
Holmström MO, Ruders JH, Riley CH, Larsen MK, Grauslund JH, Kjær L, Skov V, Ellervik C, Guo BB, Linden M, Hasselbalch HC, Andersen MH. The CALR mutations enhance the expression of the immunosuppressive proteins GARP and LAP on peripheral blood lymphocytes through increased binding of activated platelets. Br J Haematol 2024; 205:1417-1429. [PMID: 39161981 DOI: 10.1111/bjh.19711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024]
Abstract
Recently, an antibody which inhibits the glycoprotein A repetitions predominant (GARP)-mediated release of active transforming growth factor beta (TGFβ) from the TGFβ propeptide latency-associated peptide (LAP) showed preclinical activity in a murine model of the chronic myeloproliferative neoplasms (MPN). Consequently, we investigated the expression of the immunosuppressive molecules LAP and GARP on peripheral blood lymphocytes from 56 MPN patients and 11 healthy donors (HD). We found that lymphocytes from patients with MPN express higher levels of LAP and GARP with no strong differences found between the different MPN diagnoses. The impact of clinical parameters on the expression of LAP and GARP by lymphocytes showed that patients with calreticulin (CALR)mut MPN have increased expression compared with HD and patients with the Januskinase2 (JAK2) mutation. The fraction of lymphocytes bound to activated platelets (aPLT) strongly correlate to LAP and GARP expression suggesting that it is not the lymphocytes themselves but aPLT, which confer the increased expression of GARP and LAP on MPN patient lymphocytes. Notably, no differences in neither platelet counts nor anti-thrombotic therapy was identified between patients with JAK2- and CALRmut patients. Analysis of platelet gene expression failed to identify differences in expression of relevant genes between JAK2- and CALRmut patients.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev University Hospital, Herlev, Denmark
| | - Josephine Hallundbæk Ruders
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev University Hospital, Herlev, Denmark
| | | | | | - Jacob Handlos Grauslund
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev University Hospital, Herlev, Denmark
| | - Lasse Kjær
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Department of Clinical Biochemistry, Zealand University Hospital, Koege, Denmark
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Belinda B Guo
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Matthew Linden
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | | | - Mads Hald Andersen
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Sivaraj KK, Majev PG, Dharmalingam B, Schröder S, Banjanin B, Stehling M, Zeuschner D, Nordheim A, Schneider RK, Adams RH. Endothelial LATS2 is a suppressor of bone marrow fibrosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:951-969. [PMID: 39155965 PMCID: PMC11324521 DOI: 10.1038/s44161-024-00508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/13/2024] [Indexed: 08/20/2024]
Abstract
Myelofibrosis and osteosclerosis are fibrotic diseases disrupting bone marrow function that occur in various leukemias but also in response to non-malignant alterations in hematopoietic cells. Here we show that endothelial cell-specific inactivation of the Lats2 gene, encoding Hippo kinase large tumor suppressor kinase 2, or overexpression of the downstream effector YAP1 induce myofibroblast formation and lead to extensive fibrosis and osteosclerosis, which impair bone marrow function and cause extramedullary hematopoiesis in the spleen. Mechanistically, loss of LATS2 induces endothelial-to-mesenchymal transition, resulting in increased expression of extracellular matrix and secreted signaling molecules. Changes in endothelial cells involve increased expression of serum response factor target genes, and, strikingly, major aspects of the LATS2 mutant phenotype are rescued by inactivation of the Srf gene. These findings identify the endothelium as a driver of bone marrow fibrosis, which improves understanding of myelofibrotic and osteosclerotic diseases, for which drug therapies are currently lacking.
Collapse
Affiliation(s)
- Kishor K. Sivaraj
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Paul-Georg Majev
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Silke Schröder
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Bella Banjanin
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Alfred Nordheim
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Rebekka K. Schneider
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute for Cell and Tumor Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Ralf H. Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
3
|
Zhang W, He Y, Chu Y, Zhai Y, Qian S, Wang X, Jiang P, Cui P, Zhang Y, Wang J. Amorphous curcumin-based hydrogels to reduce the incidence of post-surgical intrauterine adhesions. Regen Biomater 2024; 11:rbae043. [PMID: 38779348 PMCID: PMC11110854 DOI: 10.1093/rb/rbae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/25/2024] Open
Abstract
The incidence of intrauterine adhesions (IUA) has increased with the rising utilization of intrauterine surgery. The postoperative physical barrier methods commonly used, such as balloons and other fillers, have limited effectiveness and may even cause further damage to the remaining endometrial tissue. Herein, we developed an injectable thermosensitive hydrogel using Pluronic F127/F68 as pharmaceutical excipients and curcumin as a natural active molecule. The hydrogel effectively addresses solubility and low bioavailability issues associated with curcumin. In vitro, drug release assays revealed that the amorphous curcumin hydrogel promotes dissolution and sustained release of curcumin. In vitro experiments reveal high biocompatibility of the hydrogel and its ability to enhance vascular formation while inhibiting the expression of fibrotic factor TGF-β1. To assess the effectiveness of preventing IUAs, in vivo experiments were conducted using IUA rats and compared with a class III medical device, a new-crosslinked hyaluronic acid (NCHA) gel. According to the study, curcumin hydrogel is more effective than the NCHA group in improving the regeneration of the endometrium, increasing the blood supply to the endometrium and reducing the abnormal deposition of fibrin, thus preventing IUA more effectively. This study provides a promising strategy for treating and preventing IUA.
Collapse
Affiliation(s)
- Wenya Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Yuxin He
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Yun Chu
- Jiangsu Trautec Medical Technology Co., Ltd, Changzhou 213200, P. R. China
| | - Yuanxin Zhai
- Jiangsu Trautec Medical Technology Co., Ltd, Changzhou 213200, P. R. China
| | - Song Qian
- Jiangsu Trautec Medical Technology Co., Ltd, Changzhou 213200, P. R. China
| | - Xinhui Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
- Jiangsu Trautec Medical Technology Co., Ltd, Changzhou 213200, P. R. China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Yin Zhang
- Department of Gynecology, Changzhou Traditional Chinese Medicine Hospital, Changzhou 213004, P. R. China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
4
|
Kgokolo MCM, Malinga NZ, Steel HC, Meyer PWA, Smit T, Anderson R, Rapoport BL. Transforming growth factor-β1 and soluble co-inhibitory immune checkpoints as putative drivers of immune suppression in patients with basal cell carcinoma. Transl Oncol 2024; 42:101867. [PMID: 38308919 PMCID: PMC10847768 DOI: 10.1016/j.tranon.2023.101867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 02/05/2024] Open
Abstract
The current study compared the levels and possible associations between systemic soluble immune checkpoints (sICPs, n = 17) and a group of humoral modulators of immune suppressor cells (n = 7) in a cohort of patients with basal cell carcinoma (BCC, n = 40) and a group of healthy control subjects (n = 20). The seven humoral modulators of immunosuppressor cells were represented by the enzymes, arginase 1 and fibroblast activation protein (FAP), the chemokine, RANTES (CCL5) and the cytokines, interleukin-10 and transforming growth factor-β1 (TGF-β1), as well as the M2-type macrophage markers, soluble CD163 (sCD163) and sCD206. The plasma levels of six co-inhibitory sICPs, sCTLA-4, sLAG-3, sPD-1, sPD-L1, sTIM-3 and sPD-L2 were significantly elevated in the cohort of BCC patients (p<0.001-p<0.00001), while that of sBTLA was significantly decreased (p<0.006). Of the co-stimulatory sICPs, sCD27 and sGITR were significantly increased (p<0.0002 and p<0.0538) in the cohort of BCC patients, while the others were essentially comparable with those of the control participants; of the dual active sICPs, sHVEM was significantly elevated (p<0.00001) and TLR2 comparable with the control group. A correlation heat map revealed selective, strong associations of TGF-β1 with seven co-stimulatory (z = 0.618468-0.768131) and four co-inhibitory (z = 0.674040-0.808365) sICPs, as well as with sTLR2 (z = 0.696431). Notwithstanding the association of BCC with selective elevations in the levels of a large group of co-inhibitory sICPs, our novel findings also imply the probable involvement of TGF-β1 in driving immunosuppression in this malignancy, possibly via activation of regulatory T cells. Notably, these abnormalities were present in patients with either newly diagnosed or recurrent disease.
Collapse
Affiliation(s)
- Mahlatse C M Kgokolo
- Department of Dermatology, School of Medicine, Faculty of Health Sciences, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa.
| | - Nonkululeko Z Malinga
- Department of Dermatology, School of Medicine, Faculty of Health Sciences, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Helen C Steel
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Pieter W A Meyer
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa
| | - Teresa Smit
- The Medical Oncology Centre of Rosebank, Saxonwold, Johannesburg, South Africa
| | - Ronald Anderson
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Bernardo L Rapoport
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; The Medical Oncology Centre of Rosebank, Saxonwold, Johannesburg, South Africa.
| |
Collapse
|
5
|
Calledda FR, Malara A, Balduini A. Inflammation and bone marrow fibrosis: novel immunotherapeutic targets. Curr Opin Hematol 2023; 30:237-244. [PMID: 37548363 DOI: 10.1097/moh.0000000000000778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
PURPOSE OF REVIEW Myelofibrosis (MF) is primarily driven by constitutive activation of the Janus kinase/signal transducer of activators of transcription (JAK/STAT) pathway. While JAK inhibitors have shown to alleviate disease symptoms, their disease-modifying effects in MF are limited. The only curative treatment remains allogeneic stem cell transplantation, which can be applied to a minority of patients. As a result, there is a need to explore novel targets in MF to facilitate appropriate drug development and therapeutic pathways. RECENT FINDINGS Recent research has focused on identifying novel signals that contribute to the abnormal cross-talk between hematopoietic and stromal cells, which promotes MF and disease progression. Inflammation and immune dysregulation have emerged as key drivers of both the initiation and progression of MF. A growing number of actionable targets has been identified, including cytokines, transcription factors, signalling networks and cell surface-associated molecules. These targets exhibit dysfunctions in malignant and nonmalignant hematopoietic cells, but also in nonhematopoietic cells of the bone marrow. The study of these inflammation-related molecules, in preclinical models and MF patient's samples, is providing novel therapeutic targets. SUMMARY The identification of immunotherapeutic targets is expanding the therapeutic landscape of MF. This review provides a summary of the most recent advancements in the study of immunotherapeutic targets in MF.
Collapse
|