1
|
Brauer KM, Werth D, von Schwarzenberg K, Bringmann A, Kanz L, Grünebach F, Brossart P. BCR-ABL Activity Is Critical for the Immunogenicity of Chronic Myelogenous Leukemia Cells. Cancer Res 2007; 67:5489-97. [PMID: 17545631 DOI: 10.1158/0008-5472.can-07-0302] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic myelogenous leukemia (CML) is a myeloproliferative disorder caused by excessive granulopoiesis due to the formation of the constitutively active tyrosine kinase BCR-ABL. An effective drug against CML is imatinib mesylate, a tyrosine kinase inhibitor acting on Abl kinases, c-KIT, and platelet-derived growth factor receptor. Recently, a study revealed that patients treated with imatinib showed impaired CTL responses compared with patients treated with IFN-alpha, which might be due to a treatment-induced reduction in immunogenicity of CML cells or immunosuppressive effects. In our study, we found that inhibition of BCR-ABL leads to a down-regulation of immunogenic antigens on the CML cells in response to imatinib treatment, which results in the inhibition of CML-directed immune responses. By treating CML cells with imatinib, we could show that the resulting inhibition of BCR-ABL leads to a decreased expression of tumor antigens, including survivin, adipophilin, hTERT, WT-1, Bcl-x(L), and Bcl-2 in correlation to a decreased development of CML-specific CTLs. In contrast, this reduction in immunogenicity was not observed when a CML cell line resistant to the inhibitory effects of imatinib was used, but could be confirmed by transfection with specific small interfering RNA against BCR-ABL or imatinib treatment of primary CML cells.
Collapse
MESH Headings
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/immunology
- Antineoplastic Agents/pharmacology
- Benzamides
- Dendritic Cells/immunology
- Down-Regulation
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/immunology
- Humans
- Imatinib Mesylate
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Lymphocyte Activation/drug effects
- Piperazines/pharmacology
- Pyrimidines/pharmacology
- RNA, Small Interfering/genetics
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Katharina M Brauer
- Department of Hematology, Oncology, Immunology, Rheumatology, and Pulmonology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
2
|
Weisberg E, Catley L, Wright RD, Moreno D, Banerji L, Ray A, Manley PW, Mestan J, Fabbro D, Jiang J, Hall-Meyers E, Callahan L, DellaGatta JL, Kung AL, Griffin JD. Beneficial effects of combining nilotinib and imatinib in preclinical models of BCR-ABL+ leukemias. Blood 2006; 109:2112-20. [PMID: 17068153 PMCID: PMC1801049 DOI: 10.1182/blood-2006-06-026377] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Drug resistance resulting from emergence of imatinib-resistant BCR-ABL point mutations is a significant problem in advanced-stage chronic myelogenous leukemia (CML). The BCR-ABL inhibitor, nilotinib (AMN107), is significantly more potent against BCR-ABL than imatinib, and is active against many imatinib-resistant BCR-ABL mutants. Phase 1/2 clinical trials show that nilotinib can induce remissions in patients who have previously failed imatinib, indicating that sequential therapy with these 2 agents has clinical value. However, simultaneous, rather than sequential, administration of 2 BCR-ABL kinase inhibitors is attractive for many reasons, including the theoretical possibility that this could reduce emergence of drug-resistant clones. Here, we show that exposure of a variety of BCR-ABL+ cell lines to imatinib and nilotinib results in additive or synergistic cytotoxicity, including testing of a large panel of cells expressing BCR-ABL point mutations causing resistance to imatinib in patients. Further, using a highly quantifiable bioluminescent in vivo model, drug combinations were at least additive in antileukemic activity, compared with each drug alone. These results suggest that despite binding to the same site in the same target kinase, the combination of imatinib and nilotinib is highly efficacious in these models, indicating that clinical testing of combinations of BCR-ABL kinase inhibitors is warranted.
Collapse
|
3
|
Koyama N, Koschmieder S, Tyagi S, Portero-Robles I, Chromic J, Myloch S, Nürnberger H, Rossmanith T, Hofmann WK, Hoelzer D, Ottmann OG. Inhibition of phosphotyrosine phosphatase 1B causes resistance in BCR-ABL-positive leukemia cells to the ABL kinase inhibitor STI571. Clin Cancer Res 2006; 12:2025-31. [PMID: 16609011 DOI: 10.1158/1078-0432.ccr-04-2392] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of BCR-ABL-mediated transformation in vitro and in vivo. To investigate whether PTP1B modulates the biological effects of the abl kinase inhibitor STI571 in BCR-ABL-positive cells, we transfected Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia cell-derived K562 cells with either wild-type PTP1B (K562/PTP1B), a substrate-trapping dominant-negative mutant PTP1B (K562/D181A), or empty vector (K562/mock). Cells were cultured with or without STI571 and analyzed for its effects on proliferation, differentiation, and apoptosis. In both K562/mock and K562/PTP1B cells, 0.25 to 1 mumol/L STI571 induced dose-dependent growth arrest and apoptosis, as measured by a decrease of cell proliferation and an increase of Annexin V-positive cells and/or of cells in the sub-G(1) apoptotic phase. Western blot analysis showed increased protein levels of activated caspase-3 and caspase-8 and induction of poly(ADP-ribose) polymerase cleavage. Low concentrations of STI571 promoted erythroid differentiation of these cells. Conversely, K562/D181A cells displayed significantly lower PTP1B-specific tyrosine phosphatase activity and were significantly less sensitive to STI571-induced growth arrest, apoptosis, and erythroid differentiation. Pharmacologic inhibition of PTP1B activity in wild-type K562 cells, using bis(N,N-dimethylhydroxamido)hydroxooxovanadate, attenuated STI571-induced apoptosis. Lastly, comparison of the STI571-sensitive Ph+ acute lymphoblastic leukemia cell line SupB15 with a STI571-resistant subline revealed significantly decreased PTP1B activity and enhanced BCR-ABL phosphorylation in the STI571-resistant SupB15 cells. In conclusion, functional PTP1B is involved in STI571-induced growth and cell cycle arrest, apoptosis, and differentiation, and attenuation of PTP1B function may contribute to resistance towards STI571.
Collapse
Affiliation(s)
- Noriko Koyama
- Division of Hematology, Department of Internal Medicine II, Johann Wolfgang Goethe University, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Pricl S, Fermeglia M, Ferrone M, Tamborini E. T315I-mutated Bcr-Abl in chronic myeloid leukemia and imatinib: insights from a computational study. Mol Cancer Ther 2005; 4:1167-74. [PMID: 16093432 DOI: 10.1158/1535-7163.mct-05-0101] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The early stage of chronic myeloid leukemia is triggered by the tyrosine kinase Bcr-Abl. Imatinib mesylate, a selective inhibitor of Bcr-Abl, has been successful in chronic myeloid leukemia clinical trials, but short-lived remissions are usually observed in blast crisis patients. Sequencing of the BCR-ABL gene in relapsed patients revealed a set of mutants that mediate drug resistance. Previously reported work postulated that the missense T315I mutation both alters the three-dimensional structure of the protein binding site, thus decreasing the protein sensitivity for the drug, and does not feature a fundamental hydrogen bond that is critical for binding with imatinib. These speculations, however, were not supported by investigations at the molecular modeling level. Here, we present the results obtained from the application of molecular dynamics simulations to the study of the interactions between T315I Bcr-Abl and imatinib. For the first time, we show that, with respect to the wild-type system, the absence of the supposedly critical H-bond is not the only cause for the failure of receptor inhibition by imatinib, but also a plethora of other protein/drug interactions are drastically and unfavorably changed in the mutant protein.
Collapse
Affiliation(s)
- Sabrina Pricl
- Molecular Simulation Engineering Laboratory, Department of Chemical Engineering, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy.
| | | | | | | |
Collapse
|
5
|
Donato NJ, Wu JY, Stapley J, Lin H, Arlinghaus R, Aggarwal BB, Shishodia S, Albitar M, Hayes K, Kantarjian H, Talpaz M, Shishodin S. Imatinib Mesylate Resistance Through BCR-ABL Independence in Chronic Myelogenous Leukemia. Cancer Res 2004; 64:672-7. [PMID: 14744784 DOI: 10.1158/0008-5472.can-03-1484] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Imatinib mesylate (IM) binds to the BCR-ABL protein, inhibiting its kinase activity and effectively controlling diseases driven by this kinase. IM resistance has been associated with kinase mutations or increased BCR-ABL expression. However, disease progression may be mediated by other mechanisms that render tumor cells independent of BCR-ABL. To demonstrate this potential, IM-resistant cells were found in chronic myelogenous leukemia patients with continuous BCR-ABL gene expression but undetectable BCR-ABL protein expression. These cells were unresponsive to IM and acquired BCR-ABL-independent signaling characteristics. IM resistance in some patients may be mediated through loss of kinase target dependence.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Benzamides
- Blotting, Northern
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/drug effects
- Fusion Proteins, bcr-abl/genetics
- Humans
- Imatinib Mesylate
- In Situ Hybridization
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Philadelphia Chromosome
- Piperazines/therapeutic use
- Pyrimidines/therapeutic use
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Terminal Repeat Sequences/genetics
Collapse
Affiliation(s)
- Nicholas J Donato
- Department of Bioimmunotherapy, University of Texas, M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Shah NP, Sawyers CL. Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene 2003; 22:7389-95. [PMID: 14576846 DOI: 10.1038/sj.onc.1206942] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Philadelphia chromosome-associated leukemias are among the most well-understood human malignancies. The importance of BCR-ABL enzymatic activity in the proliferation of the leukemic clone has been confirmed by the high response rates of these leukemias to the ABL-selective tyrosine kinase inhibitor STI571, even in advanced disease phases, which are characterized by increased genetic heterogeneity. Disease relapse has been observed in a subset of patients who had initially responded to STI571. Evidence suggests that BCR-ABL activity is restored in the majority of these cases of acquired resistance. Molecular studies of resistant leukemia cells isolated from patients have implicated BCR-ABL kinase domain point mutation as the most common mechanism of resistance. Additionally, genomic amplification of the BCR-ABL gene can occasionally be detected. This review will highlight mechanisms of STI571 resistance in clinical samples as well as preclinical models.
Collapse
Affiliation(s)
- Neil P Shah
- Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
7
|
Wilson MB, Schreiner SJ, Choi HJ, Kamens J, Smithgall TE. Selective pyrrolo-pyrimidine inhibitors reveal a necessary role for Src family kinases in Bcr-Abl signal transduction and oncogenesis. Oncogene 2002; 21:8075-88. [PMID: 12444544 DOI: 10.1038/sj.onc.1206008] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2002] [Revised: 08/28/2002] [Accepted: 09/03/2002] [Indexed: 12/11/2022]
Abstract
Chronic myelogenous leukemia (CML) is defined by the presence of the Philadelphia (Ph) chromosome, which results in the expression of the 210 kDa Bcr-Abl tyrosine kinase. Bcr-Abl constitutively activates several signaling proteins important for the proliferation and survival of myeloid progenitors, including the Src family kinases Hck and Lyn, the Stat5 transcription factor and upstream components of the Ras/Erk pathway. Recently, we found that kinase-defective Hck blocks Bcr-Abl-induced transformation of DAGM myeloid leukemia cells to cytokine independence, suggesting that activation of the Src kinase family may be essential to oncogenic signaling by Bcr-Abl. To investigate the contribution of Src kinases to Bcr-Abl signaling in vivo, we used the pyrrolo-pyrimidine Src kinase inhibitors PP2 and A-419259. Treatment of the Ph+ CML cell lines K-562 and Meg-01 with either compound resulted in growth arrest and induction of apoptosis, while the Ph- leukemia cell lines TF-1 and HEL were unaffected over the same concentration ranges. Suppression of Ph+ cell growth by PP2 and A-419259 correlated with a decrease in Src kinase autophosphorylation. Both inhibitors blocked Stat5 and Erk activation, consistent with the suppressive effects of the compounds on survival and proliferation. In contrast, the phosphotyrosine content of Bcr-Abl and its endogenous substrate CrkL was unchanged at inhibitor concentrations that induced apoptosis, blocked oncogenic signaling and inhibited Src kinases. These data implicate the Src kinase family in Stat5 and Erk activation downstream of Bcr-Abl, and identify myeloid-specific Src kinases as potential drug targets in CML.
Collapse
MESH Headings
- Apoptosis/drug effects
- Cell Division/drug effects
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/metabolism
- DNA-Binding Proteins
- Dose-Response Relationship, Drug
- Enzyme Activation/drug effects
- Enzyme Inhibitors/pharmacology
- Fusion Proteins, bcr-abl/physiology
- Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology
- Humans
- K562 Cells/drug effects
- K562 Cells/enzymology
- Leukemia, Erythroblastic, Acute/enzymology
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Milk Proteins
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Monocytes/drug effects
- Monocytes/enzymology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/physiology
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Pyrimidines/pharmacology
- Pyrroles/pharmacology
- STAT5 Transcription Factor
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Trans-Activators
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/enzymology
- src-Family Kinases/antagonists & inhibitors
- src-Family Kinases/physiology
Collapse
Affiliation(s)
- Matthew B Wilson
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15261, USA
| | | | | | | | | |
Collapse
|
8
|
Klejman A, Rushen L, Morrione A, Slupianek A, Skorski T. Phosphatidylinositol-3 kinase inhibitors enhance the anti-leukemia effect of STI571. Oncogene 2002; 21:5868-76. [PMID: 12185586 DOI: 10.1038/sj.onc.1205724] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2002] [Revised: 05/23/2002] [Accepted: 06/10/2002] [Indexed: 11/09/2022]
Abstract
BCR/ABL fusion tyrosine kinase is responsible for the initiation and maintenance of the Philadelphia chromosome (Ph(1))-positive chronic myelogenous leukemia (CML) and a cohort of acute lymphocytic leukemias (ALL). STI571 (Gleevec), a novel anti-leukemia drug targeting BCR/ABL kinase can induce remissions of the Ph(1)-positive leukemias. STI571 was recently combined with the standard cytostatic drugs to achieve better therapeutic results and to overcome emerging drug resistance mechanisms. We decided to search for a more specific partner compound for STI571. Our previous studies showed that a signaling protein phosphatidylinositol-3 kinase (PI-3k) is essential for the growth of CML cells, but not of normal hematopoietic cells (Blood, 86:726,1995). Therefore the anti- Ph(1)-leukemia effect of the combination of BCR/ABL kinase inhibitor STI571 and PI-3k inhibitor wortmannin (WT) or LY294002 (LY) was tested. We showed that STI571+WT exerted a synergistic effect against the Ph(1)-positive cell lines, but did not affect the growth of Ph(1)-negative cell line. Moreover, the combinations of STI571+WT or STI571+LY were effective in the inhibition of clonogenic growth of CML-chronic phase and CML-blast crisis patient cells, while sparing normal bone marrow cells. Single colony RT-PCR assay showed that colonies arising from the mixture of CML cells and normal bone marrow cells after treatment with STI571+WT were selectively depleted of BCR/ABL-positive cells. Biochemical analysis of the CML cells after the treatment revealed that combination of STI571+WT caused a more pronounced activation of caspase-3 and induced massive apoptosis, in comparison to STI571 and WT alone. In conclusion, combination of STI571+WT or STI571+LY may represent a novel approach against the Ph(1)-positive leukemias.
Collapse
Affiliation(s)
- Agata Klejman
- Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | |
Collapse
|
9
|
Mahon FX. Résistance clinique au STI571 : implication du gènebcr-abllui-même ? Med Sci (Paris) 2001. [DOI: 10.1051/medsci/200117111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Wolff NC, Ilaria RL. Establishment of a murine model for therapy-treated chronic myelogenous leukemia using the tyrosine kinase inhibitor STI571. Blood 2001; 98:2808-16. [PMID: 11675355 DOI: 10.1182/blood.v98.9.2808] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The murine bone marrow retroviral transduction and transplantation model of chronic myelogenous leukemia (CML) imperfectly mimics human CML because the murine CML-like disease causes death of all animals from an overwhelming granulocytosis within 3 to 4 weeks. In this report, mice reconstituted with P210(BCR/ABL)-transduced bone marrow cells received posttransplantation therapy with either the tyrosine kinase inhibitor STI571 or placebo. Compared with the rapidly fatal leukemia of placebo-treated animals, 80% of the STI571-treated mice were alive on day 74, with marked improvement in peripheral white blood counts and splenomegaly. There was decreased tyrosine phosphorylation of STAT5, Shc, and Crk-L in leukemic cells from STI571-treated animals, consistent with STI571-mediated inhibition of the Bcr/Abl tyrosine kinase in vivo. In some STI571-treated animals Bcr/Abl messenger RNA and protein expression were markedly increased. In contrast to the polyclonal leukemia of placebo-treated mice, STI571-treated murine CML was generally oligoclonal, suggesting that STI571 eliminated or severely suppressed certain leukemic clones. None of the STI571-treated mice were cured of the CML-like myeloproliferative disorder, however, and STI571-treated murine CML was transplanted to secondary recipients with high efficiency. These results demonstrate the utility of this murine model of CML in the evaluation of novel therapeutic agents against Bcr/Abl-induced leukemias. This improved murine chronic-phase CML model may be a useful tool for the study of STI571 resistance, CML progression, and the anti-CML immune response.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/therapeutic use
- Benzamides
- Bone Marrow Cells/metabolism
- Bone Marrow Transplantation
- DNA-Binding Proteins/drug effects
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Imatinib Mesylate
- Immediate-Early Proteins/genetics
- Leukemia, Experimental/drug therapy
- Leukemia, Experimental/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukocyte Count
- Mice
- Mice, Inbred BALB C
- Milk Proteins
- Piperazines/administration & dosage
- Piperazines/therapeutic use
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Pyrimidines/administration & dosage
- Pyrimidines/therapeutic use
- RNA, Messenger/metabolism
- Retroviridae/genetics
- STAT5 Transcription Factor
- Spleen/metabolism
- Spleen/pathology
- Suppressor of Cytokine Signaling Proteins
- Survival Rate
- Trans-Activators/drug effects
- Trans-Activators/metabolism
- Transduction, Genetic
Collapse
Affiliation(s)
- N C Wolff
- Division of Hematology/Oncology, Department of Medicine, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | | |
Collapse
|
11
|
Affiliation(s)
- J Adams
- Millennium Pharmaceuticals, Inc, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|