Moll U, Lau R, Sypes MA, Gupta MM, Anderson CW. DNA-PK, the DNA-activated protein kinase, is differentially expressed in normal and malignant human tissues.
Oncogene 1999;
18:3114-26. [PMID:
10340383 DOI:
10.1038/sj.onc.1202640]
[Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DNA-PK is a nuclear, serine/threonine protein kinase required for repairing DNA double-strand breaks and for V(D)J recombination. To determine the distribution of DNA-PK in human tissues, we assayed paraffin-embedded sections of normal and cancerous tissues for DNA-PKcs and Ku80 by immunohistochemistry. We also assayed for Brca2, a human tumor suppressor gene that is implicated in the repair of DNA strand-breaks. Brca2 was strongly expressed in epithelial cells of the breast, endometrium, and thymus, in tingible body macrophages of follicular germinal centers of lymphoid tissue, and in reticuloendothelial cells in the spleen. DNA-PKcs and Ku80 expression was usually parallel, but both were expressed in a highly cell- and tissue-specific manner. The highest levels were observed in spermatogenic cells (but not in spermatozoa), and in neurons and glial cells of the central and autonomic nervous system. Neither protein was consistently expressed in liver nor in resting mammary epithelium, but lactating breast epithelium was strongly positive for DNA-PKcs and Ku80. In contrast to established human cell cultures, expression between cells in the same tissue was highly selective in the epidermis, exocrine pancreas, renal glomeruli, the red pulp of the spleen, and within cellular compartments of tonsils, lymph nodes, and thymus. Most cancerous tissues were consistently positive for DNA-PKcs and Ku80, except invasive carcinoma of the breast. DNA-PKcs, Ku80, and Ku70 mRNAs were expressed in all normal tissues with relatively little variation in levels. Our results suggest that the apparent absence of DNA-PKcs and Ku80 from some cells or tissues is a consequence of post-transcriptional mechanisms that regulate protein levels.
Collapse