1
|
Kim KH, Kim T, Novitzky-Basso I, Lee H, Yoo Y, Ahn JS, Pasic I, Law A, Lam W, Michelis FV, Gerbitz A, Viswabandya A, Lipton J, Kumar R, Mattsson J, Zhang Z, Kaushansky N, Brilon Y, Chapal-Ilani N, Biezuner T, Shlush LI, Kim DDH. Clonal hematopoiesis in the donor does not adversely affect long-term outcomes following allogeneic hematopoietic stem cell transplantation: result from a 13-year follow-up. Haematologica 2023; 108:1817-1826. [PMID: 36727396 PMCID: PMC10316278 DOI: 10.3324/haematol.2022.281806] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Donor clonal hematopoiesis may be transferred to the recipient through allogeneic hematopoietic stem cell transplantation (HSCT), but the potential for adverse long-term impact on transplant outcomes remains unknown. A total of 744 samples from 372 recipients who received HSCT and the corresponding donors were included. Bar-coded error-corrected sequencing using a modified molecular inversion probe capture protocol was performed, which targeted 33 genes covering mutations involved in clonal hematopoiesis with indeterminate potential (CHIP) and other acute myeloid leukemia-related mutations. A total of 30 mutations were detected from 25 donors (6.7%): the most frequently mutated gene was TET2 (n=7, 28%), followed by DNMT3A (n=4, 16%), SMC3 (n=3, 12%) and SF3B1 (n=3, 12%). With a median follow-up duration of 13 years among survivors, the presence of CHIP in the donor was not associated with recipient overall survival (P=0.969), relapse incidence (P=0.600) or non-relapse mortality (P=0.570). Donor CHIP did not impair neutrophil (P=0.460) or platelet (P=0.250) engraftment, the rates of acute (P=0.490), or chronic graft-versus-host disease (P=0.220). No significant difference was noted for secondary malignancy following HSCT between the two groups. The present study suggests that the presence of CHIP in allogeneic stem donors does not adversely affect transplant outcomes after HSCT. Accordingly, further study is warranted to reach a clearer conclusion on whether molecular profiling to determine the presence of CHIP mutations is necessary for the pretransplant evaluation of donors prior to stem cell donation.
Collapse
Affiliation(s)
- Kyoung Ha Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada; Department of Internal Medicine, Soonchunhyang University College of Medicine, Soonchunhyang University Hospital, Seoul
| | - TaeHyung Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada; The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON
| | - Igor Novitzky-Basso
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto
| | - Hyewon Lee
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada; Division of Rare and Refractory Cancer, Division of Hemato-Oncology, and Center for Hematologic Malignancy Research Institute and Hospital National Cancer Center
| | - Youngseok Yoo
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto
| | - Jae-Sook Ahn
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju
| | - Ivan Pasic
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto
| | - Arjun Law
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto
| | - Wilson Lam
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto
| | - Fotios V Michelis
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto
| | - Armin Gerbitz
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto
| | - Auro Viswabandya
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto
| | - Jeffrey Lipton
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto
| | - Rajat Kumar
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto
| | - Jonas Mattsson
- Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation
| | - Zhaolei Zhang
- Department of Computer Science, University of Toronto, Toronto, ON, Canada; The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON
| | | | - Yardena Brilon
- Department of Immunology, Weizmann Institute of Science, Rehovot
| | - Noa Chapal-Ilani
- Department of Immunology, Weizmann Institute of Science, Rehovot
| | - Tamir Biezuner
- Department of Immunology, Weizmann Institute of Science, Rehovot
| | - Liran I Shlush
- Department of Immunology, Weizmann Institute of Science, Rehovot.
| | - Dennis Dong Hwan Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada; Institute for Medical Science, Faculty of Medicine, University of Toronto, Toronto.
| |
Collapse
|
2
|
Wang X, Cunha C, Grau MS, Robertson SJ, Lacerda JF, Campos A, Lagrou K, Maertens J, Best SM, Carvalho A, Obar JJ. MAVS Expression in Alveolar Macrophages Is Essential for Host Resistance against Aspergillus fumigatus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:346-353. [PMID: 35750336 PMCID: PMC9307106 DOI: 10.4049/jimmunol.2100759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/17/2022] [Indexed: 05/21/2023]
Abstract
Our recent data demonstrate a critical role of the RIG-I-like receptor family in regulating antifungal immunity against Aspergillus fumigatus in a murine model. However, the importance of this pathway in humans and the cell types that use this innate immune receptor family to detect A. fumigatus remain unresolved. In this study, using patients who underwent hematopoietic stem cell transplantation, we demonstrate that a polymorphism in human MAVS present in the donor genome was associated with the incidence of invasive pulmonary aspergillosis. Moreover, in a separate cohort of confirmed invasive pulmonary aspergillosis patients, polymorphisms in the IFIH1 gene alter the inflammatory response, including IFN-responsive chemokines. Returning to our murine model, we now demonstrate that CD11c+ Siglec F+ alveolar macrophages require Mavs expression to maintain host resistance against A. fumigatus. Our data support the role of MAVS signaling in mediating antifungal immunity in both mice and humans at least in part through the role of MAVS-dependent signaling in alveolar macrophages.
Collapse
Affiliation(s)
- Xi Wang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Cristina Cunha
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Madeleine S Grau
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Shelly J Robertson
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - João F Lacerda
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Lisbon, Portugal
| | - António Campos
- Serviço de Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Clinical Department of Laboratory Medicine and National Reference Center for Medical Mycology, University Hospitals Leuven, Leuven, Belgium; and
| | - Johan Maertens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Sonja M Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joshua J Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH;
| |
Collapse
|
3
|
Li F, Piattini F, Pohlmeier L, Feng Q, Rehrauer H, Kopf M. Monocyte-derived alveolar macrophages autonomously determine severe outcome of respiratory viral infection. Sci Immunol 2022; 7:eabj5761. [PMID: 35776802 DOI: 10.1126/sciimmunol.abj5761] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Various lung insults can result in replacement of resident alveolar macrophages (AM) by bone marrow monocyte-derived (BMo)-AM. However, the dynamics of this process and its long-term consequences for respiratory viral infections remain unclear. Using several mouse models and a marker to unambiguously track fetal monocyte-derived (FeMo)-AM and BMo-AM, we established the kinetics and extent of replenishment and their function to recurrent influenza A virus (IAV) infection. A massive loss of FeMo-AM resulted in rapid replenishment by self-renewal of survivors, followed by the generation of BMo-AM. BMo-AM progressively outcompeted FeMo-AM over several months, and this was due to their increased glycolytic and proliferative capacity. The presence of both naïve and experienced BMo-AM conferred severe pathology to IAV infection, which was associated with a proinflammatory phenotype. Furthermore, upon aging of naïve mice, FeMo-AM were gradually replaced by BMo-AM, which contributed to IAV disease severity in a cell-autonomous manner. Together, our results suggest that the origin rather than training of AM determines long-term function to respiratory viral infection and provide an explanation for the increased severity of infection seen in the elderly.
Collapse
Affiliation(s)
- Fengqi Li
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Federica Piattini
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Lea Pohlmeier
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Qian Feng
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center, ETH Zurich and University of Zurich, Zürich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
4
|
Tissue-resident immunity in the lung: a first-line defense at the environmental interface. Semin Immunopathol 2022; 44:827-854. [PMID: 36305904 PMCID: PMC9614767 DOI: 10.1007/s00281-022-00964-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
The lung is a vital organ that incessantly faces external environmental challenges. Its homeostasis and unimpeded vital function are ensured by the respiratory epithelium working hand in hand with an intricate fine-tuned tissue-resident immune cell network. Lung tissue-resident immune cells span across the innate and adaptive immunity and protect from infectious agents but can also prove to be pathogenic if dysregulated. Here, we review the innate and adaptive immune cell subtypes comprising lung-resident immunity and discuss their ontogeny and role in distinct respiratory diseases. An improved understanding of the role of lung-resident immunity and how its function is dysregulated under pathological conditions can shed light on the pathogenesis of respiratory diseases.
Collapse
|
5
|
Ambhore NS, Kalidhindi RSR, Sathish V. Sex-Steroid Signaling in Lung Diseases and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:243-273. [PMID: 33788197 DOI: 10.1007/978-3-030-63046-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sex/gender difference exists in the physiology of multiple organs. Recent epidemiological reports suggest the influence of sex-steroids in modulating a wide variety of disease conditions. Sex-based discrepancies have been reported in pulmonary physiology and various chronic inflammatory responses associated with lung diseases like asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, and rare lung diseases. Notably, emerging clinical evidence suggests that several respiratory diseases affect women to a greater degree, with increased severity and prevalence than men. Although sex-specific differences in various lung diseases are evident, such differences are inherent to sex-steroids, which are major biological variables in men and women who play a central role to control these differences. The focus of this chapter is to comprehend the sex-steroid biology in inflammatory lung diseases and to understand the mechanistic role of sex-steroids signaling in regulating these diseases. Exploring the roles of sex-steroid signaling in the regulation of lung diseases and inflammation is crucial for the development of novel and effective therapy. Overall, we will illustrate the importance of differential sex-steroid signaling in lung diseases and their possible clinical implications for the development of complementary and alternative medicine to treat lung diseases.
Collapse
Affiliation(s)
- Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | | | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
6
|
Kalidhindi RSR, Ambhore NS, Balraj P, Schmidt T, Khan MN, Sathish V. Androgen receptor activation alleviates airway hyperresponsiveness, inflammation, and remodeling in a murine model of asthma. Am J Physiol Lung Cell Mol Physiol 2021; 320:L803-L818. [PMID: 33719566 DOI: 10.1152/ajplung.00441.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies demonstrate an apparent sex-based difference in the prevalence of asthma, with a higher risk in boys than girls, which is reversed postpuberty, where women become more prone to asthma than men, suggesting a plausible beneficial role for male hormones, especially androgens as a regulator of pathophysiology in asthmatic lungs. Using a murine model of asthma developed with mixed allergen (MA) challenge, we report a significant change in airway hyperresponsiveness (AHR), as demonstrated by increased thickness of epithelial and airway smooth muscle layers and collagen deposition, as well as Th2/Th17-biased inflammation in the airways of non-gonadectomized (non-GDX) and gonadectomized (GDX) male mice. Here, compared with non-GDX mice, MA-induced AHR and inflammatory changes were more prominent in GDX mice. Activation of androgen receptor (AR) using 5α-dihydrotestosterone (5α-DHT, AR agonist) resulted in decreased Th2/Th17 inflammation and remodeling-associated changes, resulting in improved lung function compared with MA alone challenged mice, especially in GDX mice. These changes were not observed with Flutamide (Flut, AR antagonist). Overall, we show that AR exerts a significant and beneficial role in asthma by regulating AHR and inflammation.
Collapse
Affiliation(s)
- Rama Satyanarayana Raju Kalidhindi
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota
| | - Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota
| | - Premanand Balraj
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota
| | - Taylor Schmidt
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - M Nadeem Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
7
|
Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages. Blood 2015; 126:1357-66. [PMID: 26232173 DOI: 10.1182/blood-2015-01-624809] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/27/2015] [Indexed: 12/22/2022] Open
Abstract
Alveolar macrophages (AMs) reside on the luminal surfaces of the airways and alveoli where they maintain host defense and promote alveolar homeostasis by ingesting inhaled particulates and regulating inflammatory responses. Recent studies have demonstrated that AMs populate the lungs during embryogenesis and self-renew throughout life with minimal replacement by circulating monocytes, except under extreme conditions of depletion or radiation injury. Here we demonstrate that on a global scale, environment appears to dictate AM development and function. Indeed, transcriptome analysis of embryonic host-derived and postnatal donor-derived AMs coexisting within the same mouse demonstrated >98% correlation and overall functional analyses were similar. However, we also identified several genes whose expression was dictated by origin rather than environment. The most differentially expressed gene not altered by environment was Marco, a gene recently demonstrated to have enhancer activity in embryonic-derived but not postnatal-derived tissue macrophages. Overall, we show that under homeostatic conditions, the environment largely dictates the programming and function of AMs, whereas the expression of a small number of genes remains linked to the origin of the cell.
Collapse
|
8
|
Ewing P, Miklos S, Olkiewicz KM, Müller G, Andreesen R, Holler E, Cooke KR, Hildebrandt GC. Donor CD4+ T-cell production of tumor necrosis factor alpha significantly contributes to the early proinflammatory events of graft-versus-host disease. Exp Hematol 2007; 35:155-63. [PMID: 17198884 DOI: 10.1016/j.exphem.2006.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 09/14/2006] [Accepted: 09/21/2006] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Tumor necrosis factor alpha (TNFalpha) is an old foe in allogeneic bone marrow transplantation (allo-BMT) promoting acute graft-versus-host disease (aGVHD). We investigated to what extent donor T cells contribute to TNFalpha production. METHODS Lethally irradiated B6D2F1 mice were transplanted with bone marrow (BM) and T cells from syngeneic B6D2F1 or allogeneic B6 donors and assessed for cytokine production, aGVHD, and survival. RESULTS Analysis of serum TNFalpha kinetics in recipients of allogeneic B6 wild-type BM and wild-type T cells revealed that TNFalpha levels peaked around day 7 after allo-BMT, whereas TNFalpha was undetectable in syngeneic controls. TNFalpha was produced by both host and donor cells. Further exploration showed that specifically donor CD4(+) but not CD8(+) T cells were the primary donor cell source of TNFalpha at this early time point; numbers of TNFalpha expressing splenic CD4(+) T cells were higher than CD8(+) T cells 7 days after allo-BMT, and maximal serum TNFalpha levels were detected following allo-BMT with only CD4(+) T cells compared to levels found in allogeneic recipients of only wild-type CD8(+) or to only CD4(+) TNFalpha(-/-) T cells. Concurrent with increased TNFalpha levels, early clinical aGVHD and mortality were more severe following allo-BMT with either wild-type CD4(+) and CD8(+) or CD4(+) T cells only. CONCLUSION Our data demonstrate that in addition to residual host cells donor CD4(+) T cells significantly contribute to the proinflammatory cytokine milieu engendered early after allo-BMT through the production of TNFalpha. These findings support strategies focusing on TNFalpha neutralization as primary treatment for aGVHD.
Collapse
Affiliation(s)
- Patricia Ewing
- Department of Hematology and Oncology, University of Regensburg Medical School, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Heterogeneity of the macrophage lineage has long been recognized and, in part, is a result of the specialization of tissue macrophages in particular microenvironments. Circulating monocytes give rise to mature macrophages and are also heterogeneous themselves, although the physiological relevance of this is not completely understood. However, as we discuss here, recent studies have shown that monocyte heterogeneity is conserved in humans and mice, allowing dissection of its functional relevance: the different monocyte subsets seem to reflect developmental stages with distinct physiological roles, such as recruitment to inflammatory lesions or entry to normal tissues. These advances in our understanding have implications for the development of therapeutic strategies that are targeted to modify particular subpopulations of monocytes.
Collapse
Affiliation(s)
- Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | |
Collapse
|
10
|
Alves-Guerra MC, Rousset S, Pecqueur C, Mallat Z, Blanc J, Tedgui A, Bouillaud F, Cassard-Doulcier AM, Ricquier D, Miroux B. Bone marrow transplantation reveals the in vivo expression of the mitochondrial uncoupling protein 2 in immune and nonimmune cells during inflammation. J Biol Chem 2003; 278:42307-12. [PMID: 12907675 DOI: 10.1074/jbc.m306951200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial uncoupling protein 2 (UCP2) is expressed in spleen, lung, intestine, white adipose tissue, and immune cells. Bone marrow transplantation in mice was used to assess the contribution of immune cells to the expression of UCP2 in basal condition and during inflammation. Immune cells accounted for the total amount of UCP2 expression in the spleen, one-third of its expression in the lung, and did not participate in its expression in the intestine. LPS injection stimulated UCP2 expression in lung, spleen, and intestine in both immune and non-immune cells. Successive injections of LPS and dexamethasone or N-acetyl-cysteine prevented the induction of UCP2 in all three tissues, suggesting that oxygen free radical generation plays a role in UCP2 regulation. Finally, both previous studies and our data show that there is down-regulation of UCP2 in immune cells during their activation in the early stages of the LPS response followed by an up-regulation in UCP2 during the later stages to protect all cells against oxidative stress.
Collapse
Affiliation(s)
- Marie-Clotilde Alves-Guerra
- CNRS UPR 9078, Faculté de Médecine Necker-Enfants Malades, 156 rue de Vaugirard, 75730 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bernier T, Tschernig T, Pabst R, Macke O, Steinmueller C, Emmendörffer A. Effects of macrophage‐CSF on pulmonary‐macrophage repopulation after bone marrow transplantation. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.1.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Tanja Bernier
- Department of Immunobiology, Fraunhofer Institute of Toxicology and Aerosol Research, 30625 Hannover, Germany
| | - Thomas Tschernig
- Department of Functional and Applied Anatomy, Hannover Medical School, 30623 Hannover, Germany
| | - Reinhard Pabst
- Department of Functional and Applied Anatomy, Hannover Medical School, 30623 Hannover, Germany
| | - Olaf Macke
- Department of Immunobiology, Fraunhofer Institute of Toxicology and Aerosol Research, 30625 Hannover, Germany
| | - Christiane Steinmueller
- Department of Immunobiology, Fraunhofer Institute of Toxicology and Aerosol Research, 30625 Hannover, Germany
| | - Andreas Emmendörffer
- Department of Immunobiology, Fraunhofer Institute of Toxicology and Aerosol Research, 30625 Hannover, Germany
| |
Collapse
|
12
|
Komuro I, Keicho N, Iwamoto A, Akagawa KS. Human alveolar macrophages and granulocyte-macrophage colony-stimulating factor-induced monocyte-derived macrophages are resistant to H2O2 via their high basal and inducible levels of catalase activity. J Biol Chem 2001; 276:24360-4. [PMID: 11313354 DOI: 10.1074/jbc.m102081200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human alveolar macrophages (A-MPhi) and macrophages (MPhi) generated from human monocytes under the influence of granulocyte-macrophage colony-stimulating factors (GM-MPhi) express high levels of catalase activity and are highly resistant to H(2)O(2). In contrast, MPhi generated from monocytes by macrophage colony-stimulating factors (M-MPhi) express low catalase activity and are about 50-fold more sensitive to H(2)O(2) than GM-MPhi or A-MPhi. Both A-MPhi and GM-MPhi but not M-MPhi can induce catalase expression in both protein and mRNA levels when stimulated with H(2)O(2) or zymosan. M-MPhi but not GM-MPhi produce a large amount of H(2)O(2) in response to zymosan or heat-killed Staphylococcus aureus. These findings indicate that GM-MPhi and A-MPhi but not M-MPhi are strong scavengers of H(2)O(2) via the high basal level of catalase activity and a marked ability of catalase induction and that catalase activity of MPhi is regulated by colony-stimulating factors during differentiation.
Collapse
Affiliation(s)
- I Komuro
- Department of Immunology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | |
Collapse
|