1
|
Wada M. Role of ABC Transporters in Cancer Development and Malignant Alteration. YAKUGAKU ZASSHI 2022; 142:1201-1225. [DOI: 10.1248/yakushi.22-00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
2
|
Franqui-Machin R, Wendlandt EB, Janz S, Zhan F, Tricot G. Cancer stem cells are the cause of drug resistance in multiple myeloma: fact or fiction? Oncotarget 2016; 6:40496-506. [PMID: 26415231 PMCID: PMC4747348 DOI: 10.18632/oncotarget.5800] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/12/2015] [Indexed: 12/16/2022] Open
Abstract
Multiple myeloma (MM) remains a largely incurable, genetically heterogeneous plasma-cell malignancy that contains – just like many other cancers – a small fraction of clonogenic stem cell-like cells that exhibit pronounced self-renewal and differentiation capacities, but also pronounced drug resistance. These MM stem cells (MMSCs) are a controversial but highly significant issue in myeloma research because, in our opinion, they are at the root of the failure of anti-neoplastic chemotherapies to transform myeloma to a manageable chronic disease. Several markers including CD138−, ALDH1+ and SP have been used to identify MMSCs; however, no single marker is reliable for the isolation of MMSC. Nonetheless, it is now known that MMSCs depend on self-renewal and pro-survival pathways, such as AKT, Wnt/β-catenin, Notch and Hedgehog, which can be targeted with novel drugs that have shown promise in pre-clinical and clinical trials. Here, we review the pathways of myeloma “stemness”, the interactions with the bone marrow microenvironment that promote drug resistance, and the obstacles that must be overcome to eradicate MMSCs and make myeloma a curable disease.
Collapse
Affiliation(s)
- Reinaldo Franqui-Machin
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Erik B Wendlandt
- Department of Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Siegfried Janz
- Department of Pathology, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Fenghuang Zhan
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Department of Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Guido Tricot
- Department of Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Lee W, Belkhiri A, Lockhart AC, Merchant N, Glaeser H, Harris EI, Washington MK, Brunt EM, Zaika A, Kim RB, El-Rifai W. Overexpression of OATP1B3 confers apoptotic resistance in colon cancer. Cancer Res 2009; 68:10315-23. [PMID: 19074900 DOI: 10.1158/0008-5472.can-08-1984] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Organic anion transporting polypeptide 1B3 (OATP1B3, SLCO1B3) is normally expressed in hepatocytes. In this study, we showed frequent overexpression of OATP1B3 in colorectal adenocarcinomas. Quantitative reverse transcription-PCR analysis of 17 colon tumors indicated tumoral overexpression of OATP1B3 by approximately 100-fold, compared with 20 normal colon samples (P < 0.0001). Using immunohistochemistry on a tissue microarray containing 93 evaluable colon tumor specimens, we detected immunostaining of OATP1B3 in 75 colon adenocarcinomas (81%) and no immunostaining in normal samples. To determine the functional effects of OATP1B3 expression on drug-induced apoptosis, we used camptothecin and oxaliplatin on a panel of colorectal cancer cell lines stably overexpressing OATP1B3. The results indicated that OATP1B3 overexpression enhanced cell survival in RKO, HCT-8, and HCT116(p53+/+) cells that harbor wild-type p53 but not in Caco-2 and HCT116(p53-/-) cells that lack p53, compared with the respective empty vector controls (P < 0.01). The terminal deoxynucleotidyl transferase-mediated nick-end labeling assay confirmed that HCT116(p53+/+) cells overexpressing OATP1B3 had significantly lower apoptotic levels compared with empty vector control (P < 0.001). The overexpression of OATP1B3 reduced the transcriptional activity of p53, with subsequent reductions in transcript and protein levels of its downstream transcription targets (P21WAF1 and PUMA). Overexpression of a point mutation (G583E) variant of OATP1B3 lacking transport activity did not confer an antiapoptotic effect or affect p53 transcriptional activity, suggesting that the antiapoptotic effect of OATP1B3 may be associated with its transport activity. Taken together, our results suggest that OATP1B3 overexpression in colorectal cancer cells may provide a survival advantage by altering p53-dependent pathways.
Collapse
Affiliation(s)
- Wooin Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci U S A 2007; 104:19512-7. [PMID: 18040043 DOI: 10.1073/pnas.0709443104] [Citation(s) in RCA: 526] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Elevated expression of members of the BCL-2 pro-survival family of proteins can confer resistance to apoptosis in cancer cells. Small molecule obatoclax (GX15-070), which is predicted to occupy a hydrophobic pocket within the BH3 binding groove of BCL-2, antagonizes these members and induces apoptosis, dependent on BAX and BAK. Reconstitution in yeast confirmed that obatoclax acts on the pathway and overcomes BCL-2-, BCL-XL-, BCL-w-, and MCL-1-mediated resistance to BAX or BAK. The compound potently interfered with the direct interaction between MCL-1 and BAK in intact mitochondrial outer membrane and inhibited the association between MCL-1 and BAK in intact cells. MCL-1 has been shown to confer resistance to the BCL-2/BCL-XL/BCL-w-selective antagonist ABT-737 and to the proteasome inhibitor bortezomib. In both cases, this resistance was overcome by obatoclax. These findings support a rational clinical development opportunity for the compound in cancer indications or treatments where MCL-1 contributes to resistance to cell killing.
Collapse
|
5
|
Emdad L, Lebedeva IV, Su ZZ, Sarkar D, Dent P, Curiel DT, Fisher PB. Melanoma differentiation associated gene-7/interleukin-24 reverses multidrug resistance in human colorectal cancer cells. Mol Cancer Ther 2007; 6:2985-94. [DOI: 10.1158/1535-7163.mct-07-0399] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Han W, Li L, Qiu S, Lu Q, Pan Q, Gu Y, Luo J, Hu X. Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Cancer Ther 2007; 6:1641-9. [PMID: 17513612 DOI: 10.1158/1535-7163.mct-06-0511] [Citation(s) in RCA: 297] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Defect in apoptotic signaling and up-regulation of drug transporters in cancer cells significantly limits the effectiveness of cancer chemotherapy. We propose that an agent inducing non-apoptotic cell death may overcome cancer drug resistance and showed that shikonin, a naturally occurring naphthoquinone, induced a cell death in MCF-7 and HEK293 distinct from apoptosis and characterized with (a) a morphology of necrotic cell death; (b) loss of plasma membrane integrity; (c) loss of mitochondrial membrane potentials; (d) activation of autophagy as a downstream consequence of cell death, but not a contributing factor; (e) elevation of reactive oxygen species with no critical roles contributing to cell death; and (f) that the cell death was prevented by a small molecule, necrostatin-1, that specifically prevents cells from necroptosis. The characteristics fully comply with those of necroptosis, a basic cell-death pathway recently identified by Degterev et al. with potential relevance to human pathology. Furthermore, we proved that shikonin showed a similar potency toward drug-sensitive cancer cell lines (MCF-7 and HEK293) and their drug-resistant lines overexpressing P-glycoprotein, Bcl-2, or Bcl-x(L), which account for most of the clinical cancer drug resistance. To our best knowledge, this is the first report to document the induction of necroptosis by a small molecular compound to circumvent cancer drug resistance.
Collapse
Affiliation(s)
- Weidong Han
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
McIlroy D, Cartron PF, Tuffery P, Dudoit Y, Samri A, Autran B, Vallette FM, Debré P, Theodorou I. A triple-mutated allele of granzyme B incapable of inducing apoptosis. Proc Natl Acad Sci U S A 2003; 100:2562-7. [PMID: 12594335 PMCID: PMC151380 DOI: 10.1073/pnas.0437935100] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Granzyme B (GzmB) is a serine protease involved in many pathologies, including viral infections, autoimmunity, transplant rejection, and antitumor immunity. To measure the extent of genetic variation in GzmB, we screened the GzmB gene for polymorphisms and defined a frequently represented triple-mutated GzmB allele. In this variant, three amino acids of the mature protein Q(48)P(88)Y(245) are mutated to R(48)A(88)H(245). In CD8(+) cytotoxic T lymphocytes, GzmB was expressed at similar levels in QPY homozygous, QPY/RAH heterozygous, and RAH homozygous individuals, demonstrating that RAH GzmB is a stable protein. Active RAH GzmB expressed in glioblastoma cell lines displayed proteolytic activity, but in contrast to QPY GzmB, it did not accumulate in the nucleus and was unable to induce Bid cleavage, cytochrome c release, or apoptosis. Molecular modeling showed that the three amino acid substitutions clustered near the C-terminal alpha-helix of the protein, indicating that this region of the protein may be involved in the intracellular targeting of GzmB. The triple-mutated GzmB allele that we describe appears to be incapable of inducing apoptosis in tumor cell lines, and its presence could, therefore, influence both the prognosis of cancer patients and the success rates of antitumor cellular immunotherapy.
Collapse
Affiliation(s)
- Dorian McIlroy
- Laboratoire d'Immunologie Cellulaire et Tissulaire, Institut National de la Santé et de la Recherche Médicale U543, Faculté de Médecine Pitié-Salpêtrière, 75013 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bentires-Alj M, Barbu V, Fillet M, Chariot A, Relic B, Jacobs N, Gielen J, Merville MP, Bours V. NF-kappaB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene 2003; 22:90-7. [PMID: 12527911 DOI: 10.1038/sj.onc.1206056] [Citation(s) in RCA: 345] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ubiquitous NF-kappaB transcription factor has been reported to inhibit apoptosis and to induce drug resistance in cancer cells. Drug resistance is the major reason for cancer therapy failure and neoplastic cells often develop multiple mechanisms of drug resistance during tumor progression. We observed that NF-kappaB or P-glycoprotein inhibition in the HCT15 colon cancer cells led to increased apoptotic cell death in response to daunomycin treatment. Interestingly, NF-kappaB inhibition through transfection of a plasmid coding for a mutated IkappaB-alpha inhibitor increased daunomycin cell uptake. Indeed, the inhibition of NF-kappaB reduced mdr1 mRNA and P-glycoprotein expression in HCT15 cells. We identified a consensus NF-kappaB binding site in the first intron of the human mdr1 gene and demonstrated that NF-kappaB complexes could bind with this intronic site. Moreover, NF-kappaB transactivates an mdr1 promoter luciferase construct. Our data thus demonstrate a role for NF-kappaB in the regulation of the mdr1 gene expression in cancer cells and in drug resistance.
Collapse
|
9
|
Ruefli AA, Ausserlechner MJ, Bernhard D, Sutton VR, Tainton KM, Kofler R, Smyth MJ, Johnstone RW. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc Natl Acad Sci U S A 2001; 98:10833-8. [PMID: 11535817 PMCID: PMC58560 DOI: 10.1073/pnas.191208598] [Citation(s) in RCA: 397] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2001] [Indexed: 01/22/2023] Open
Abstract
Many chemotherapeutic agents induce mitochondrial-membrane disruption to initiate apoptosis. However, the upstream events leading to drug-induced mitochondrial perturbation have remained poorly defined. We have used a variety of physiological and pharmacological inhibitors of distinct apoptotic pathways to analyze the manner by which suberoylanilide hydroxamic acid (SAHA), a chemotherapeutic agent and histone deacetylase inhibitor, induces cell death. We demonstrate that SAHA initiates cell death by inducing mitochondria-mediated death pathways characterized by cytochrome c release and the production of reactive oxygen species, and does not require the activation of key caspases such as caspase-8 or -3. We provide evidence that mitochondrial disruption is achieved by means of the cleavage of the BH3-only proapoptotic Bcl-2 family member Bid. SAHA-induced Bid cleavage was not blocked by caspase inhibitors or the overexpression of Bcl-2 but did require the transcriptional regulatory activity of SAHA. These data provide evidence of a mechanism of cell death mediated by transcriptional events that result in the cleavage of Bid, disruption of the mitochondrial membrane, and production of reactive oxygen species to induce cell death.
Collapse
Affiliation(s)
- A A Ruefli
- Cancer Immunology Division, The Peter MacCallum Cancer Institute, Trescowthick Research Laboratories, Saint Andrews Place, East Melbourne, Victoria 3002, Australia
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Johnstone RW, Gerber M, Landewe T, Tollefson A, Wold WS, Shilatifard A. Functional analysis of the leukemia protein ELL: evidence for a role in the regulation of cell growth and survival. Mol Cell Biol 2001; 21:1672-81. [PMID: 11238904 PMCID: PMC86713 DOI: 10.1128/mcb.21.5.1672-1681.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ELL gene encodes an RNA polymerase II transcription factor that frequently undergoes translocation with the MLL gene in acute human myeloid leukemia. Here, we report that ELL can regulate cell proliferation and survival. In order to better understand the physiological role of the ELL protein, we have developed an ELL-inducible cell line. Cells expressing ELL were uniformly inhibited for growth by a loss of the G(1) population and an increase in the G(2)/M population. This decrease in cell growth is followed by the condensation of chromosomal DNA, activation of caspase 3, poly(ADP ribose) polymerase cleavage, and an increase in sub-G(1) population, which are all indicators of the process of programmed cell death. In support of the role of ELL in induction of cell death, expression of an ELL antisense RNA or addition of the caspase inhibitor ZVAD-fmk results in a reversal of ELL-mediated death. We have also demonstrated that the C-terminal domain of ELL, which is conserved among the ELL family of proteins that we have cloned (ELL, ELL2, and ELL3), is required for ELL's activity in the regulation of cell growth. These novel results indicate that ELL can regulate cell growth and survival and may explain how ELL translocations result in the development of human malignancies.
Collapse
MESH Headings
- Amino Acid Chloromethyl Ketones/pharmacology
- Antigens, Differentiation
- Apoptosis
- Blotting, Western
- Caspase 3
- Caspase Inhibitors
- Caspases/metabolism
- Cell Cycle Proteins
- Cell Death
- Cell Division
- Cell Line
- Cell Survival
- Cysteine Proteinase Inhibitors/pharmacology
- DNA/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Flow Cytometry
- G1 Phase
- G2 Phase
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Microscopy, Fluorescence
- Microscopy, Phase-Contrast
- Mitosis
- Neoplasm Proteins
- Oligonucleotides, Antisense/metabolism
- Peptide Elongation Factors
- Plasmids/metabolism
- Poly(ADP-ribose) Polymerases/metabolism
- Propidium/pharmacology
- Protein Phosphatase 1
- Proteins/metabolism
- RNA, Messenger/metabolism
- Time Factors
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcriptional Elongation Factors
- Transfection
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- R W Johnstone
- The Peter MacCallum Cancer Institute, Gene Regulation Laboratory, Cancer Immunology Division, East Melbourne, 3002 Victoria, Australia
| | | | | | | | | | | |
Collapse
|
11
|
Jin S, Gorfajn B, Faircloth G, Scotto KW. Ecteinascidin 743, a transcription-targeted chemotherapeutic that inhibits MDR1 activation. Proc Natl Acad Sci U S A 2000; 97:6775-9. [PMID: 10841572 PMCID: PMC18735 DOI: 10.1073/pnas.97.12.6775] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ecteinascidin 743 (ET-743), a highly promising marine-based antitumor agent presently in phase II clinical trials, has been shown to interfere with the binding of minor-groove-interacting transcription factors, particularly NF-Y, with their cognate promoter elements in vitro. We have shown that NF-Y is a central mediator of activation of transcription of the human P glycoprotein gene (MDR1) by a variety of inducers and that NF-Y functions by recruiting the histone acetyltransferase PCAF to the MDR1 promoter. In the present study, we tested whether ET-743 could block activation of the MDR1 promoter by agents that mediate their effect through the NF-Y/PCAF complex. We report that physiologically relevant concentrations of ET-743 abrogate transcriptional activation of both the endogenous MDR1 gene and MDR1 reporter constructs by the histone deacetylase inhibitors as well as by UV light, with minimal effect on constitutive MDR1 transcription. Notably, this inhibition does not alter the promoter-associated histone hyperacetylation induced by histone deacetylase inhibitors, suggesting an in vivo molecular target downstream of NF-Y/PCAF binding. ET-743 is therefore the prototype for a distinct class of transcription-targeted chemotherapeutic agents and may be an efficacious adjuvant to the treatment of multidrug-resistant tumors.
Collapse
Affiliation(s)
- S Jin
- Molecular Pharmacology and Therapeutics Program, Memorial Sloan-Kettering Cancer Center and the Weill Graduate School of Medical Sciences of Cornell University, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
12
|
Isolation and characterization of an acute promyelocytic leukemia cell line selectively resistant to the novel antileukemic and apoptogenic retinoid 6-[3-adamantyl-4-hydroxyphenyl]-2-naphthalene carboxylic acid. Blood 2000. [DOI: 10.1182/blood.v95.8.2672.008k14_2672_2682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
6-[3-adamantyl-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) is a novel compound that represents the prototype of a new class of synthetic retinoids with apoptogenic properties in acute promyelocytic leukemia (APL) and other types of leukemia. In this article, using SCID mice xenografted with APL-derived NB4 cells, we demonstrate that CD437 has significant antileukemic activity in vivo. In addition, we report on the isolation and characterization of an APL cell line (NB4.437r) resistant to CD437. The cell line retains expression of PML-RAR and is approximately 33-fold more resistant than the parental counterpart to the apoptogenic effects of the retinoid. Resistance is relatively specific to CD437 and structural congeners because the NB4.437r cell line is still sensitive to various types of apoptogenic compounds. The CD437-resistant cell line maintains sensitivity to the antiproliferative and apoptotic action of all-trans-retinoic acid, AM580, and fenretinide, though it shows partial resistance to the cytodifferentiating effects of the first 2 compounds. Resistance to CD437 lays upstream of the CD437-induced release of cytochrome c from the mitochondria and the activation of caspase-3, -7, -8, and -9. Furthermore, NB4.437r cells are deficient in the CD437-dependent activation of nuclear NFkb and AP1-binding activities and in the phosphorylation of the protein kinase Akt. In the case of AP1, deficient assembly of the complex is not caused by the lack of activation of the Jun N-terminal kinase (JNK) family of kinases. The novel cell line will be useful in the elucidation of the molecular mechanisms underlying the apoptogenic action of CD437 and structurally related retinoids.
Collapse
|
13
|
HMBA induces activation of a caspase-independent cell death pathway to overcome P-glycoprotein-mediated multidrug resistance. Blood 2000. [DOI: 10.1182/blood.v95.7.2378.007k10_2378_2385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidrug resistance (MDR) is often characterized by the expression of P-glycoprotein (P-gp), a 170-kd ATP-dependent drug efflux protein. As well as effluxing xenotoxins, functional P-gp can confer resistance to caspase-dependent apoptosis induced by a range of different stimuli, including Fas ligand, tumor necrosis factor, UV irradiation, and serum starvation. However, P-gp-positive cells remain sensitive to caspase-independent death induced by cytotoxic T-cell granule proteins, perforin, and granzyme B. It is, therefore, possible that agents that induce cell death in a caspase-independent manner might circumvent P-gp-mediated MDR. We demonstrated here that hexamethylene bisacetamide (HMBA) induced equivalent caspase-independent cell death in both P-gp-positive and -negative cell lines at concentrations of 10 mmol/L and above. The HMBA-induced death pathway was marked by release of cytochrome c from the mitochondria and reduction of Bcl-2 protein levels. In addition, we show that functional P-gp specifically inhibits the activation of particular caspases, such as caspases-8 and -3, whereas others, such as caspase-9, remain unaffected. These studies greatly enhance our understanding of the molecular cell death events that can be regulated by functional P-gp and highlight the potential clinical use of drugs that function via a caspase-independent pathway for the treatment of MDR tumors.
Collapse
|