1
|
Bahraini M, Fazeli A, Dorgalaleh A. Laboratory Diagnosis of Activated Protein C Resistance and Factor V Leiden. Semin Thromb Hemost 2024; 50:1067-1083. [PMID: 37429328 DOI: 10.1055/s-0043-1770773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The factor V Leiden (FVL) polymorphism is known as the most common inherited risk factor for venous thrombosis. In turn, FVL is the leading cause of an activated protein C resistance (APCR) phenotype, in which the addition of exogenous activated protein C to plasma does not result in the expected anticoagulant effect. In the routine laboratory approach to the formal diagnosis of FVL, an initial positive screening plasma-based method for APCR is often performed, and only if needed, this is followed by a confirmatory DNA-based assay for FVL. Multiple methods with accepted sensitivity and specificity for determining an APCR/FVL phenotype are commonly categorized into two separate groups: (1) screening plasma-based assays, including qualitative functional clot-based assays, for APCR, and (2) confirmatory DNA-based molecular assays, entailing several tests and platforms, including polymerase chain reaction-based and non-PCR-based techniques, for FVL. This review will describe the methodological aspects of each laboratory test and prepare suggestions on the indication of APCR and FVL testing and method selection.
Collapse
Affiliation(s)
- Mehran Bahraini
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alieh Fazeli
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akbar Dorgalaleh
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Moore GW. Thrombophilia Screening: Not So Straightforward. Semin Thromb Hemost 2024; 50:1131-1152. [PMID: 38733983 DOI: 10.1055/s-0044-1786807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Although inherited thrombophilias are lifelong risk factors for a first thrombotic episode, progression to thrombosis is multifactorial and not all individuals with inherited thrombophilia develop thrombosis in their lifetimes. Consequently, indiscriminate screening in patients with idiopathic thrombosis is not recommended, since presence of a thrombophilia does not necessarily predict recurrence or influence management, and testing should be selective. It follows that a decision to undertake laboratory detection of thrombophilia should be aligned with a concerted effort to identify any significant abnormalities, because it will inform patient management. Deficiencies of antithrombin and protein C are rare and usually determined using phenotypic assays assessing biological activities, whereas protein S deficiency (also rare) is commonly detected with antigenic assays for the free form of protein S since available activity assays are considered to lack specificity. In each case, no single phenotypic assay is capable of detecting every deficiency, because the various mutations express different molecular characteristics, rendering thrombophilia screening repertoires employing one assay per potential deficiency, of limited effectiveness. Activated protein C resistance (APCR) is more common than discrete deficiencies of antithrombin, protein C, and protein S and also often detected initially with phenotypic assays; however, some centres perform only genetic analysis for factor V Leiden, as this is responsible for most cases of hereditary APCR, accepting that acquired APCR and rare F5 mutations conferring APCR will go undetected if only factor V Leiden is evaluated. All phenotypic assays have interferences and limitations, which must be factored into decisions about if, and when, to test, and be given consideration in the laboratory during assay performance and interpretation. This review looks in detail at performance and limitations of routine phenotypic thrombophilia assays.
Collapse
Affiliation(s)
- Gary W Moore
- Specialist Haemostasis Laboratory, Cambridge Haemophilia and Thrombophilia Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Natural Sciences, Middlesex University, London, United Kingdom
| |
Collapse
|
3
|
Shimonishi N, Morishita E, Ogiwara K, Maruyama K, Yoshida J, Horie K, Nogami K. A novel factor V compound heterozygous mutation associated with thrombosis (Y1961C; FV-Kanazawa, together with 1982_1983del). J Thromb Haemost 2024; 22:2810-2822. [PMID: 38950780 DOI: 10.1016/j.jtha.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Factor (F)V is pivotal in both procoagulant and anticoagulant mechanisms. The present report describes a novel F5 mutation in a FV-deficient patient (FV activity, 6 IU/dL; FV antigen, 32 IU/dL) complicated by recurrent deep vein thrombosis. The patient demonstrated activated protein C resistance (APCR) with compound heterozygous mutations consisting of FV-Y1961C (FVKanazawa) and FV-1982_1983del. OBJECTIVES To clarify thrombotic mechanisms associated with this FV abnormality. METHODS AND RESULTS Levels of FV-1982_1983del were below the detection sensitivity in our expression experiments using human embryonic kidney 293T cells, and analyses were targeted, therefore, on the FV-Y1961C mutation. Activated partial thromboplastin time-based clotting assays demonstrated that FV-Y1961C exhibited APCR and that the reduced activated protein C (APC) susceptibility in FVa-Y1961C resulted in a marked depression of APC-catalyzed inactivation with delayed cleavage at Arg506 and little cleavage at Arg306 with or without protein S. The APC cofactor activity of FV-Y1961C in APC-catalyzed FVIIIa inactivation promoted by Arg336 cleavage in FVIII was impaired. The binding affinity of FVa-Y1961C to phospholipid membranes was reduced in reactions involving APC/protein S-catalyzed inactivation and in prothrombinase activity. Furthermore, the addition of FVa-Y1961C to plasma failed to inhibit tissue factor-induced procoagulant function. These characteristics were similar to those of FV-W1920R (FVNara) and FV-A2086D (FVBesançon). CONCLUSION We identified a compound heterozygous FV-Y1961C mutation in the C1 domain representing a novel FV mutation (FVKanazawa) resulting in not only APCR due to impaired FVa susceptibility and FV cofactor activity for APC function but also impaired inhibition of tissue factor-induced procoagulant function. These defects in anticoagulant function associated with FV in FV-Y1961C contributed to a prothrombotic state.
Collapse
Affiliation(s)
- Naruto Shimonishi
- Department of Pediatrics, Nara Medical University, Kashihara, Japan; The Course of Thrombosis and Hemostasis Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Eriko Morishita
- Department of Clinical Laboratory Science, Kanazawa University, Kanazawa, Japan
| | - Kenichi Ogiwara
- Department of Pediatrics, Nara Medical University, Kashihara, Japan.
| | - Keiko Maruyama
- Department of Clinical Laboratory Science, Kanazawa University, Kanazawa, Japan; Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Junko Yoshida
- Department of Physiology II, Nara Medical University, Kashihara, Japan
| | - Kyoji Horie
- Department of Physiology II, Nara Medical University, Kashihara, Japan
| | - Keiji Nogami
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
| |
Collapse
|
4
|
Mohapatra AK, Todaro AM, Castoldi E. Factor V variants in bleeding and thrombosis. Res Pract Thromb Haemost 2024; 8:102330. [PMID: 38404937 PMCID: PMC10883835 DOI: 10.1016/j.rpth.2024.102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024] Open
Abstract
A state-of-the-art lecture titled "Factor V variants in bleeding and thrombosis" was presented at the International Society on Thrombosis and Haemostasis (ISTH) congress in 2023. Blood coagulation is a finely regulated cascade of enzymatic reactions culminating in thrombin formation and fibrin deposition at the site of injury. Factor V (FV) plays a central role in this process, as its activated form is an essential procoagulant cofactor in prothrombin activation. However, other molecular forms of FV act as anticoagulant cofactors of activated protein C and tissue factor pathway inhibitor α, respectively, thereby contributing to the regulation of coagulation. This dual procoagulant and anticoagulant character makes FV a central regulator of the hemostatic balance, and quantitative and qualitative alterations of FV may be associated with an increased risk of bleeding or venous thrombosis. Here, we review the procoagulant and anticoagulant functions of FV and the manifold mechanisms by which F5 gene mutations may affect the balance between these opposite functions and thereby predispose individuals to bleeding or venous thrombosis. In particular, we discuss our current understanding of the 3 main pathological conditions related to FV, namely FV deficiency, activated protein C resistance, and the overexpression of FV-short, a minor splicing isoform of FV with tissue factor pathway inhibitor α-dependent anticoagulant properties and an emerging role as a key regulator of the initiation of coagulation. Finally, we summarize relevant new data on this topic presented during the 2023 ISTH Congress.
Collapse
Affiliation(s)
- Adarsh K. Mohapatra
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, the Netherlands
| | - Alice M. Todaro
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, the Netherlands
| | - Elisabetta Castoldi
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
5
|
Shimonishi N, Ogiwara K, Yoshida J, Horie K, Nakajima Y, Furukawa S, Takeyama M, Nogami K. Impaired factor V-related anticoagulant mechanisms and deep vein thrombosis associated with A2086D and W1920R mutations. Blood Adv 2023; 7:2831-2842. [PMID: 36780344 PMCID: PMC10279549 DOI: 10.1182/bloodadvances.2022008918] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023] Open
Abstract
Factor V (FV) plays pivotal roles in both procoagulant and anticoagulant mechanisms. Genetic mutations, FV-W1920R (FVNara) and FV-A2086D (FVBesançon), in the C1 and C2 domains of FV light chain, respectively, seem to be associated with deep vein thrombosis. However, the detailed mechanism(s) through which these mutations are linked to thrombophilia remains to be fully explored. The aim of this study was to clarify thrombotic mechanism(s) in the presence of these FV abnormalities. Full-length wild-type (WT) and mutated FV were prepared using stable, human cell lines (HEK293T) and the piggyBac transposon system. Susceptibility of FVa-A2086D to activated protein C (APC) was reduced, resulting in significant inhibition of APC-catalyzed inactivation with limited cleavage at Arg306 and delayed cleavage at Arg506. Furthermore, APC cofactor activity of FV-A2086D in APC-catalyzed inactivation of FVIIIa through cleavage at Arg336 was impaired. Surface plasmon resonance-based assays demonstrated that FV-A2086D bound to Glu-Gly-Arg-chloromethylketone active site-blocked APC and protein S (P) with similar affinities to that of FV-WT. However, weakened interaction between FVa-A2086D and phospholipid membranes was evident through the prothrombinase assay. Moreover, addition of FVa-A2086D to plasma failed to inhibit tissue factor (TF)-induced thrombin generation and reduce prothrombin times. This inhibitory effect was independent of PC, PS, and antithrombin. The coagulant and anticoagulant characteristics of FV(a)-W1920R were similar to those of FV(a)-A2086D. FV-A2086D presented defects in the APC mechanisms associated with FVa inactivation and FV cofactor activity, similar to FV-W1920R. Moreover, both FV proteins that were mutated in the light chain impaired inhibition of TF-induced coagulation reactions. These defects were consistent with congenital thrombophilia.
Collapse
Affiliation(s)
- Naruto Shimonishi
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
- The Course of Thrombosis and Hemostasis Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Kenichi Ogiwara
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
| | - Junko Yoshida
- Department of Physiology II, Nara Medical University, Kashihara, Japan
| | - Kyoji Horie
- Department of Physiology II, Nara Medical University, Kashihara, Japan
| | - Yuto Nakajima
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Japan
| | - Shoko Furukawa
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
| | | | - Keiji Nogami
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
| |
Collapse
|
6
|
Moore GW, Castoldi E, Teruya J, Morishita E, Adcock DM. Factor V Leiden-independent activated protein C resistance: Communication from the plasma coagulation inhibitors subcommittee of the International Society on Thrombosis and Haemostasis Scientific and Standardisation Committee. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:164-174. [PMID: 36695379 DOI: 10.1016/j.jtha.2022.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 01/09/2023]
Abstract
Activated protein C resistance (APC-R) due to the single-nucleotide polymorphism factor V Leiden (FVL) is the most common cause of hereditary thrombophilia. It is found predominantly in Caucasians and is uncommon or absent in other populations. Although FVL is responsible for >90% of cases of hereditary APC-R, a number of other F5 variants that also confer various degrees of APC-R and thrombotic risk have been described. Acquired APC-R due to increased levels of coagulation factors, reduced levels of inhibitors, or the presence of autoantibodies occurs in a variety of conditions and is an independent risk factor for thrombosis. It is common for thrombophilia screening protocols to restrict assessment for APC-R to demonstrating the presence or absence of FVL. The aim of this Scientific and Standardisation Committee communication is to detail the causes of FVL-independent APC-R to widen the diagnostic net, particularly in situations in which in vitro APC-R is encountered in the absence of FVL. Predilution clotting assays are not FVL specific and are used to detect clinically significant F5 variants conferring APC-R, whereas different forms of acquired APC-R are preferentially detected using the classical activated partial thromboplastin time-based APC-R assay without predilution and/or endogenous thrombin potential APC-R assays. Resource-specific recommendations are given to guide the detection of FVL-independent APC-R.
Collapse
Affiliation(s)
- Gary W Moore
- Department of Haematology, Specialist Haemostasis Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Faculty of Science and Technology, Middlesex University, London, UK.
| | - Elisabetta Castoldi
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, the Netherlands
| | - Jun Teruya
- Department of Pathology & Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA; Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA; Department of Medicine, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Eriko Morishita
- Department of Hematology, Kanazawa University Hospital, Kanazawa, Japan
| | - Dorothy M Adcock
- Laboratory Corporation of America Holdings, Burlington, North Carolina, USA
| |
Collapse
|
7
|
Pajič T. Testing for Factor V Leiden (FVL) and Prothrombin G20210A Genetic Variants. Methods Mol Biol 2023; 2663:233-251. [PMID: 37204714 DOI: 10.1007/978-1-0716-3175-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Laboratory testing for Factor V Leiden and Prothrombin G20210A genetic variants permits defining the increased relative risk for venous thromboembolism in selected patients. Laboratory DNA testing for these variants may be undertaken by a variety of methods, including fluorescence-based quantitative real-time PCR (qPCR). This is a rapid, simple, robust, and reliable method to identify genotypes of interest. This chapter describes the method that employs PCR amplification of the patient DNA region of interest and genotyping by allele-specific discrimination technology on a quantitative real-time PCR (qPCR) instrument.
Collapse
Affiliation(s)
- Tadej Pajič
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia.
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
8
|
Maximiliano CL, Jaime GC, Armando VL, Vega IL, Victoria HG, Erika MH. Mechanisms Contributing to Acquired Activated Protein C Resistance in Patients Treated with Thalidomide: A Molecular Dynamics Study. Cardiovasc Hematol Disord Drug Targets 2023; 22:237-244. [PMID: 36694314 DOI: 10.2174/1871529x23666230123121602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/25/2023]
Abstract
INTRODUCTION There is a high incidence of venous thromboembolism (VTE) in patients with Multiple Myeloma (MM), however; until now, the exact mechanisms behind VTE in MM are unknown, and some of the elements that may play a significant role are the treatment with an immunomodulator (IMiD) and acquired resistance to activated protein C (APC). OBJECTIVE The study aims to reveal the possible mechanisms linked to the reduced antithrombotic activity of APC associated with thalidomide. METHODS The molecular docking approach was used to ascertain the in silico inhibitory potential of thalidomide on the APC protease domain in the architecture of the catalytic triad and its interaction with major substrate binding sites. RESULTS The coupling showed that the inhibitory activity of thalidomide depends on the induction of structural changes in the protease domain of APC, at the level of the Ser/His/Asp catalytic triad, as a result of a significant increase between the distances of CαAsp102 and Cα Ser195 (11.175 angstroms, increase 14.83%) and between CαSer195 and CαHis57 (9.478 angstroms, increase 13.78 %). This can result in an inefficient transfer of the proton between these residues, the other possible mechanism of inhibition, is a potential reduced binding of the substrate as a result of a direct interaction through a carbon-hydrogen bond on His57, an H-bond on Arg306, and a carbon hydrogen bond on Arg506. CONCLUSION We demonstrate the in silico inhibitory potential of thalidomide on APC, through two possible inhibition mechanisms, a pathophysiologically relevant finding to understand the factors that can affect the stability and functions of APC in vivo.
Collapse
Affiliation(s)
- Correa Lara Maximiliano
- Homeostasis and Thrombosis Clinic, Centro Medico Nacional "La Raza", Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Environmental Toxicology Laboratory, Instituto Politécnico Nacional, Mexico City, Mexico
| | - García Chavez Jaime
- Homeostasis and Thrombosis Clinic, Centro Medico Nacional "La Raza", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Vega Lopez Armando
- Environmental Toxicology Laboratory, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Israel Lara Vega
- Environmental Toxicology Laboratory, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Martinez Hernandez Erika
- Homeostasis and Thrombosis Clinic, Centro Medico Nacional "La Raza", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
9
|
Osman A, Jonasson J. Cross-ethnic analysis of common gene variants in hemostasis show lopsided representation of global populations in genetic databases. BMC Med Genomics 2022; 15:69. [PMID: 35337356 PMCID: PMC8957123 DOI: 10.1186/s12920-022-01220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/21/2022] [Indexed: 11/12/2022] Open
Abstract
A majority of studies reporting human genetic variants were performed in populations of European ancestry whereas other global populations, and particularly many ethnolinguistic groups in other continents, are heavily underrepresented in these studies. To investigate the extent of this disproportionate representation of global populations concerning variants of significance to thrombosis and hemostasis, 845 single nucleotide polymorphisms (SNPs) in and around 34 genes associated with thrombosis and hemostasis and included in the commercial Axiom Precision Medicine Research Array (PMRA) were evaluated, using gene frequencies in 3 African (Somali and Luhya in East Africa, and Yoruba in West Africa) and 14 non-African (admixed American, East Asian, European, South Asian, and sub-groups) populations. Among the populations studied, Europeans were observed to be the best represented population by the hemostatic SNPs included in the PMRA. The European population also presented the largest number of common pharmacogenetic and pathogenic hemostatic variants reported in the ClinVar database. The number of such variants decreased the farther the genetic distance a population was from Europeans, with Yoruba and East Asians presenting the least number of clinically significant hemostatic SNPs in ClinVar while also being the two genetically most distinct populations from Europeans among the populations compared. Current study shows the lopsided representation of global populations as regards to hemostatic genetic variants listed in different commercial SNP arrays, such as the PMRA, and reported in genetic databases while also underlining the importance of inclusion of non-European ethnolinguistic populations in genomics studies designed to discover variants of significance to bleeding and thrombotic disorders.
Collapse
Affiliation(s)
- Abdimajid Osman
- Department of Clinical Chemistry, University Hospital in Linköping, Ing. 64, Plan 11, 581 85, Linköping, Sweden. .,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Jon Jonasson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Clinical Genetics, University Hospital in Linköping, Linköping, Sweden
| |
Collapse
|
10
|
Rubio-Jurado B, Sosa-Quintero LS, Guzmán-Silahua S, García-Luna E, Riebeling-Navarro C, Nava-Zavala AH. The prothrombotic state in cancer. Adv Clin Chem 2021; 105:213-242. [PMID: 34809828 DOI: 10.1016/bs.acc.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neoplasms result from changes in the mechanisms of growth, differentiation, and cellular death. Cancers are of high clinical relevance due to their prevalence and associated morbidity and mortality. The clinical and biological diversity of cancer depends mainly on cellular origin and degree of differentiation. These changes result from alterations in molecular expression that generate a complex clinical, biochemical, and morphologic phenotype. Although cancer is associated with a hypercoagulable state, few cancers result in a thrombotic event. Many factors influence thrombotic incidence, such as advanced disease, central catheter placement, chemotherapy, neoplasia, and surgery. The pro-coagulant state is associated with anomalies in the vascular wall, blood flow, blood constituents (tissue factor, thrombin), coagulation state, and cell growth factors. Tumor cells perpetuate this phenomenon by releasing tissue factor, inflammatory cytokines, and growth factors. These changes favor cellular activation that gives rise to actions involving coagulation, inflammation, thrombosis, tumor growth, angiogenesis, and tumor metastases. These, in turn, are closely linked to treatment response, tumor aggressiveness, and host survival. Activation of the coagulation cascade is related to these phenomena through molecules that interact in these processes. As such, it is necessary to identify these mediators to facilitate treatment and improve outcomes.
Collapse
Affiliation(s)
- Benjamín Rubio-Jurado
- Departamento Clínico de Hematología, División Onco-Hematologia, UMAE, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México; Extensión, Consulting and Research Division, Universidad de Monterrey, San Pedro Garza García, Nuevo León, México; Unidad de Investigación Biomédica 02, UMAE, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Lluvia Sugey Sosa-Quintero
- Departamento Clínico de Hematología, División Onco-Hematologia, UMAE, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Sandra Guzmán-Silahua
- Unidad de Investigación Biomédica 02, UMAE, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Eduardo García-Luna
- División de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza García, Nuevo León, Mexico
| | - Carlos Riebeling-Navarro
- Unidad de Investigación en Epidemiologia Clínica, UMAE, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico; Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Arnulfo Hernán Nava-Zavala
- Unidad de Investigación Biomédica 02, UMAE, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico; Programa Internacional Facultad de Medicina, Universidad Autónoma de Guadalajara, Zapopan, Jalisco, Mexico; Servicio de Inmunología y Reumatología, División de Medicina Interna, Hospital General de Occidente, Secretaria de Salud Jalisco, Zapopan, Jalisco, Mexico.
| |
Collapse
|
11
|
Haloi N, Vasan AK, Geddes EJ, Prasanna A, Wen PC, Metcalf WW, Hergenrother PJ, Tajkhorshid E. Rationalizing the generation of broad spectrum antibiotics with the addition of a positive charge. Chem Sci 2021; 12:15028-15044. [PMID: 34909143 PMCID: PMC8612397 DOI: 10.1039/d1sc04445a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022] Open
Abstract
Antibiotic resistance of Gram-negative bacteria is largely attributed to the low permeability of their outer membrane (OM). Recently, we disclosed the eNTRy rules, a key lesson of which is that the introduction of a primary amine enhances OM permeation in certain contexts. To understand the molecular basis for this finding, we perform an extensive set of molecular dynamics (MD) simulations and free energy calculations comparing the permeation of aminated and amine-free antibiotic derivatives through the most abundant OM porin of E. coli, OmpF. To improve sampling of conformationally flexible drugs in MD simulations, we developed a novel, Monte Carlo and graph theory based algorithm to probe more efficiently the rotational and translational degrees of freedom visited during the permeation of the antibiotic molecule through OmpF. The resulting pathways were then used for free-energy calculations, revealing a lower barrier against the permeation of the aminated compound, substantiating its greater OM permeability. Further analysis revealed that the amine facilitates permeation by enabling the antibiotic to align its dipole to the luminal electric field of the porin and form favorable electrostatic interactions with specific, highly-conserved charged residues. The importance of these interactions in permeation was further validated with experimental mutagenesis and whole cell accumulation assays. Overall, this study provides insights on the importance of the primary amine for antibiotic permeation into Gram-negative pathogens that could help the design of future antibiotics. We also offer a new computational approach for calculating free-energy of processes where relevant molecular conformations cannot be efficiently captured.
Collapse
Affiliation(s)
- Nandan Haloi
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Archit Kumar Vasan
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Emily J Geddes
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Arjun Prasanna
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Department of Microbiology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Po-Chao Wen
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - William W Metcalf
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Department of Microbiology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
12
|
Bernal S, Pelaez I, Alias L, Baena M, De Pablo-Moreno JA, Serrano LJ, Camero MD, Tizzano EF, Berrueco R, Liras A. High Mutational Heterogeneity, and New Mutations in the Human Coagulation Factor V Gene. Future Perspectives for Factor V Deficiency Using Recombinant and Advanced Therapies. Int J Mol Sci 2021; 22:9705. [PMID: 34575869 PMCID: PMC8465496 DOI: 10.3390/ijms22189705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
Factor V is an essential clotting factor that plays a key role in the blood coagulation cascade on account of its procoagulant and anticoagulant activity. Eighty percent of circulating factor V is produced in the liver and the remaining 20% originates in the α-granules of platelets. In humans, the factor V gene is about 80 kb in size; it is located on chromosome 1q24.2, and its cDNA is 6914 bp in length. Furthermore, nearly 190 mutations have been reported in the gene. Factor V deficiency is an autosomal recessive coagulation disorder associated with mutations in the factor V gene. This hereditary coagulation disorder is clinically characterized by a heterogeneous spectrum of hemorrhagic manifestations ranging from mucosal or soft-tissue bleeds to potentially fatal hemorrhages. Current treatment of this condition consists in the administration of fresh frozen plasma and platelet concentrates. This article describes the cases of two patients with severe factor V deficiency, and of their parents. A high level of mutational heterogeneity of factor V gene was identified, nonsense mutations, frameshift mutations, missense changes, synonymous sequence variants and intronic changes. These findings prompted the identification of a new mutation in the human factor V gene, designated as Jaén-1, which is capable of altering the procoagulant function of factor V. In addition, an update is provided on the prospects for the treatment of factor V deficiency on the basis of yet-to-be-developed recombinant products or advanced gene and cell therapies that could potentially correct this hereditary disorder.
Collapse
Affiliation(s)
- Sara Bernal
- Department of Genetics, Santa Creu i Sant Pau Hospital and IIB Sant Pau, 08041 Barcelona, Spain; (S.B.); (L.A.); (M.B.)
- CIBERER. U-705, 18014 Barcelona, Spain
| | - Irene Pelaez
- Department of Pediatric and Oncohematology, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
| | - Laura Alias
- Department of Genetics, Santa Creu i Sant Pau Hospital and IIB Sant Pau, 08041 Barcelona, Spain; (S.B.); (L.A.); (M.B.)
- CIBERER. U-705, 18014 Barcelona, Spain
| | - Manel Baena
- Department of Genetics, Santa Creu i Sant Pau Hospital and IIB Sant Pau, 08041 Barcelona, Spain; (S.B.); (L.A.); (M.B.)
| | - Juan A. De Pablo-Moreno
- Department of Genetic, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
| | - Luis J. Serrano
- Department of Genetic, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
| | - M. Dolores Camero
- Association for the Investigation and Cure of Factor V Deficiency, 23002 Jaén, Spain;
| | - Eduardo F. Tizzano
- Department of Clinical and Molecular Genetics, University Hospital Vall d’Hebron and Medicine Genetics Group, Vall d’Hebron Research Institute, 08035 Barcelona, Spain;
| | - Ruben Berrueco
- Pediatric Hematology Department, Hospital Sant Joan de Déu, University of Barcelona and Research Institute Hospital Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Antonio Liras
- Department of Genetic, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
| |
Collapse
|
13
|
D’Andrea G, Margaglione M. Rare Defects: Looking at the Dark Face of the Thrombosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179146. [PMID: 34501736 PMCID: PMC8430787 DOI: 10.3390/ijerph18179146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022]
Abstract
Venous thromboembolism (VTE) constitutes a serious and potentially fatal disease, often complicated by pulmonary embolism and is associated with inherited or acquired factors risk. A series of risk factors are known to predispose to venous thrombosis, and these include mutations in the genes that encode anticoagulant proteins as antithrombin, protein C and protein S, and variants in genes that encode instead pro-coagulant factors as factor V (FV Leiden) and factor II (FII G20210A). However, the molecular causes responsible for thrombotic events in some individuals with evident inherited thrombosis remain unknown. An improved knowledge of risk factors, as well as a clear understanding of their role in the pathophysiology of VTE, are crucial to achieve a better identification of patients at higher risk. Moreover, the identification of genes with rare variants but a large effect size may pave the way for studies addressing new antithrombotic agents in order to improve the management of VTE patients. Over the past 20 years, qualitative or quantitative genetic risk factors such as inhibitor proteins of the hemostasis and of the fibrinolytic system, including fibrinogen, thrombomodulin, plasminogen activator inhibitor-1, and elevated concentrations of factors II, FV, VIII, IX, XI, have been associated with thrombotic events, often with conflicting results. The aim of this review is to evaluate available data in literature on these genetic variations to give a contribution to our understanding of the complex molecular mechanisms involved in physiologic and pathophysiologic clot formation and their role in clinical practice.
Collapse
|
14
|
Ašić A, Salazar R, Storm N, Doğan S, Höppner W, Marjanović D, Primorac D. Prevalence of rare F5 variants in general population from Bosnia and Herzegovina. Mol Biol Rep 2021; 48:5181-5186. [PMID: 34215992 DOI: 10.1007/s11033-021-06519-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/25/2021] [Indexed: 10/21/2022]
Abstract
Human gene F5, encoding coagulation factor V, was previously reported to be highly polymorphic. Apart from FV Leiden, several other rare variants have been detected in clinical practice and associated with thrombotic events, especially in cases when patient's phenotype and FV Leiden genotype were not in agreement. In this study, the prevalence of 17 rare F5 variants has been studied on a sample of 130 healthy adult individuals from the general Bosnian-Herzegovinian population. DNA was isolated from buccal swab samples, while genotyping was performed using MALDI-TOF MS method. The results have shown that Asp2194Gly and Met2120Thr are polymorphic in the study population with minor allele frequencies of 0.077 and 0.073, respectively. Additionally, these two variants were mutually exclusive with FV Leiden and none of them was positively associated with participants' family history of cardiovascular or cerebrovascular diseases. While the obtained results are in agreement with previously reported data for the general Caucasian populations, it is worth noting that only two rare F5 variants were detected in the study population, albeit at considerable frequencies. Still, scientific information on rare F5 variants is rather scarce and further studies aiming to assess functional importance of these variants, as well as their role as prothrombotic factors are necessary.
Collapse
Affiliation(s)
- Adna Ašić
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, 71000, Sarajevo, Bosnia and Herzegovina.
| | - Ramona Salazar
- Labor Dr. Heidrich Und Kollegen MVZ GmbH, Stuvkamp 22, 22081, Hamburg, Germany
| | - Niels Storm
- Labor Dr. Heidrich Und Kollegen MVZ GmbH, Stuvkamp 22, 22081, Hamburg, Germany
| | - Serkan Doğan
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, 71000, Sarajevo, Bosnia and Herzegovina
| | - Wolfgang Höppner
- Labor Dr. Heidrich Und Kollegen MVZ GmbH, Stuvkamp 22, 22081, Hamburg, Germany.,BioGlobe GmbH, Grandweg 64, 22529, Hamburg, Germany
| | - Damir Marjanović
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, 71000, Sarajevo, Bosnia and Herzegovina.,Institute for Anthropological Research, University of Zagreb, Ljudevita Gaja 32, 10000, Zagreb, Croatia
| | - Dragan Primorac
- St. Catherine Specialty Hospital, Zagreb and Zabok, Croatia.,School of Medicine, University of Split, Šoltanska 2, 21000, Split, Croatia.,School of Medicine, University of Osijek, Ulica cara Hadrijana 10, 31000, Osijek, Croatia.,School of Medicine, University of Rijeka, Ulica braće Branchetta 20/1, 51000, Rijeka, Croatia.,Eberly College of Science, Penn State University, 517 Thomas St, State College, PA, 16803, USA.,Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, 300 Boston Post Rd, West Haven, CT, 06516, USA
| |
Collapse
|
15
|
Rezus E, Tamba BI, Badescu MC, Popescu D, Bratoiu I, Rezus C. Osteonecrosis of the Femoral Head in Patients with Hypercoagulability-From Pathophysiology to Therapeutic Implications. Int J Mol Sci 2021; 22:ijms22136801. [PMID: 34202897 PMCID: PMC8268880 DOI: 10.3390/ijms22136801] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a debilitating disease with major social and economic impacts. It frequently affects relatively young adults and has a predilection for rapid progression to femoral head collapse and end-stage hip arthritis. If not diagnosed and treated properly in the early stages, ONFH has devastating consequences and leads to mandatory total hip arthroplasty. The pathophysiology of non-traumatic ONFH is very complex and not fully understood. While multiple risk factors have been associated with secondary ONFH, there are still many cases in which a clear etiology cannot be established. Recognition of the prothrombotic state as part of the etiopathogeny of primary ONFH provides an opportunity for early medical intervention, with implications for both prophylaxis and therapy aimed at slowing or stopping the progression of the disease. Hereditary thrombophilia and hypofibrinolysis are associated with thrombotic occlusion of bone vessels. Anticoagulant treatment can change the natural course of the disease and improve patients' quality of life. The present work focused on highlighting the association between hereditary thrombophilia/hypofibrinolysis states and ONFH, emphasizing the importance of identifying this condition. We have also provided strong arguments to support the efficiency and safety of anticoagulant treatment in the early stages of the disease, encouraging etiological diagnosis and prompt therapeutic intervention. In the era of direct oral anticoagulants, new therapeutic options have become available, enabling better long-term compliance.
Collapse
Affiliation(s)
- Elena Rezus
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy Iași, 16 University Street, 700115 Iasi, Romania; (E.R.); (I.B.)
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania
| | - Bogdan Ionel Tamba
- Advanced Center for Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 9-13 Mihail Kogălniceanu Street, 700454 Iasi, Romania;
| | - Minerva Codruta Badescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (D.P.); (C.R.)
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
- Correspondence:
| | - Diana Popescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (D.P.); (C.R.)
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| | - Ioana Bratoiu
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy Iași, 16 University Street, 700115 Iasi, Romania; (E.R.); (I.B.)
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (D.P.); (C.R.)
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| |
Collapse
|
16
|
Gierula M, Salles‐Crawley II, Santamaria S, Teraz‐Orosz A, Crawley JTB, Lane DA, Ahnström J. The roles of factor Va and protein S in formation of the activated protein C/protein S/factor Va inactivation complex. J Thromb Haemost 2019; 17:2056-2068. [PMID: 31364267 PMCID: PMC6916587 DOI: 10.1111/jth.14594] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Activated protein C (APC)-mediated inactivation of factor (F)Va is greatly enhanced by protein S. For inactivation to occur, a trimolecular complex among FVa, APC, and protein S must form on the phospholipid membrane. However, direct demonstration of complex formation has proven elusive. OBJECTIVES To elucidate the nature of the phospholipid-dependent interactions among APC, protein S, and FVa. METHODS We evaluated binding of active site blocked APC to phospholipid-coated magnetic beads in the presence and absence of protein S and/or FVa. The importance of protein S and FV residues were evaluated functionally. RESULTS Activated protein C alone bound weakly to phospholipids. Protein S mildly enhanced APC binding to phospholipid surfaces, whereas FVa did not. However, FVa together with protein S enhanced APC binding (>14-fold), demonstrating formation of an APC/protein S/FVa complex. C4b binding protein-bound protein S failed to enhance APC binding, agreeing with its reduced APC cofactor function. Protein S variants (E36A and D95A) with reduced APC cofactor function exhibited essentially normal augmentation of APC binding to phospholipids, but diminished APC/protein S/FVa complex formation, suggesting involvement in interactions dependent upon FVa. Similarly, FVaNara (W1920R), an APC-resistant FV variant, also did not efficiently incorporate into the trimolecular complex as efficiently as wild-type FVa. FVa inactivation assays suggested that the mutation impairs its affinity for phospholipid membranes and with protein S within the complex. CONCLUSIONS FVa plays a central role in the formation of its inactivation complex. Furthermore, membrane proximal interactions among FVa, APC, and protein S are essential for its cofactor function.
Collapse
Affiliation(s)
| | | | | | | | | | - David A. Lane
- Centre for HaematologyImperial College LondonLondonUK
| | | |
Collapse
|
17
|
Venous thromboembolism laboratory testing (factor V Leiden and
factor II c.*97G>A), 2018 update: a technical standard of the American College of
Medical Genetics and Genomics (ACMG). Genet Med 2018; 20:1489-1498. [DOI: 10.1038/s41436-018-0322-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023] Open
|
18
|
An TJ, Benvenuti MA, Mignemi ME, Thomsen IP, Schoenecker JG. Pediatric Musculoskeletal Infection: Hijacking the Acute-Phase Response. JBJS Rev 2018; 4:01874474-201609000-00004. [PMID: 27760072 DOI: 10.2106/jbjs.rvw.15.00099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tissue injury activates the acute-phase response mediated by the liver, which promotes coagulation, immunity, and tissue regeneration. To survive and disseminate, musculoskeletal pathogens express virulence factors that modulate and hijack this response. As the acute-phase reactants required by these pathogens are most abundant in damaged tissue, these infections are predisposed to occur in tissues following traumatic or surgical injury. Staphylococcus aureus expresses the virulence factors coagulase and von Willebrand binding protein to stimulate coagulation and to form a fibrin abscess that protects it from host immune-cell phagocytosis. After the staphylococcal abscess community reaches quorum, which is the colony density that enables cell-to-cell communication and coordinated gene expression, subsequent expression of staphylokinase stimulates activation of fibrinolysis, which ruptures the abscess wall and results in bacterial dissemination. Unlike Staphylococcus aureus, Streptococcus pyogenes expresses streptokinase and other virulence factors to activate fibrinolysis and to rapidly disseminate throughout the body, causing diseases such as necrotizing fasciitis. Understanding the virulence strategies of musculoskeletal pathogens will help to guide clinical diagnosis and decision-making through monitoring of acute-phase markers such as C-reactive protein, erythrocyte sedimentation rate, and fibrinogen.
Collapse
Affiliation(s)
- Thomas J An
- Departments of Orthopaedics (M.E.M. and J.G.S.), Pediatrics (I.P.T. and J.G.S.), Pediatric Infectious Disease (I.P.T.), Pharmacology (J.G.S.), and Pathology (J.G.S.), Vanderbilt University School of Medicine (T.J.A. and M.A.B.), Nashville, Tennessee
| | | | | | | | | |
Collapse
|
19
|
Girolami A, Cosi E, Ferrari S, Girolami B. Heparin, coumarin, protein C, antithrombin, fibrinolysis and other clotting related resistances: old and new concepts in blood coagulation. J Thromb Thrombolysis 2018; 45:135-141. [PMID: 29063359 DOI: 10.1007/s11239-017-1559-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The concept of resistance in blood coagulation has become important. In the past it was limited to the resistance shown by some patients to heparin, coumarin or aspirin. Subsequently, it was demonstrated that a mutation in a single clotting factor, FV, showed resistance to activated protein C. Since activated protein C is supposed to downregulate aFV and aFVIII, their persistence in the circulation gives origin to a hypercoagulable state. Recently antithrombin resistance has been defined. Several prothrombin abnormalities (dysprothrombinemias) have been shown to be resistant to the action of antithrombin. This is associated with the occurrence of a trombophilic state. Prothrombin may therefore be associated like FV with both a bleeding condition (prothrombin deficiency) and a thrombophilic state (some dysprothrombinemias). Finally, thrombomodulin resistance has been defined in liver cirrhosis. These patients often show an increased ratio between FVIII levels and protein C. This imbalance may be partly responsible for the frequent presence of portal vein thrombosis seen in these patients. All these studies have greatly increased the complexity of the clotting mechanisms and interactions. They have cast light on clinical events which had remained unknown or ill-defined.
Collapse
Affiliation(s)
- A Girolami
- Department of Medicine, University of Padua Medical School, Via Ospedale 105, 35128, Padua, Italy.
| | - E Cosi
- Department of Medicine, University of Padua Medical School, Via Ospedale 105, 35128, Padua, Italy
| | - S Ferrari
- Department of Medicine, University of Padua Medical School, Via Ospedale 105, 35128, Padua, Italy
| | - B Girolami
- Division of Medicine, Padua City Hospital, Padua, Italy
| |
Collapse
|
20
|
Girolami A, Cosi E, Ferrari S, Girolami B. Prothrombin: Another Clotting Factor After FV That Is Involved Both in Bleeding and Thrombosis. Clin Appl Thromb Hemost 2018; 24:845-849. [PMID: 29690772 PMCID: PMC6714730 DOI: 10.1177/1076029618770741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Clotting factor defects are usually associated with bleeding. About 2 decades ago, 2 polymorphisms, one of FII (G20210A) and another of FV (Arg506Gln), have been shown to be associated with prothrombotic state and venous thrombosis. As a consequence, FII and FV could be considered both as prohemorrhagic factors and prothrombotic conditions. Recently, it has been shown that missense mutations in the prothrombin gene of amino acid Arg596 of exon 14 to Leu596, Gln596, or Trp596 caused the appearance of a thrombophilic state and venous thrombosis. These mutated FII are not associated with bleeding, but only with venous thrombosis. Furthermore, they are all heterozygotes for the mutations. No missense mutation associated with thrombosis has been discovered so far for FV. As a consequence, the prothrombotic activity of FII is the result of a polymorphism and of a missense mutation, whereas that of FV derives only from a polymorphism. The observation that a clotting factor defect may be associated with both bleeding or venous thrombosis depending on the site of the mutation has caused an extensive reevaluation of the blood clotting mechanism.
Collapse
Affiliation(s)
- Antonio Girolami
- Department of Medicine, University of Padua Medical School, Padua, Italy
- Antonio Girolami, Department of Medicine, University of Padua Medical School, Via Ospedale, 105, Padua 35128, Italy.
| | - Elisabetta Cosi
- Department of Medicine, University of Padua Medical School, Padua, Italy
| | - Silvia Ferrari
- Department of Medicine, University of Padua Medical School, Padua, Italy
| | | |
Collapse
|
21
|
Angchaisuksiri P. Venous thromboembolism in Asia – an unrecognised and under-treated problem? Thromb Haemost 2017; 106:585-90. [DOI: 10.1160/th11-03-0184] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 06/29/2011] [Indexed: 11/05/2022]
Abstract
SummaryVenous thromboembolism (VTE) has been perceived for a long time to be less common in Asian populations, particularly in the Far East, than in Western populations. Generally, thromboprophylaxis is not implemented as frequently as it should be in high-risk patients. However, recent prospective studies undertaken in Asian countries have demonstrated higher rates of VTE after major surgery and in medical wards, approaching those observed in Western populations. Risk factors for VTE are not different in Asian patients from those of Western patients with the exception of thrombophilic mutations. Deficiencies of the natural anticoagulants (protein S, protein C, and antithrombin) are the predominant thrombophilias in Asia whereas factor V Leiden and prothrombin G20210A gene mutation are not found or rarely reported. Further large well-designed clinical studies are needed to evaluate the magnitude of the risk of VTE and the appropriate use of thromboprophylaxis in different clinical situations.
Collapse
|
22
|
Cramer TJ, Gale AJ. The anticoagulant function of coagulation factor V. Thromb Haemost 2017; 107:15-21. [DOI: 10.1160/th11-06-0431] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 10/24/2011] [Indexed: 11/05/2022]
Abstract
SummaryAlmost two decades ago an anticoagulant function of factor V (FV) was discovered, as an anticoagulant cofactor for activated protein C (APC). A natural mutant of FV in which the R506 inactivation site was mutated to Gln (FVLeiden) was inactivated slower by APC, but also could not function as anticoagulant cofactor for APC in the inactivation of activated factor VIII (FVIIIa). This mutation is prevalent in populations of Caucasian descent, and increases the chance of thrombotic events in carriers. Characterisation of the FV anticoagulant effect has elucidated multiple properties of the anticoagulant function of FV: 1) Cleavage of FV at position 506 by APC is required for anticoagulant function. 2) The C-terminal part of the FV B domain is required and the B domain must have an intact connection with the A3 domain of FV. 3) FV must be bound to a negatively charged phospholipid membrane. 4) Protein S also needs to be present. 5) FV acts as a cofactor for inactivation of both FVa and FVIIIa. 6) The prothrombotic function of FVLeiden is a function of both reduced APC cofactor activity and resistance of FVa to APC inactivation. However, detailed structural and mechanistic properties remain to be further explored.
Collapse
|
23
|
Laboratory assessment of Activated Protein C Resistance/Factor V-Leiden and performance characteristics of a new quantitative assay. Transfus Apher Sci 2017; 56:906-913. [PMID: 29162399 DOI: 10.1016/j.transci.2017.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Activated Protein C Resistance is mainly associated to a factor V mutation (RQ506), which induces a deficient inactivation of activated factor V by activated protein C, and is associated to an increased risk of venous and arterial thrombosis in affected individuals, caused by the prolonged activated factor V survival. Its prevalence is mainly in Caucasians (about 5%), and this mutation is absent in Africans and Asians. Presence of Factor V-Leiden is usually evidenced with clotting methods, using a two-step APTT assay performed without or with APC: prolongation of blood coagulation time is decreased if this factor is present. The R506Q Factor V-Leiden mutation is now usually characterized using molecular biology, and this technique tends to become the first intention assay for characterization of patients. Both techniques are qualitative, and allow classifying tested individuals as heterozygotes or homozygotes for the mutation, when present. A new quantitative assay for Factor V-Leiden, using a one-step clotting method, has been developed, and designed with highly purified human coagulation proteins. Clotting is triggered with human Factor Xa, in presence of calcium and phospholipids (mixture which favours APC action over clotting process). Diluted tested plasma, is supplemented with a clotting mixture containing human fibrinogen, prothrombin, and protein S at a constant concentration. APC is added, and clotting is initiated with calcium. Calibration is performed with a pool of plasmas from patients carrying the R506Q Factor V mutation, and its mixtures with normal plasma. Homozygous patients have clotting times of about <40sec; heterozygous patients have clotting times of about 40-60sec and normal individuals yield clotting times >70sec. Factor V-Leiden concentration is usually >75% in homozygous patients, 30-60% in heterozygous patients and below 5% in normal. The assay is insensitive to clotting factor deficiencies (II, VII, VIII: C, IX, X), dicoumarol or heparin therapies, and has no interference with lupus anticoagulant (LA). This new assay for Factor V-Leiden can be easily used in any coagulation laboratory, is performed as a single test, and is quantitative. This assay has a high robustness, is accurate and presents a good intra- (<3%) and inter-assay (<5%) variability. It contributes solving most of the laboratory issues faced when testing factor V-Leiden. Quantitation of Factor V-L could contribute to a better assessment of thrombotic risk in affected patients, as this complication is first associated to and caused by the presence of a defined amount of FVa.
Collapse
|
24
|
Sharma A, Singh K, Biswas A, Ranjan R, Kishor K, Kumar R, Pandey H, Kamal VK, Saxena R. Evaluation of role of FV, FVIII and APLAs in the pathogenesis of APCR in FV Leiden negative DVT patients: a study in India. J Thromb Thrombolysis 2017; 43:217-223. [DOI: 10.1007/s11239-016-1469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Tinholt M, Sandset PM, Mowinckel MC, Garred Ø, Sahlberg KK, Kristensen VN, Børresen-Dale AL, Jacobsen AF, Skretting G, Iversen N. Determinants of acquired activated protein C resistance and D-dimer in breast cancer. Thromb Res 2016; 145:78-83. [PMID: 27505249 DOI: 10.1016/j.thromres.2016.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/06/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND We have previously reported acquired activated protein C (APC) resistance and elevated plasma D-dimer levels in breast cancer patients. Here, we aimed to identify phenotypic and genetic determinants that contribute to the acquired APC resistance and increased D-dimer levels in breast cancer. Healthy controls served as reference. We also addressed whether higher APC resistance or D-dimer levels could be potential markers of clinicopathological breast cancer characteristics. MATERIALS AND METHODS 358 breast cancer patients and 273 healthy controls were enrolled and hemostatic plasma parameters were determined; factor (F) V, FVIII, FIX, FX, fibrinogen, von Willebrand factor (VWF), normalized APC sensitivity ratio (n-APC-sr), protein C, protein S, antithrombin, tissue factor pathway inhibitor (TFPI), and D-dimer. Common single nucleotide polymorphisms were genotyped in coagulation-related genes in the breast cancer patients. RESULTS The phenotypic hemostatic factors explained 25% and 31% of the variability in acquired APC resistance and D-dimer levels, respectively, in the breast cancer patients. Fibrinogen (β=-0.35, P<0.001), protein C (β=0.28, P<0.001), and FIX (β=0.22, P=0.026) were identified as determinants of n-APC-sr (in FV Leiden non-carriers), whereas TFPI (β=0.28, P<0.001), antithrombin (β=-0.25, P<0.001), and FX (β=0.15, P=0.040) were the major determinants of D-dimer. Moreover, borderline higher APC resistance (>75th percentile) was found in patients with triple negative tumors (odds ratio (OR) 1.97, 95% CI 0.99-3.90). CONCLUSIONS This study reports phenotypic hemostatic parameters that determine acquired APC resistance and D-dimer levels in breast cancer patients. The explanatory power was modest, however, our findings are hypothesis generating and may contribute to further understand the background for cancer associated-coagulopathy and thrombosis.
Collapse
Affiliation(s)
- Mari Tinholt
- Dept. of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| | - Per Morten Sandset
- Dept. of Haematology and Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Marie-Christine Mowinckel
- Dept. of Haematology and Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.
| | - Øystein Garred
- Department of Pathology, Oslo University Hospital, Oslo, Norway.
| | - Kristine Kleivi Sahlberg
- Dept. of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Department of Research, Vestre Viken, Drammen, Norway.
| | - Vessela N Kristensen
- Dept. of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway.
| | - Anne-Lise Børresen-Dale
- Dept. of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.
| | - Anne Flem Jacobsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway.
| | - Grethe Skretting
- Dept. of Haematology and Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.
| | - Nina Iversen
- Dept. of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
26
|
Bernardi F. Better or worse than the original. J Thromb Haemost 2016; 14:1350-2. [PMID: 27170580 DOI: 10.1111/jth.13357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/19/2016] [Indexed: 11/29/2022]
Affiliation(s)
- F Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
27
|
Pezeshkpoor B, Castoldi E, Mahler A, Hanel D, Müller J, Hamedani NS, Biswas A, Oldenburg J, Pavlova A. Identification and functional characterization of a novel F5 mutation (Ala512Val, FVB onn ) associated with activated protein C resistance. J Thromb Haemost 2016; 14:1353-63. [PMID: 27090446 DOI: 10.1111/jth.13339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Indexed: 11/29/2022]
Abstract
UNLABELLED Essentials Activated protein C (APC) resistance is a prevalent risk factor for venous thrombosis. A novel missense mutation (Ala512Val - FVBonn ) was characterized in vitro and in silico. FVBonn is a new cause of APC resistance and venous thrombosis. FVBonn expresses additionally enhanced procoagulant activity in the absence of APC. SUMMARY Background Activated protein C (APC) resistance is a prevalent risk factor for venous thrombosis. This phenotype is most commonly associated with the factor V Arg506Gln mutation (FV Leiden), which impairs the APC-mediated inactivation of both activated FV (FVa) and activated FVIII (FVIIIa). Objectives Here, we report the identification and characterization of a novel FV mutation (Ala512Val, FVBonn ) in six patients with APC resistance and venous thrombosis or recurrent abortions. Methods FVBonn was expressed in a recombinant system and compared with recombinant wild-type (WT) FV and FV Leiden in several functional assays. Results FVBonn conferred APC resistance to FV-depleted plasma, both in the activated partial thromboplastin time (APTT)-based test (APC sensitivity ratio [APCsr] of 1.98 for FVBonn versus 4.31 for WT FV and 1.59 for FV Leiden) and in the thrombin generation-based test (normalized APCsr of 5.41 for FVBonn versus 1.00 for WT FV and 8.99 for FV Leiden). The APC-mediated inactivation of FVaBonn was slower than that of WT FVa (mainly because of delayed cleavage at Arg506), but was greatly stimulated by protein S. The APC cofactor activity of FVBonn in FVIIIa inactivation was ~ 24% lower than that of WT FV. In line with these findings, an in silico analysis showed that the Ala512Val mutation is located in the same loop as the Arg506 APC cleavage site and might hamper its interaction with APC. Moreover, FVBonn was more procoagulant than WT FV and FV Leiden in the absence of APC, because of an increased activation rate and, possibly, an enhanced interaction with activated FX. Conclusions FVBonn induces hypercoagulability via a combination of increased activation/procoagulant activity, decreased susceptibility to APC-mediated inactivation, and slightly reduced APC cofactor activity.
Collapse
Affiliation(s)
- B Pezeshkpoor
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - E Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | | | - D Hanel
- Synlab MVZ, Stuttgart, Germany
| | - J Müller
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - N S Hamedani
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - A Biswas
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - J Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - A Pavlova
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| |
Collapse
|
28
|
Affiliation(s)
- Rodger L Bick
- University of Texas Southwestern Medical Center, Dallas, USA.
| |
Collapse
|
29
|
Sayinalp N, Haznedaroğlu IC, Aksu S, Büyükaşik Y, Göker H, Parlak H, Ozcebe OI, Kirazli S, Dündar SV, Gürgey A. The Predictability of Factor V Leiden (FV:Q506) Gene Mutation via Clotting-Based Diagnosis of Activated Protein C Resistance. Clin Appl Thromb Hemost 2016; 10:265-70. [PMID: 15247984 DOI: 10.1177/107602960401000309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
After the discovery of activated protein C resistance (APCR) due to factor V Leiden mutation and the causal relationship of the phenomenon with clinical thromboembolism, a wide variety of functional clotting-based assays were developed for testing of APCR in relation to the specific DNA-based analysis of FV:Q506 Leiden. The aim of this study is to assess a clotting-based APCR assay using procoagulant crotalidae snake venom with respect to the sensitivity, specificity, and predictability for the presence of the factor V Leiden mutation. APCR testing and factor V DNA analyses have been performed concurrently on 319 patient specimens. APCR values of the patients with homozygous factor V Leiden mutation (70.4±13.5 s) were significantly lower (p<0.001) in comparison to the subjects with the heterozygous mutation (87.6±13.4 s). The assay is highly sensitive (98.7%) and specific (91.9%) for the screening of factor V Leiden mutation. The sensitivity and specificity of the APCR testing reached to 100% below the cut-off value of 120 s among the patients with homozygous factor V Leiden mutation. Therefore, this method could help the desired effective optimal screening strategy for the laboratory search of hereditary thrombophilia focusing on the diagnosis of APCR due to FV:Q506.
Collapse
Affiliation(s)
- N Sayinalp
- Hacettepe University Medical School, Department of Hematology, Ankara, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dahlbäck B. Pro- and anticoagulant properties of factor V in pathogenesis of thrombosis and bleeding disorders. Int J Lab Hematol 2016; 38 Suppl 1:4-11. [PMID: 27161771 DOI: 10.1111/ijlh.12508] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 11/29/2022]
Abstract
Factor V (FV) serves an important role in the regulation of blood coagulation, having both pro- and anticoagulant properties. The circulating high molecular weight single-chain FV molecule undergoes a series of proteolytic cleavages during both activation of coagulation and during anticoagulant regulation of coagulation by activated protein C (APC). It is noteworthy that mutations in the factor V gene (F5) either cause thrombosis or bleeding. New insights into the importance and complexity of FV functions have been generated from elucidation of the pathogenic mechanisms of two familial mutations in the F5 gene. The first mutation was identified as a result of the discovery of APC resistance as the most common risk factor for venous thrombosis. The mutation (FV Leiden) predicts the Arg(506) Gln replacement, which impairs the normal regulation of FVa by APC, as the Arg506 site is an important APC cleavage site. In addition, elucidation of APC resistance resulted in the discovery of the anticoagulant APC cofactor activity of FV. The second FV mutation (FV(A2440G) ), identified in a family with an autosomal dominant bleeding disorder, has led to the discovery of an alternative splicing generating a previously unidentified FV isoform (FV-Short), which inhibits coagulation via an unexpected and intriguing mechanism involving the coagulation inhibitor TFPI-α. These are naturally occurring mutations in the F5 gene that have generated new knowledge on the role of FV in regulation of coagulation and the importance of genetic risk factors for thrombosis and bleeding.
Collapse
Affiliation(s)
- Björn Dahlbäck
- Department of Translational Medicine, Lund University, Malmö, Sweden.,Wallenberg Laboratory, University Hospital, Malmö, Sweden
| |
Collapse
|
31
|
POLAT M, BİBEROĞLU EH, GÜLER İ, BİBEROĞLU ÖK. Coexistence of preeclampsia and inherited thrombophilia in Turkish pregnant women. Turk J Med Sci 2016; 46:1094-100. [DOI: 10.3906/sag-1502-132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 10/10/2015] [Indexed: 11/03/2022] Open
|
32
|
Sharma A, Bhakuni T, Biswas A, Ranjan R, Kumar R, Kishore K, Mahapatra M, Jairajpuri MA, Saxena R. Prevalence of Factor V Genetic Variants Associated With Indian APCR Contributing to Thrombotic Risk. Clin Appl Thromb Hemost 2015; 23:596-600. [PMID: 26699866 DOI: 10.1177/1076029615623376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phenotypic resistance to activated protein C (APC) is a complex mechanism associated with increased thrombosis risk. Activated protein C resistance (APCR) is mainly influenced by FVLeiden mutation, and various other single nucleotide polymorphisms (SNPs) in FV gene are known to be associated with APCR. The aim of present study was to investigate the incidence and assess possible mechanisms of APCR in Indian patients with deep vein thrombosis (DVT). Three hundred and ten Doppler-proven patients with DVT were screened for APCR, and 50 APCR positive patients and 50 controls were typed for FVLeiden, Hong Kong, Cambridge, HR2 haplotype, Glu666Asp, Ala485Lys, and Liverpool using either polymerase chain reaction (PCR)-restriction fragment length polymorphism or allele specific PCR. FVLeiden was commonest cause of APCR (50%) in Indian patients with DVT being statistically significant ( P = .001) compared to controls. FV Liverpool, FV Glu666Asp and FV Ala485Lys were studied for the first time in Indian population. FV Liverpool, FV Glu666Asp, Hong Kong, and Cambridge were found to be absent. High frequency of Ala485Lys in patients shows that it might be a risk factor contributing to APCR in Indian patients with DVT. HR2 haplotype was not associated with APCR; however, presence of homozygous HR2 haplotype in patients only indicates the role it might play in Indian APCR population. In conclusion, contribution of FVLeiden causing APCR in Indian population is not as strong as previously reported in Western countries. The presence of other SNPs observed in the present study requires such studies on larger sample size to understand the molecular basis of defect.
Collapse
Affiliation(s)
- Amit Sharma
- 1 Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Teena Bhakuni
- 2 Protein Conformation and Enzymology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Arijit Biswas
- 3 Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Ravi Ranjan
- 1 Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Kumar
- 1 Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Kamal Kishore
- 1 Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Manoranjan Mahapatra
- 1 Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Mohamad Aman Jairajpuri
- 2 Protein Conformation and Enzymology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Renu Saxena
- 1 Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
33
|
Involvement of Arg306 mutation in factor V gene in two young men with ischemic stroke. Blood Coagul Fibrinolysis 2015; 25:916-7. [PMID: 25360683 DOI: 10.1097/mbc.0000000000000165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
34
|
Guzmán N, Larama G, Ávila A, Salazar LA. Three novel variants in the coagulation factor V gene associated with deep venous thrombosis in Chilean patients with Amerindian ethnic background. Clin Chim Acta 2015; 444:24-8. [DOI: 10.1016/j.cca.2015.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 12/30/2022]
|
35
|
Polymorphisms in factor V and antithrombin III gene in recurrent pregnancy loss: a case–control study in Indian population. J Thromb Thrombolysis 2015; 39:481-8. [DOI: 10.1007/s11239-015-1186-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Long term anticoagulation (4-16 years) stops progression of idiopathic hip osteonecrosis associated with familial thrombophilia. Adv Orthop 2015; 2015:138382. [PMID: 25709842 PMCID: PMC4325553 DOI: 10.1155/2015/138382] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/23/2014] [Indexed: 11/17/2022] Open
Abstract
In 6 patients with familial thrombophilia (5 Factor V (FV) Leiden heterozygotes, 1 with resistance to activated protein C (RAPC)), we prospectively assessed whether continuous longterm (4–16 years) anticoagulation would prevent progression of idiopathic osteonecrosis (ON), ameliorate pain, and facilitate functional recovery. Four men and 2 women (9 hips, 8 Ficat stage II, 1 stage I) were anticoagulated with enoxaparin (60 mg/day) for 3 months and subsequently with Coumadin, Xarelto, or Pradaxa, warranted by ≥2 prior thrombotic events. Anticoagulation was continued for 4, 4, 9, 13, 13, and 16 years, with serial clinical and X-ray follow-up. On 4–16-years anticoagulation, 9 hips in the 6 patients (8 originally Ficat II, 1 Ficat I) remained unchanged, contrasted to untreated ON Ficat stage II, where 50%–80% of hips progress to collapse (Ficat stages III-IV) within 2 years after diagnosis. Within 3, 3, 3, 9, and 16 months after starting anticoagulation, 5 patients became pain-free and remained asymptomatic throughout follow-up; the 6th patient required Percocet for pain. There were no significant bleeding episodes. Long term (4–16 years) anticoagulation initiated in Ficat stages I-II of idiopathic hip ON in patients with FV-RAPC changes the natural history of ON, stopping progression, resolving pain, and restoring function.
Collapse
|
37
|
Tinholt M, Viken MK, Dahm AE, Vollan HKM, Sahlberg KK, Garred O, Børresen-Dale AL, Jacobsen AF, Kristensen V, Bukholm I, Kåresen R, Schlichting E, Skretting G, Lie BA, Sandset PM, Iversen N. Increased coagulation activity and genetic polymorphisms in the F5, F10 and EPCR genes are associated with breast cancer: a case-control study. BMC Cancer 2014; 14:845. [PMID: 25407022 PMCID: PMC4251949 DOI: 10.1186/1471-2407-14-845] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022] Open
Abstract
Background The procoagulant state in cancer increases the thrombotic risk, but also supports tumor progression. To investigate the molecular mechanisms controlling cancer and hemostasis, we conducted a case-control study of genotypic and phenotypic variables of the tissue factor (TF) pathway of coagulation in breast cancer. Methods 366 breast cancer patients and 307 controls were genotyped for SNPs (n = 41) in the F2, F3 (TF), F5, F7, F10, TFPI and EPCR genes, and assayed for plasma coagulation markers (thrombin generation, activated protein C (APC) resistance, D-dimer, antithrombin, protein C, protein S, and TF pathway inhibitor (TFPI)). Associations with breast cancer were evaluated using logistic regression to obtain odds ratios (ORs) and 95% confidence intervals (CIs), or the chi-square test. Results Four SNPs in F5 (rs12120605, rs6427202, rs9332542 and rs6427199), one in F10 (rs3093261), and one in EPCR (rs2069948) were associated with breast cancer. EPCR rs2069948 was associated with estrogen receptor (ER) and progesterone receptor (PR) positivity, while the SNPs in F5 appeared to follow hormone receptor negative and triple negative patients. The prothrombotic polymorphisms factor V Leiden (rs6025) and prothrombin G20210A (rs1799963) were not associated with breast cancer. High APC resistance was associated with breast cancer in both factor V Leiden non-carriers (OR 6.5, 95% CI 4.1-10.4) and carriers (OR 38.3, 95% CI 6.2-236.6). The thrombin parameters short lag times (OR 5.8, 95% CI 3.7-9.2), short times to peak thrombin (OR 7.1, 95% CI 4.4-11.3), and high thrombin peak (OR 6.1, 95% CI 3.9-9.5) predicted presence of breast cancer, and high D-dimer also associated with breast cancer (OR 2.0, 95% CI 1.3-3.3). Among the coagulation inhibitors, low levels of antithrombin associated with breast cancer (OR 5.7, 95% CI 3.6-9.0). The increased coagulability was not explained by the breast cancer associated SNPs, and was unaffected by ER, PR and triple negative status. Conclusions A procoagulant phenotype was found in the breast cancer patients. Novel associations with SNPs in F5, F10 and EPCR to breast cancer susceptibility were demonstrated, and the SNPs in F5 were confined to hormone receptor negative and triple negative patients. The study supports the importance of developing new therapeutic strategies targeting coagulation processes in cancer. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-845) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nina Iversen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
38
|
Soria JM, Morange PE, Vila J, Souto JC, Moyano M, Trégouët DA, Mateo J, Saut N, Salas E, Elosua R. Multilocus genetic risk scores for venous thromboembolism risk assessment. J Am Heart Assoc 2014; 3:e001060. [PMID: 25341889 PMCID: PMC4323784 DOI: 10.1161/jaha.114.001060] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Genetics plays an important role in venous thromboembolism (VTE). Factor V Leiden (FVL or rs6025) and prothrombin gene G20210A (PT or rs1799963) are the genetic variants currently tested for VTE risk assessment. We hypothesized that primary VTE risk assessment can be improved by using genetic risk scores with more genetic markers than just FVL-rs6025 and prothrombin gene PT-rs1799963. To this end, we have designed a new genetic risk score called Thrombo inCode (TiC). METHODS AND RESULTS TiC was evaluated in terms of discrimination (Δ of the area under the receiver operating characteristic curve) and reclassification (integrated discrimination improvement and net reclassification improvement). This evaluation was performed using 2 age- and sex-matched case-control populations: SANTPAU (248 cases, 249 controls) and the Marseille Thrombosis Association study (MARTHA; 477 cases, 477 controls). TiC was compared with other literature-based genetic risk scores. TiC including F5 rs6025/rs118203906/rs118203905, F2 rs1799963, F12 rs1801020, F13 rs5985, SERPINC1 rs121909548, and SERPINA10 rs2232698 plus the A1 blood group (rs8176719, rs7853989, rs8176743, rs8176750) improved the area under the curve compared with a model based only on F5-rs6025 and F2-rs1799963 in SANTPAU (0.677 versus 0.575, P<0.001) and MARTHA (0.605 versus 0.576, P=0.008). TiC showed good integrated discrimination improvement of 5.49 (P<0.001) for SANTPAU and 0.96 (P=0.045) for MARTHA. Among the genetic risk scores evaluated, the proportion of VTE risk variance explained by TiC was the highest. CONCLUSIONS We conclude that TiC greatly improves prediction of VTE risk compared with other genetic risk scores. TiC should improve prevention, diagnosis, and treatment of VTE.
Collapse
Affiliation(s)
- José Manuel Soria
- Unitat de Genòmica de Malalties Complexes, IIB-Sant Pau, Barcelona, Spain (J.M.S.)
| | | | - Joan Vila
- Grupo de Epidemiología y, Genética Cardiovascular, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain (J.V., R.E.) CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain (J.V.)
| | - Juan Carlos Souto
- Unitat d'Hemostasia i Trombosis IIB-Sant Pau, Barcelona, Spain (J.C.S., J.M.)
| | | | - David-Alexandre Trégouët
- Inserm Unité Mixte de Recherche en Santé (UMR_S) 937, ICAN Institute for Cardiometabolism and Nutrition, Université Pierre et Marie Curie Paris 6, Paris, France (D.A.T., N.S.)
| | - José Mateo
- Unitat d'Hemostasia i Trombosis IIB-Sant Pau, Barcelona, Spain (J.C.S., J.M.)
| | - Noémi Saut
- Inserm Unité Mixte de Recherche en Santé (UMR_S) 937, ICAN Institute for Cardiometabolism and Nutrition, Université Pierre et Marie Curie Paris 6, Paris, France (D.A.T., N.S.)
| | | | - Roberto Elosua
- Grupo de Epidemiología y, Genética Cardiovascular, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain (J.V., R.E.)
| |
Collapse
|
39
|
LaBonte ML. Anticoagulant factor V: factors affecting the integration of novel scientific discoveries into the broader framework. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2014; 47 Pt A:23-34. [PMID: 24853975 DOI: 10.1016/j.shpsc.2014.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 06/03/2023]
Abstract
Since its initial discovery in the 1940s, factor V has long been viewed as an important procoagulant protein in the coagulation cascade. However, in the later part of the 20th century, two different scientists proposed novel anticoagulant roles for factor V. Philip Majerus proposed the first anticoagulant function for factor V in 1983, yet ultimately it was not widely accepted by the broader scientific community. In contrast, Björn Dahlbäck proposed a different anticoagulant role for factor V in 1994. While this role was initially contested, it was ultimately accepted and integrated into the scientific framework. In this paper, I present a detailed historical account of these two anticoagulant discoveries and propose three key reasons why Dahlbäck's anticoagulant role for factor V was accepted whereas Majerus' proposed role was largely overlooked. Perhaps most importantly, Dahlbäck's proposed anticoagulant role was of great clinical interest because the discovery involved the study of an important subset of patients with thrombophilia. Soon after Dahlbäck's 1994 work, this patient population was shown to possess the factor V Leiden mutation. Also key in the ultimate acceptance of the second proposed anticoagulant role was the persistence of the scientist who made the discovery and the interest in and ability of others to replicate and reinforce this work. This analysis of two different yet similar discoveries sheds light on factors that play an important role in how new discoveries are incorporated into the existing scientific framework.
Collapse
Affiliation(s)
- Michelle L LaBonte
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA.
| |
Collapse
|
40
|
Profile of prothrombotic factors in Indian children with ischemic stroke. J Clin Neurosci 2014; 21:1315-8. [DOI: 10.1016/j.jocn.2013.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 10/18/2013] [Indexed: 11/21/2022]
|
41
|
Vilalta N, Souto J. Investigación de la trombofilia venosa. Presente y futuro. ANGIOLOGIA 2014. [DOI: 10.1016/j.angio.2014.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Novel FV mutation (W1920R, FVNara) associated with serious deep vein thrombosis and more potent APC resistance relative to FVLeiden. Blood 2014; 123:2420-8. [DOI: 10.1182/blood-2013-10-530089] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key Points
FVNara (W1920R), associated with serious deep vein thrombosis, is more resistant to APC relative to FVLeiden (R506Q). This mechanism results from significant decreases in FVa susceptibility to APC and FV cofactor activity for APC.
Collapse
|
43
|
|
44
|
Abstract
Hypercoagulable states can be inherited or acquired. Inherited hypercoagulable states can be caused by a loss of function of natural anticoagulant pathways or a gain of function in procoagulant pathways. Acquired hypercoagulable risk factors include a prior history of thrombosis, obesity, pregnancy, cancer and its treatment, antiphospholipid antibody syndrome, heparin-induced thrombocytopenia, and myeloproliferative disorders. Inherited hypercoagulable states combine with acquired risk factors to establish the intrinsic risk of venous thromboembolism for each individual. Venous thromboembolism occurs when the risk exceeds a critical threshold. Often a triggering factor, such as surgery, pregnancy, or estrogen therapy, is required to increase the risk above this critical threshold.
Collapse
Affiliation(s)
- Julia A M Anderson
- Department of Clinical and Laboratory Hematology, Royal Infirmary of Edinburgh, Scotland EH16 4SA, UK
| | | |
Collapse
|
45
|
Hammerová L, Chabada J, Drobný J, Bátorová A. Factor V Leiden mutation and its impact on pregnancy complications. ACTA MEDICA (HRADEC KRÁLOVÉ) 2012; 54:117-21. [PMID: 22250481 DOI: 10.14712/18059694.2016.32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The aim of this prospective study was to find the association between the factor V Leiden mutation and adverse pregnancy outcomes. METHODS This study is an analysis of a prospective observational study of the frequency of placenta-mediated complications of factor V Leiden mutation carriers. We compared pregnancy outcomes of 11 women with a heterozygous form of the factor V Leiden mutation with 41 women of a control group. RESULTS All pregnancies ended with delivery of a living infant. None of the 52 pregnancies were complicated by venous thromboembolism. There were a few significant differences regarding placenta-mediated complications. The gestational age at delivery showed small significant differences. There was a significant difference in the birth weight deviation in percentage between FVL carriers and controls. The incidence of blood loss exceeding 1000 ml was higher in the control group. CONCLUSIONS Carriership of the factor V Leiden mutation did not affect the incidence of preeclampsia. Adverse pregnancy outcomes such as placental abruption were rare. Eclampsia, intrauterine fetal death and venous thromboembolism did not occur. Our results provide evidence that the maternal heterozygous FVL mutation did not increase the risk of an adverse pregnancy outcome.
Collapse
Affiliation(s)
- L'ubica Hammerová
- 1st Department of Gynaecology and Obstetrics, Comenius University, Faculty of Medicine University Hospital, Bratislava, Slovakia.
| | | | | | | |
Collapse
|
46
|
Segers O, Simioni P, Tormene D, Bulato C, Gavasso S, Rosing J, Castoldi E. Genetic modulation of the FV(Leiden)/normal FV ratio and risk of venous thrombosis in factor V Leiden heterozygotes. J Thromb Haemost 2012; 10:73-80. [PMID: 22044617 DOI: 10.1111/j.1538-7836.2011.04546.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES The factor (F)V Leiden mutation causes activated protein C (APC) resistance by decreasing the susceptibility of FVa to APC-mediated inactivation and by impairing the APC-cofactor activity of FV in FVIIIa inactivation. However, APC resistance and the risk of venous thromboembolism (VTE) vary widely among FV Leiden heterozygotes. Common F5 genetic variation probably contributes to this variability. PATIENTS/METHODS APC resistance was determined in 250 FV Leiden heterozygotes and 133 normal relatives using the prothrombinase-based assay, which specifically measures the susceptibility of plasma FVa to APC. The effects of 12 F5 single-nucleotide polymorphisms (SNPs) on the normalized APC sensitivity ratio (nAPCsr) and on FV levels were determined by multiple regression analysis. RESULTS In FV Leiden heterozygotes,VTE risk increased with increasing nAPCsr, reaching an odds ratio (OR) of 9.9 (95% confidence interval [CI] 1.2–80.5) in the highest nAPCsr quartile. The minor alleles of several F5 SNPs, including 327 A/G (Q51Q), 409 G/C (D79H), 2663 A/G(K830R, T2 haplotype), 6533 T/C (M2120T) and 6755 A/G (D2194G, R2 haplotype), increased the nAPCsr in FV Leiden heterozygotes, but not in their normal relatives. Most of these effects could be attributed to a shift in the FV(Leiden)/normal FV ratio. Four FV Leiden heterozygotes with extremely high nAPCsr turned out to be pseudo-homozygotes, i.e. they carried a deleterious mutation on the non-Leiden allele. CONCLUSIONS In FV Leiden heterozygotes, the prothrombinase-based nAPCsr is a marker of VTE risk and is modulated by common F5 SNPs that affect the FV(Leiden)/normal FV ratio in plasma.
Collapse
Affiliation(s)
- O Segers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Factor V Leiden is a genetic disorder characterized by a poor anticoagulant response to activated Protein C and an increased risk for venous thromboembolism. Deep venous thrombosis and pulmonary embolism are the most common manifestations, but thrombosis in unusual locations also occurs. The current evidence suggests that the mutation has at most a modest effect on recurrence risk after initial treatment of a first venous thromboembolism. Factor V Leiden is also associated with a 2- to 3-fold increased relative risk for pregnancy loss and possibly other obstetric complications, although the probability of a successful pregnancy outcome is high. The clinical expression of Factor V Leiden is influenced by the number of Factor V Leiden alleles, coexisting genetic and acquired thrombophilic disorders, and circumstantial risk factors. Diagnosis requires the activated Protein C resistance assay (a coagulation screening test) or DNA analysis of the F5 gene, which encodes the Factor V protein. The first acute thrombosis is treated according to standard guidelines. Decisions regarding the optimal duration of anticoagulation are based on an individualized assessment of the risks for venous thromboembolism recurrence and anticoagulant-related bleeding. In the absence of a history of thrombosis, long-term anticoagulation is not routinely recommended for asymptomatic Factor V Leiden heterozygotes, although prophylactic anticoagulation may be considered in high-risk clinical settings. In the absence of evidence that early diagnosis reduces morbidity or mortality, decisions regarding testing at-risk family members should be made on an individual basis.
Collapse
|
48
|
Guermazi S, Znazen R. [Activated protein C resistance and factor V Leiden: clinical interest]. PATHOLOGIE-BIOLOGIE 2011; 59:281-285. [PMID: 19896782 DOI: 10.1016/j.patbio.2009.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 05/15/2009] [Indexed: 05/28/2023]
Abstract
Activated protein C resistance (APCR) is a coagulation abnormality often linked to FV Leiden mutation, a single nucleotide G1691A substitution resulting in arginine 506→glutamine missense factor V mutation. FV Leiden has a frequency of 20 to 30% in groups of patients with venous thrombosis while it is of 4 to 10% in normal subjects. FV Leiden is considered as a weak risk factor of thrombosis except in homozygote. FV Leiden is implicated in deep venous thrombosis occurrence. Duration of oral anticoagulant treatment is six months in patients developing a first venous thrombosis except in patients with combined defects or a clinical context suggesting a high risk of severe relapse. Detection of APCR by coagulation methods is often used in first intention with a high specificity if plasmas tested are diluted in factor V deficient plasma. Genotyping study is essential to establish the heterozygote or homozygote statute and certain teams perform it directly. Nevertheless, APCR not related to FV Leiden could be an independent thrombosis risk factor. APCR and FV Leiden are included in laboratory investigations of thrombophilic markers in patients less than 50 years with venous thrombosis. In arterial thrombosis, FV Leiden implication is weak or absent. FV Leiden increases the risk of thrombosis in other situations as in patients with cancer. An association with recurrent miscarriages and other vasculoplacental complications is also reported in many studies but the data concerning the efficacy of antithrombotic treatment to prevent recurrence are currently insufficient.
Collapse
Affiliation(s)
- S Guermazi
- Laboratoire d'hématologie, hôpital Charles-Nicolle, boulevard du 9 avril, 1006 Tunis, Tunisie.
| | | |
Collapse
|
49
|
Cleavage at both Arg306 and Arg506 is required and sufficient for timely and efficient inactivation of factor Va by activated protein C. Blood Coagul Fibrinolysis 2011; 22:317-24. [PMID: 21467919 DOI: 10.1097/mbc.0b013e3283456c4e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activated protein C (APC) inactivates membrane-bound factor Va following cleavages of the heavy chain at Arg, Arg, and Arg. The objective of this study is to examine which cleavage is most important for inactivation. The recombinant factor V molecules were constructed as follows: factor V (mutations R→Q), factor V (mutations R→Q), and factor V (mutations R→Q and R→Q). The recombinant molecules were expressed in mammalian cells, purified, and assayed prior and after incubation with APC and lipids for 30 min (factor Vai) in clotting assays and in an assay using purified reagents and saturating concentrations of factor Va. Clotting assays demonstrated that wild-type factor Vai (Vai), factor Vai, and factor Vai were devoid of activity, whereas factor Vai maintained approximately 70% activity following a 30 min incubation with APC. Prothrombinase assembled with all mutant cofactor molecules before and after treatment with APC had kinetic constant (Km) values similar to values found with prothrombinase assembled with factor Va. Prothrombinase assembled with factor Vai demonstrated a 20-fold reduction in kcat, whereas prothrombinase assembled with factor Vai had a two-fold reduction in kcat as compared with prothrombinase assembled with factor Va. In contrast, factor Vai and factor Vai did not show any loss in kcat under similar experimental conditions. In conclusion, our data demonstrate that the activity of an APC-treated factor Va molecule bearing a single mutation at Arg or Arg depends on the assay used; and regardless of the assay employed, in the absence of the APC-cleavage sites at Arg and Arg, the active cofactor is unable to be significantly inactivated by APC in the presence of a membrane surface.
Collapse
|
50
|
Acquired activated protein C resistance, thrombophilia and adverse pregnancy outcomes: a study performed in an Irish cohort of pregnant women. J Pregnancy 2011; 2011:232840. [PMID: 21869933 PMCID: PMC3157763 DOI: 10.1155/2011/232840] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/29/2011] [Accepted: 05/31/2011] [Indexed: 11/26/2022] Open
Abstract
The combination of thrombophilia and pregnancy increases the risk of thrombosis and the potential for adverse outcomes during pregnancy. The most significant common inherited risk factor for thrombophilia is activated protein C resistance (APCR), a poor anticoagulant response of APC in haemostasis, which is mainly caused by an inherited single-nucleotide polymorphism (SNP), factor V G1691A (FV Leiden) (FVL), referred as inherited APCR. Changes in the levels of coagulation factors: FV, FVIII, and FIX, and anticoagulant factors: protein S (PS) and protein C (PC) can alter APC function causing acquired APCR. Prothrombin G20210A and methylenetetrahydrofolate reductase (MTHFR) C677T are prothrombotic SNPs which in association with APCR can also increase the risk of thrombosis amongst Caucasians. In this study, a correlation between an acquired APCR phenotype and increased levels of factors V, VIII, and IX was demonstrated. Thrombophilic mutations amongst our acquired APCR pregnant women cohort are relatively common but do not appear to exert a severe undue adverse effect on pregnancy.
Collapse
|